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TO    HIS    GRACE 

THE    DUKE    OF    DEVONSHIRE    K.G. 

CHANCELLOR    OF    THE    UNIVERSITY    OF    CAMBRIDGE 

FOUNDER    OF    THE    CAVENDISH    LABORATORY 

THIS    MEMORIAL    EDITION 

OF 

THE    SCIENTIFIC    PAPERS 

OF 

THE   FIRST   CAVENDISH   PROFESSOR   OF   EXPERIMENTAL   PHYSICS 

IS 

BY    HIS    GRACE'S    PERMISSION 

RESPECTFULLY    AND    GRATEFULLY    DEDICATED 



SHORTLY  after  the  death  of  Professor  James  Clerk  Maxwell  a  Committee  was 

formed,  consisting  of  graduate  members  of  the  University  of  Cambridge  and 
of  other  friends  and  admirers,  for  the  purpose  of  securing  a  fitting  memorial  of 
him. 

The  Committee  had  in  view  two  objects :  to  obtain  a  likeness  of  Professor 

Clerk  Maxwell,  which  should  be  placed  in  some  public  building  of  the  Uni- 

versity;  and  to  collect  and  publish  his  scattered  scientific  writings,  copies  of 

which,  so  far  as  the  funds  at  the  disposal  of  the  Committee  would  allow, 

should  be  presented  to  learned  Societies  and  Libraries  at  home  and  abroad. 

It  was  decided  that  the  likeness  should  take  the  form  of  a  marble  bust. 

This  was  executed  by  Sir  J.  E.  Boehm,  R.A.,  and  is  now  placed  in  the 

apparatus   room   of  the   Cavendish   Laboratory. 

In  carrying  out  the  second  part  of  their  programme  the  Committee 

obtained  the  cordial  assistance  of  the  Syndics  of  the  University  Press,  who 

willingly  consented  to  publish  the  present  work.  At  the  request  of  the  Syndics, 
Mr  W.  D.  Niven,  M.A.,  Fellow  and  Assistant  Tutor  of  Trinity  College  and 

now  Director  of  Studies  at  the  Royal  Naval  College,  Greenwich,  undertook  the 
duties  of  Editor. 

The  Committee  and  the  Syndics  desire  to  take  this  opportunity  of 

acknowledging  their  obligation  to  Messrs  Adam  and  Charles  Black,  Publishers 

of  the  ninth  Edition  of  the  EiicyclopcEdia  Biitannica,  to  Messrs  Taylor  and 

Francis,  Publishers  of  the  London,  Edinburgh,  and  Dublin  Philosophical  Maga- 

zine and  Journal  of  Science,  to  Messrs  Macmillan  and  Co.,  Publishers  of 

Nature  and  of  the  Cambridge  and  Dublin  Mathematical  Joui-nal,  to  Messrs 
Metcalfe  and  Co.,  Publishers  of  the  Quarterly  Journal  of  Pure  and  Applied 
Mathematics,  and  to  the  Lords  of  the  Conmiittee  of  Council  on  Education, 

Proprietors  of  the  Handbooks  of  the  South  Kensington  Museum,  for  their 
courteous  consent  to  allow  the  articles  which  Clerk  Maxwell  had  contributed  to 

these  publications  to  be  included  in  the  present  work ;  to  Mr  Norman  Lockyer 

for  the  assistance  which  he  rendered  in  the  selection  of  the  articles  re-printed 
from  Nature;  and  their  further  obligation  to  Messrs  Macmillan  and  Co.  for 

permission  to  use  in  this  work  the  steel  engravings  of  Faraday,  Clerk  Maxwell, 
and  Helmholtz  from  the  Nature  Series  of  Portraits. 



Numerous  and  important  Papers,  contributed  by  Clerk  Maxwell  to  the 

Transactions  or  Proceedings  of  the  Royal  Societies  of  London  and  of  Edinburgh, 

of  the  Cambridge  Philosophical  Society,  of  the  Royal  Scottish  Society  of  Arts, 

and  of  the  London  Mathematical  Society;  Lectures  delivered  by  Clerk  Maxwell 

at  the  Royal  Institution  of  Great  Britain  pubHshed  in  its  Proceedings;  as  well 

as  Communications  and  Addresses  to  the  British  Association  published  in  its 

Reports,  are  also  included  in  the  present  work  with  the  sanction  of  the  above 
mentioned  learned  bodies. 

The  Essay  which  gained  the  Adams  Prize  for  the  year  1856  in  the 

University  of  Cambridge,  the  introductory  Lecture  on  the  Study  of  Experimental 

Physics  delivered  in  the  Cavendish  Laboratory,  and  the  Rede  Lecture  delivered 

before  the  University  in  1878,  complete  this  collection  of  Clerk  Maxwell's  scientific 
writings. 

The  diagrams  in  this  work  have  been  re-produced  by  a  photographic 

process  from  the  original  diagrams  in  Clerk  Maxwell's  Papers  by  the  Cambridge 
Scientific   Instrument  Company. 

It  only  remams  to  add  that  the  footnotes  inserted  by  the  Editor  are 

enclosed  between  square   brackets. 

Cambridge,  Augv^t,  1890. 



PEEFACE. 

CLERK  MAXWELL'S  biography  has  been  written  by  Professors  Lewis  Campbell  and 
Wm.  Garnett  with  so  much  skill  and  appreciation  of  their  subject  that  nothing  further 

remains  to  be  told.  It  would  therefore  be  presumption  on  the  part  of  the  editor  of  his 

papers  to  attempt  any  lengthened  narrative  of  a  biographical  character.  At  the  same  time 

a  memorial  edition  of  an  author's  collected  writings  would  hardly  be  complete  without 
some  account  however  slight  of  his  life  and  works.  Accordingly  the  principal  events  of 

Clerk  Maxwell's  career  will  be  recounted  in  the  following  brief  sketch,  and  the  reader 
who  wishes  to  obtain  further  and  more  detailed  information  or  to  study  his  character  in 

its  social  relations  may  consult  the  interesting  work  to  which  reference  has  been  made. 

James  Clerk  Maxwell  was  descended  from  the  Clerks  of  Penicuick  in  Midlothian, 

a  well-known  Scottish  family  whose  history  can  be  traced  back  to  the  IGth  century.  The 

first  baronet  served  in  the  parliament  of  Scotland.  His  eldest  son,  a  man  of  learning, 

was  a  Baron  of  the  Exchequer  in  Scotland.  In  later  times  John  Clerk  of  Eldin  a 

member  of  the  family  claimed  the  credit  of  having  invented  a  new  method  of  breaking 

the  enemy's  line  in  naval  warfare,  an  invention  said  to  have  been  adopted  by  Lord 
Rodney  in  the  battle  which  he  gained  over  the  French  in  1782.  Another  John  Clerk, 

son  of  the  naval  tactitian,  was  a  lawyer  of  much  acumen  and  became  a  Lord  of  the 

Court  of  Session.  He  was  distinguished  among  his  Edinburgh  contemporaries  by  his  ready 
and  sarcastic  wit. 

The  father  of  the  subject  of  this  memoir  was  John,  brother  to  Sir  George  Clerk  of 

Penicuick.  He  adopted  the  surname  of  Maxwell  on  succeeding  to  an  estate  in  Kirkcud- 

brightshire which  came  into  the  Clerk  family  through  marriage  with  a  Miss  Maxwell.  It 

cannot  be  said  that  he  was  possessed  of  the  energy  and  activity  of  mind  which  lead 

to  distinction.  He  was  in  truth  a  somewhat  easy-going  but  shrewd  and  intelligent 

man,  whose  most  notable  characteristics  were  his  perfect  sincerity  and  extreme  benevolence. 

He  took  an  enlightened  interest  in  mechanical  and  scientific  pursuits  and  was  of  an 

essentially  practical  turn  of  mind.  On  leaving  the  University  he  had  devoted  himself 

to  law  and  was  called  to  the  Scottish  Bar.  It  does  not  appear  however  that  he  met 

mth   any   great    success    in    that    profession.      At    all    events,   a    quiet    life    in    the    country 
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presented  so  many  attractions  to  his  wife  as  well  as  to  himself  that  he  was  easily  induced 
to  relinquish  his  prospects  at  the  bar.  He  had  been  married  to  Frances,  daughter  of 
Robert  Cay  of  N.  Charlton,  Northumberland,  a  lady  of  strong  good  sense  and  resolute 
character. 

The  country  house  which  was  their  home  after  they  left  Edinburgh  was  designed 
by  John  Clerk  Maxwell  himself  and  was  built  on  his  estate.  The  house,  which  was  named 
Glenlair,  was  surrounded  by  fine  scenery,  of  which  the  water  of  Urr  with  its  rocky  and 
wooded  banks  formed  the  principal  charm. 

James  was  bom  at  Edinburgh  on  the  13th  of  June,  1831,  but  it  was  at  Glenlair 

that  the  greater  part  of  his  childhood  was  passed.  In  that  pleasant  spot  under  healthful 
influences  of  all  kinds  the  child  developed  into  a  hardy  and  ccirageous  boy.  Not 

precociously  clever  at  books  he  was  yet  not  without  some  signs  of  future  intellectual 

strength,  being  remarkable  for  a  spirit  of  inquiry  into  the  caupjs  and  connections  of  the 
phenomena  around  him.  It  was  remembered  afterwards  when  he  had  become  distinguished, 

that  the  questions  he  put  as  a  child  shewed  an  amount  of  thoughtfulness  which  for  his 
years  was  very  unusual. 

At  the  age  of  ten,  James,  who  had  lost  his  mother,  was  placed  under  the  charge  of 
relatives  in  Edinburgh  that  he  might  attend  the  Edinburgh  Academy.  A  charming  account 

of  his  school  days  is  given  in  the  narrative  of  Professor  Campbell  who  was  Maxwell's 
schoolfellow  and  in  after  life  an  intimate  friend  and  constant  correspondent.  The  child  is 

father  to  the  man,  and  those  who  were  privileged  to  know  the  man  Maxwell  will  easily 

recognise  Mr  Campbell's  picture  of  the  boy  on  his  first  appearance  at  school, — the  home- 
made garments  more  serviceable  than  fashionable,  the  rustic  speech  and  curiously  quaint 

but  often  humorous  manner  of  conveying  his  meaning,  his  bewilderment  on  first  undergoing 
the  routine  of  schoolwork,  and  his  Spartan  conduct  under  various  trials  at  the  hands  of 

his  schoolfellows.  They  will  further  feel  how  accurate  is  the  sketch  of  the  boy  become 

accustomed  to  his  surroundings  and  rapidly  assuming  the  place  at  school  to  which  his 

mental  powers  entitled  him,  while  his  superfluous  energy  finds  vent  privately  in  carrying 
out  mechanical  contrivances  and  geometrical  constructions,  in  reading  and  even  trying  his 

hand  at  composing  ballads,  and  in  sending  to  his  father  letters  richly  embellished  with 
grotesquely  elaborate  borders  and  drawings. 

An  event  of  his  school-days,  worth  recording,  was  his  invention  of  a  mechanical  method 
of  drawing  certain  classes  of  Ovals.  An  account  of  this  method  was  printed  in  the 

Proceedings  of  the  Royal  Society  of  Edinburgh  and  forms  the  first  of  his  writings 
collected  in  the  present  work.  The  subject  was  introduced  to  the  notice  of  the  Society 

by  the  celebrated  Professor  James  Forbes,  who  from  the  first  took  the  greatest  possible 

interest  in  Maxwell's  progress.  Professor  Tait,  another  schoolfellow,  mentions  that  at  the 
time  when  the  paper  on  the  Ovals  was  written.  Maxwell  had  received  no  instruction  in 
Mathematics  beyond  a  little  Euclid  and  Algebra. 
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In  1847  Maxwell  entered  the  University  of  Edinburgh  where  he  remained  for  three 
sessions.  He  attended  the  lectures  of  Kelland  in  Mathematics,  Forbes  in  Natural  Philosophy, 
Gregory  in  Chemistry,  Sir  W.  Hamilton  in  Mental  Philosophy,  Wilson  (Christopher  North) 

in  Moral  Philosophy.  The  lectures  of  Sir  W.  Hamilton  made  a  strong  impression  upon 

him,  in  stimulating  the  love  of  speculation  to  which  his  mind  was  prone,  but,  as  might 
have  been  expected,  it  was  the  Professor  of  Natural  Philosophy  who  obtained  the  chief  share 
of  his  devotion.  The  enthusiasm  which  so  distinguished  a  man  as  Forbes  naturally  inspired 
in  young  and  ardent  disciples,  evoked  a  feeling  of  personal  attachment,  and  the  Professor,  on 

his  part,  took  special  interest  in  his  pupil  and  gave  to  him  the  altogether  unusual 
privilege   of  working   with   his   fine   apparatus. 

What  was  the  nature  of  this  experimental  work  we  may  conjecture  from  a  perusal  of 

his  paper  on  Elastic  Solids,  written  at  that  time,  in  which  he  describes  some  experiments 
made  with  the  view  of  verifying  the  deductions  of  his  theory  in  its  application  to  Optics. 
Maxwell  would  seem  to  have  been  led  to  the  study  of  this  subject  by  the  following  cir- 

cumstance. He  was  taken  by  his  uncle  John  Cay  to  see  William  Nicol,  the  inventor  of 

the  polarising  prism  which  bears  his  name,  and  was  shewn  by  Nicol  the  colours  of  unan- 
nealed  glass  in  the  polariscope.  This  incited  Maxwell  to  study  the  laws  of  polarised  light 
and  to  construct  a  rough  polariscope  in  which  the  polariser  and  analyser  were  simple  glass 
reflectors.  By  means  of  this  instrument  he  was  able  to  obtain  the  colour  bands  of  unannealed 

glass.  These  he  copied  on  paper  in  water  colours  and  sent  to  Nicol.  It  is  gratifpng  to 

find  that  this  spirited  attempt  at  experimenting  on  the  part  of  a  mere  boy  was  duly 

appreciated  by  Nicol,  who  at  once  encouraged  and  delighted  him  by  a  present  of  a  couple  of 
his  prisms. 

The  paper  alluded  to,  viz.  that  entitled  "On  the  Equilibrium  of  Elastic  Solids,"  was 
read  to  the  Royal  Society  of  Edinburgh  in  1850.  It  forms  the  third  paper  which  Maxwell 

addressed  to  that  Society.  The  first  in  1846  on  Ovals  has  been  abready  mentioned.  The 

second,  under  the  title  "The  Theory  of  Rolling  Curves,"  was  presented  by  Kelland  in  1849. 

It  is  obvious  that  a  youth  of  nineteen  years  who  had  been  capable  of  these  efforts 

must  have  been  gifted  with  rare  originality  and  with  great  power  of  sustained  exertion. 

But  his  singular  self-concentration  led  him  into  habits  of  solitude  and  seclusion,  the  tendency 
of  which  was  to  confirm  his  peculiarities  of  speech  and  of  manner.  He  was  shy  and 
reserved  with  strangers,  and  his  utterances  were  often  obscure  both  in  substance  and  in 

his  manner  of  expressing  himself,  so  many  remote  and  unexpected  allusions  perpetually 
obtruding  themselves.  Though  really  most  sociable  and  even  fond  of  society  he  was 

essentially  reticent  and  reserved.  Mr  Campbell  thinks  it  is  to  be  regretted  that  Maxwell 

did  not  begin  his  Cambridge  career  eai'lier  for  the  sake  of  the  social  intercourse  which 
he  would  have  found  it  difficult  to  avoid  there.  It  is  a  question,  however,  whether  in 

losing  the  opportunity  of  using  Professor  Forbes'  apparatus  he  would  not  thereby  have  lost 
what   was  perhaps  the  most  valuable  part  of  his  early  scientific  training. 
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It  was  originally  intended  that  Maxwell  should  follow  his  father's  profession  of  advocate, 
but  this  intention  was  abandoned  as  soon  as  it  became  obvious  that  his  tastes  lay  in  a 

direction  so  decidedly  scientific.  It  was  at  length  determined  to  send  him  to  Cambridge 

and  accordingly  in  October,  1850,  he  commenced  residence  in  Peterhouse,  where  however  he 
resided  during  the  Michaelmas  Term  only.  On  December  14  of  the  same  year  he  migrated 
to  Trinity  College. 

It  may  readily  be  supposed  that  his  preparatory  training  for  the  Cambridge  course 
was  far  removed  from  the  ordinary  type.  There  had  indeed  for  some  time  been  practically 

no  restraint  upon  his  plan  of  study  and  his  mind  had  been  allowed  to  follow  its  natural 

bent  towards  science,  though  not  to  an  extent  so  absorbing  as  to  withdraw  him  from 

other  pursuits.  Though  he  was  not  a  sportsman, — indeed  sport  so  called  was  always  repugnant 
to  him — he  was  yet  exceedingly  fond  of  a  country  life.  He  was  a  good  horseman  and  a 
good  swimmer.  Whence  however  he  derived  his  chief  enjoyment  may  be  gathered  from  the 

account  which  Mr  Campbell  gives  of  the  zest  with  which  he  quoted  on  one  occasion  the 
lines  of  Bums  which  describe  the  poet  finding  inspiration  while  wandering  along  the  banks 

of  a  stream  in  the  free  indulgence  of  his  fancies.  Maxwell  was  not  only  a  lover  of  poetry 

but  himself  a  poet,  as  the  fine  pieces  gathered  together  by  Mr  Campbell  abundantly  testify. 
He  saw  however  that  his  true  calling  was  Science  and  never  regarded  these  poetical 

efforts  as  other  than  mere  pastime.  Devotion  to  science,  already  stimulated  by  successful 

endeavour,  a  tendency  to  ponder  over  philosophical  problems  and  an  attachment  to  English 

literature,  particularly  to  English  poetry, — these  tastes,  implanted  in  a  mind  of  singular 

strength  and  purity,  may  be  said  to  have  been  the  endowments  with  which  young  Maxwell 

began  his  Cambridge  career.  Besides  this,  his  scientific  reading,  as  we  may  gather  from  his 

papers  to  the  Royal  Society  of  Edinburgh  referred  to  above,  was  already  extensive  and 

varied.  He  brought  with  him,  says  Professor  Tait,  a  mass  of  knowledge  which  was  really 

immense  for  so  young  a  man  but  in  a  state  of  disorder  appalling  to  his  methodical 
private  tutor. 

Maxwell's  undergraduate  career  was  not  marked  by  any  specially  notable  feature.  His 
private  speculations  had  in  some  measure  to  be  laid  aside  in  favour  of  more  systematic 

study.  Yet  his  mind  was  steadily  ripening  for  the  work  of  his  later  years.  Among  those 

with  whom  he  was  brought  into  daily  contact  by  his  position,  as  a  Scholar  of  Trinity 

College,  were  some  of  the  brightest  and  most  cultivated  young  men  in  the  University.  In 

the  genial  fellowship  of  the  Scholars'  table  Maxwell's  kindly  humour  found  ready  play,  while 
in  the  more  select  coterie  of  the  Apostle  Club,  formed  for  mutual  cultivation,  he  found  a  field 

for  the  exercise  of  his  love  of  speculation  in  essays  on  subjects  beyond  the  lines  of  the 

ordinary  University  course.  The  composition  of  these  essays  doubtless  laid  the  foundation 

of  that  literary  finish  which  is  one  of  the  characteristics  of  Maxwell's  scientific  writings. 

His  biographers  have  preserved  several  extracts  on  a  variety  of  subjects  chiefly  of  a  specu- 

lative character.  They  are  remarkable  mainly  for  the  weight  of  thought  contained  in  them 

but  occasionally  also  for  smart  epigrams  and  for  a  vein  of  dry  and  sarcastic  humour. 
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These  glimpses  into  Maxwell's  character  may  prepare  us  to  believe  that,  with  all  his 

shyness,  he  was  not  without  confidence  in  his  own  powers,  as  also  appears  from  the  account 

which  was  given  by  the  late  Master  of  Trinity  College,  Dr  Thompson,  who  was  Tutor  when 

Maxwell  personally  applied  to  him  for  permission  to  migrate  to  that  College.  He  appeared 

to  be  a  shy  and  diffident  youth,  but  presently  surprised  Dr  Thompson  by  producing  a 

bundle  of  papers,  doubtless  copies  of  those  we  have  already  mentioned,  remarking  "  Perhaps 

these  may  shew  you  that  I  am  not  unfit  to  enter  at  your  College." 

He  became  a  pupil  of  the  celebrated  William  Hopkins  of  Peterhouse,  under  whom  his 

course  of  study  became  more  systematic.  One  striking  characteristic  was  remarked  by  his 

contemporaries.  Whenever  the  subject  admitted  of  it  he  had  recourse  to  diagrams,  though 

his  fellow  students  might  solve  the  question  more  easily  by  a  train  of  analysis.  Many 

illustrations  of  this  manner  of  proceeding  might  be  taken  from  his  writings,  but  in 

truth  it  was  only  one  phase  of  his  mental  attitude  towards  scientific  questions,  which 

led  him  to  proceed  from  one  distinct  idea  to  another  instead  of  trusting  to  symbols  and 

equations. 

Maxwell's  published  contributions  to  Mathematical  Science  during  his  undergraduate  career 

were  few  and  of  no  great  importance.  He  found  time  however  to  carry  his  investigations 

into  regions  outside  the  prescribed  Cambridge  course.  At  the  lectures  of  Professor  Stokes* 

he  was  regular  in  his  attendance.  Indeed  it  appears  from  the  paper  on  Elastic  Solids, 

mentioned  above,  that  he  was  acquainted  with  some  of  the  writings  of  Stokes  before  he 

entered  Cambridge.  Before  1850,  Stokes  had  published  some  of  his  most  important  contri- 

butions to  Hydromechanics  and  Optics  ;  and  Sir  W.  Thomson,  who  was  nine  years'  Maxwell's 
senior  in  University  standing,  had,  among  other  remarkable  investigations,  called  special 

attention  to  the  mathematical  analogy  between  Heat-conduction  and  Statical  Electricity. 

There  is  no  doubt  that  these  authors  as  well  as  Faraday,  of  whose  experimental  researches 

he  had  made  a  careful  study,  exercised  a  powerful  directive  influence  on  his  mind. 

In  January,  1854,  Maxwell's  undergraduate  career  closed.  He  was  second  wrangler,  but 

shared  with  Dr  Routh,  who  was  senior  wrangler,  the  honours  of  the  First  Smith's  Prize. 

In  due  course  he  was  elected  Fellow  of  Trinity  and  placed  on  the  staff  of  College  Lecturers. 

No  sooner  was  he  released  from  the  restraints  imposed  by  the  Trinity  Fellowship 

Examination  than  he  plunged  headlong  into  original  work.  There  were  several  questions 

he  was  anxious  to  deal  with,  and  first  of  all  he  completed  an  investigation  on  the  Trans- 

formation of  Surfaces  by  Bending,  a  purely  geometrical  problem.  This  memoir  he  presentel 

to  the  Cambridge  Philosophical  Society  in  the  following  March.  At  this  period  he  also 

set  about  an  enquiry  into  the  quantitative  measurement  of  mixtures  of  colours  and  the 

causes  of  colour-blindness.  During  his  undergraduateship  he  had,  as  we  have  seen,  found 

time  for  the  study  of  Electricity.  This  had  already  borne  fruit  and  now  resulted  in  the 

first  of  his  important  memoirs  on  that  subject,— the  memoir  on  Faraday's  Lines  of  Force. 
•  Now  Sir  George  Gabriel  Stokes,  Bart.,  M.P.  for  the  University. 
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The  number  and  importance  of  his  papers,  published  in  1855—6,  bear  witness  to  his 

assiduity  during  this  period.  With  these  labours,  and  in  the  preparation  of  his  College 

lectures,  on  which  he  entered  with  much  enthusiasm,  his  mind  was  fully  occupied  and  the 

work  was  congenial.  He  had  formed  a  number  of  valued  friendships,  and  he  had  a  variety  of 

interests,  scientific  and  literary,  attaching  him  to  the  University.  Nevertheless,  when  the  chair 

of  Natural  Philosophy  in  Marischal  College,  Aberdeen,  fell  vacant,  Maxwell  became  a  candidate. 

This  step  was  probably  taken  in  deference  to  his  father's  wishes,  as  the  long  summer 

vacation  of  the  Scottish  College  would  enable  him  to  reside  with  his  father  at  Glenlair  for 

half  the  year  continuously.  He  obtained  the  professorship,  but  unhappily  the  kind  intentions 

which  prompted  him  to  apply  for  it  were  frustrated  by  the  death  of  his  father,  which  took 

place  in  April,  1856. 

It  is  doubtful  whether  the  change  from  the  Trinity  lectureship  to  the  Aberdeen 

professorship  was  altogether  prudent.  The  advantages  were  the  possession  of  a  laboratory  and 

the  long  uninterrupted  summer  vacation.  But  the  labour  of  drilling  classes  composed  chiefly 

of  comparatively  young  and  untrained  lads,  in  the  elements  of  mechanics  and  physics,  was 

not  the  work  for  which  Maxwell  was  specially  fitted.  On  the  other  hand,  in  a  large  college 

like  Trinity  there  could  not  fail  to  have  been  among  its  undergraduate  members,  some  of  the 

most  promising  young  mathematicians  of  the  University,  capable  of  appreciating  his  original 

genius  and  immense  knowledge,  by  instructing  whom  he  would  himself  have  derived  ad- 
vantage. 

In  1856  Maxwell  entered  upon  his  duties  as  Professor  of  Natural  Philosophy  at  Marischal 

College,  and  two  years  afterwards  he  married  Katharine  Mary  Dewar,  daughter  of  the 

Principal  of  the  College.  He  in  consequence  ceased  to  be  a  Fellow  of  Tiinity  College, 

but  was  afterwards  elected  an  honorary  Fellow,  at  the  same  time  as  Professor  Cayley. 

During  the  yeai*s  1856 — 60  he  was  still  actively  employed  upon  the  subject  of  colour 

sensation,  to  which  he  contributed  a  new  method  of  measurement  in  the  ingenious  instru- 

ment known  as  the  colour-box.  The  most  serious  demands  upon  his  powers  and  upon  his 

time  were  made  by  his  investigations  on  the  Stability  of  Saturn's  Rings.  This  was  the 

subject  chosen  by  the  Examiners  for  the  Adams  Prize  Essay  to  be  adjudged  in  1857,  and 

was  advertised  in  the  following  terms: — 

"The  Problem  may  be  treated  on  the  supposition  that  the  system  of  Rings  is 

exactly  or  very  approximately  concentric  with  Saturn  and  symmetrically  disposed  about 

the  plane  of  his  equator  and  different  hypotheses  may  be  made  respecting  the  physical 

constitution  of  the  Rings.  It  may  be  supposed  (1)  that  they  are  rigid;  (2)  that  they 

are  fluid  and  in  part  aeriform ;  (3)  that  they  consist  of  masses  of  matter  not  materially 

coherent.  The  question  will  be  considered  to  be  answered  by  ascertaining  on  these 

hypotheses  severally  whether  the  conditions  of  mechanical  stability  are  satisfied  by  the 

mutual  attractions  and  motions  of  the  Planet  and  the  Rings." 
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"It  is   desirable  that  an  attempt  should  also  be   made   to   determine  on  which  of 
the   above    hypotheses    the    appearances   both    of    the    bright    rings    and    the   recently 

discovered  dark   ring  may  be  most  satisfactorily  explained;   and  to  indicate  any  causes 
to  which  a  change  of  form  such  as  is  supposed  from  a  comparison  of  modem  with  the 

earlier  observations  to  have  taken  place,  may  be  attributed." 
It    is  sufficient   to   mention   here   that    Maxwell   bestowed  an  immense  amount  of   labour 

in   working    out    the    theory   as   proposed,   and    that   he   arrived   at   the   conclusion   that  "the 
only  system  of  rings  which  can  exist  is  one  composed  of  an  indefinite  number  of  unconnected 

particles    revolving    round    the    planet   with    different   velocities    according   to    their   respective 

distances.      These  particles   may  be  arranged  in  a  series  of   narrow  rings,  or  they  may  move 

about  through  each  other  irregularly.     In  the  first  case  the  destruction  of  the  system  will  be 

very  slow,  in    the    second   case  it  will   be  more  rapid,  but  there  may  be  a  tendency  towards 

an  aiTangement  in  narrow  rings  which  may  retard  the  process." 
Part  of  the  work,  dealing  with  the  oscillatory  waves  set  up  in  a  ring  of  satellites, 

was  illustrated  by  an  ingenious  mechanical  contrivance  which  was  greatly  admired  when 

exhibited  before  the  Royal  Society  of  Edinburgh. 

This  essay,  besides  securing  the  prize,  obtained  for  its  author  great  credit  among 
scientific  men.  It  was  characterized  by  Sir  George  Airy  as  one  of  the  most  remarkable 

applications  of  Mathematics  to  Physics  that  he  had  ever  seen. 

The  suggestion  has  been  made  that  it  was  the  irregular  motions  of  the  particles  which 

compose  the  Rings  of  Saturn  resulting  on  the  whole  in  apparent  regularity  and  uni- 
formity, which  led  Maxwell  to  the  investigation  of  the  Kinetic  Theory  of  Gases,  his  first 

contribution  to  which  was  read  to  the  British  Association  in  1859.  This  is  not  unlikely, 

but  it  must  also  be  borne  in  mind  that  Bernoulli's  Theory  had  recently  been  revived  by 
Herapath,  Joule  and  Clausius  whose  writings  may  have  drawn  Maxwell's  attention  to  the 
subject. 

In  1860  King's  College  and  Marischal  College  were  joined  together  as  one  institution, 
now  known  as  the  University  of  Aberdeen.  The  new  chair  of  Natural  Philosophy  thus 

created  was  filled  up  by  the  appointment  of  David  Thomson,  formerly  Professor  at  King's 

College  and  Maxwell's  senior.  Professor  Thomson,  though  not  comparable  to  Maxwell  as  a 
physicist,  was  nevertheless  a  remarkable  man.  He  was  distinguished  by  singular  force  of 

character  and  great  administrative  faculty  and  he  had  been  prominent  in  bringing  about 
the  fusion  of  the  Colleges.  He  was  also  an  admirable  lecturer  and  teacher  and  had  done 
much  to  raise  the  standard  of  scientific  education  in  the  north  of  Scotland.  Thus  the  choice 

made  by  the  Commissioners,  though  almost  inevitable,  had  the  effect  of  making  it  appear 
that  Maxwell  failed  as  a  teacher.  There  seems  however  to  be  no  evidence  to  support  such 

an  inference.  On  the  contrary,  if  we  may  judge  from  the  number  of  voluntary  students 

attending  his  classes  in  his  last  College  session,  he  would  seem  to  have  been  as  popular  as  a 
professor  as  he  was  personally  estimable. 
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This  is  also  borne  out  by  the  fact  that  he  was  soon  afterwards  elected  Professor  of 

Natural  Philosophy  and  Astronomy  in  King's  College,  London.  The  new  appointment  had 
the  advantage  of  bringing  him  much  more  into  contact  with  men  in  his  own  department 

of  science,  especially  with  Faraday,  with  whose  electrical  work  his  own  was  so  intimately 

connected.  In  1862 — 63  he  took  a  prominent  part  in  the  experiments  organised  by  a 
Committee  of  the  British  Association  for  the  determination  of  electrical  resistance  in 

absolute  measure  and  for  placing  electrical  measurements  on  a  satisfactory  basis.  In  the 

experiments  which  were  conducted  in  the  laboratory  of  King's  College  upon  a  plan  due 
to  Sir  W.  Thomson,  two  long  series  of  measurements  were  taken  in  successive  years.  In 

the  first  year,  the  working  members  were  Maxwell,  Balfour  Stewart  and  Fleeming  Jenkin  ;  in 

the  second,  Charles  Hockin  took  the  place  of  Balfour  Stewart.  The  work  of  this  Committee 

was  communicated  in  the  form  of  reports  to  the  British  Association  and  was  afterwards 

republished  in  one  volume  by  Fleeming  Jenkin. 

Maxwell  was  a  professor  in  King's  College  from  1860  to  1865,  and  this  period  of  his 
life  is  distinguished  by  the  production  of  his  most  important  papers.  The  second  memoir 

on  Colours  made  its  appearance  in  1860.  In  the  same  year  his  first  papers  on  the  Kinetic 

Theory  of  Gases  were  published.  In  1861  came  his  papers  on  Physical  Lines  of  Force 

and  in  1864  his  greatest  memoii'  on  Electricity, — a  Dynamical  Theory  of  the  Electro- 
magnetic Field.  He  must  have  been  occupied  with  the  Dynamical  Theory  of  Gases  in  1865, 

as  two  important  papers  appeared  in  the  following  year,  first  the  Bakerian  lecture  on  the 

Viscosity  of  Gases,  and  next  the  memoir  on  the  Dynamical  Theory  of  Gases. 

The  mental  strain  involved  in  the  production  of  so  much  valuable  work,  combined 

with  the  duties  of  his  professorship  which  required  his  attention  during  nine  months  of 

the  year,  seems  to  have  influenced  him  in  a  resolution  which  in  1865  he  at  length 

adopted  of  resigning  his  chair  and  retiring  to  his  country  seat.  Shortly  after  this  he  had 

a  severe  illness.  On  his  recovery  he  continued  his  work  on  the  Dynamical  Theory  of 

Gases,  to  which  reference  has  just  been  made.  For  the  next  few  years  he  led  a  quiet 

and  secluded  life  at  Glenlair,  varied  by  annual  visits  to  London,  attendances  at  the  British 

Association  meetings  and  by  a  tour  in  Italy  in  1867.  He  was  also  Moderator  or  Examiner 

in  the  Mathematical  Tripos  at  Cambridge  on  several  occasions,  ofiBces  which  entailed  a  few 

weeks'  residence  at  the  University  in  winter.  His  chief  employment  during  those  years 

was  the  prepai-ation  of  his  now  celebrated  treatise  on  Electricity  and  Magnetism  which, 
however,  was  not  published  till  1873.  He  also  wrote  a  treatise  on  Heat  which  was 

published  in   1871. 

In  1871  Maxwell  was,  with  some  reluctance,  induced  to  quit  his  retreat  in  the 

country  and  to  enter  upon  a  new  career.  The  University  of  Cambridge  had  recently 

resolved  to  found  a  professorship  of  physical  science,  especially  for  the  cultivation  and 

teaching  of  the  subjects  of  Heat,  Electricity  and  Magnetism.  In  furtherance  of  this 

object  her  Chancellor,  the  Duke  of  Devonshire,  had  most  generously  undertaken  to  build 

a  laboratory  and   furnish   it  with   the   necessary   apparatus.     Maxwell   was   invited   to  fill  the 
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new   chair   thus   formed    and    to   superintend    the    erection    of    the    laboratory.     In    October, 
1871,  he  delivered  his  inaugural  lecture. 

The  Cavendish  Laboratory,  so  called  after  its  founder,  the  present  venerable  chief  of 

the  family  which  produced  the  great  physicist  of  the  same  name,  was  not  completed 

for  practical  work  until  1874.  In  June  of  that  year  it  was  formally  presented  to  the 

University  by  the  Chancellor.  The  building  itself  and  the  fittings  of  the  several  rooms 

were  admirably  contrived  mainly  by  Maxwell  himself,  but  the  stock  of  apparatus  was 
smaller  than  accorded  with  the  generous  intentions  of  the  Chancellor.  This  defect  must 

be  attributed  to  the  anxiety  of  the  Professor  to  procure  only  instruments  by  the  best 

makers  and  with  such  improvements  as  he  could  himself  suggest.  Such  a  defect  therefore 

required  time  for  its  removal  and  afterwards  in  great  measure  disappeared,  apparatus  being 
constantly  added  to  the  stock  as  occasion  demanded. 

One  of  the  chief  tasks  which  Maxwell  undertook  was  that  of  superintending  and 

directing  the  energies  of  such  young  Bachelors  of  Arts  as  became  his  pupils  after 

having  acquired  good  positions  in  the  University  examinations.  Several  pupils,  who  have 
since  acquired  distinction,  carried  out  valuable  experiments  under  the  guidance  of  the 
Professor.  It  must  be  admitted,  however,  that  the  numbers  were  at  first  small,  but  perhaps 

this  was  only  to  be  expected  from  the  traditions  of  so  many  years.  The  Professor  was 

singularly  kind  and  helpful  to  these  pupils.  He  would  hold  long  conversations  with  them, 
opening  up  to  them  the  stores  of  his  mind,  giving  them  hints  as  to  what  they  might  try 
and  what  avoid,  and  was  always  ready  with  some  ingenious  remedy  for  the  experimental 
troubles  which  beset  them.  These  conversations,  always  delightful  and  instructive,  were, 

according  to  the  account  of  one  of  his  pupils,  a  liberal  education  in  themselves,  and  were 

repaid  in  the  minds  of  the  pupils  by  a  grateful  affection  rarely   accorded  to  any  teacher. 

Besides  discharging  the  duties  of  his  chair,  Maxwell  took  an  active  part  in  conducting 

the  general  business  of  the  University  and  more  particularly  in  regulating  the  courses  of 
study  in  Mathematics  and  Physics. 

For  some  years  previous  to  1866  when  Maxwell  returned  to  Cambridge  as  Moderator 
in  the  Mathematical  Tripos,  the  studies  in  the  University  had  lost  touch  with  the  great 

scientific  movements  going  on  outside  her  walls.  It  was  said  that  some  of  the  subjects  most 

in  vogue  had  but  little  interest  for  the  present  generation,  and  loud  complaints  began  to 
be  heard  that  while  such  branches  of  knowledge  as  Heat,  Electricity  and  Magnetism,  were 

left  out  of  the  Tripos  examination,  the  candidates  were  wasting  their  time  and  energy 

upon  mathematical  trifles  barren  of  scientific  interest  and  of  practical  results.  Into  the 
movement  for  reform  Maxwell  entered  warmly.  By  his  questions  in  1866  and  subsequent 

years  he  infused  new  life  into  the  examination ;  he  took  an  active  part  in  drafting  the 
new  scheme  introduced  in  1873 ;  but  most  of  all  by  his  writings  he  exerted  a  powerful 

influence  on  the  younger  members  of  the  University,  and  was  largely  instrumental  in 

bringing  about  the  change  which  has  been  now  effected. 
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In  the  first  few  years  at  Cambridge  Maxwell  was  busy  in  giving  the  final  touches 

to  his  great  work  on  Electricity  and  Magnetism  and  in  passing  it  through  the  press. 
This  work  was  published  in  1873,  and  it  seems  to  have  occupied  the  most  of  his  attention 

for  the  two  previous  years,  as  the  few  papers  published  by  him  during  that  period  relate 
chiefly  to  subjects  forming  part  of  the  contents.  After  this  publication  his  contributions  to 
scientific  journals  became  more  numerous,  those  on  the  Dynamical  Theory  of  Gases  being 

perhaps  the  most  important.  He  also  wrote  a  great  many  short  articles  and  reviews 
which  made  their  appearance  in  Nature  and  the  Encyclopcedia  Britannica.  Some  of  these 

essays  are  charming  expositions  of  scientific  subjects,  some  are  general  criticisms  of  the 

works  of  contemporary  writers  and  others  are  brief  and  appreciative  biographies  of  fellow 
workers  in  the  same  fields  of  research. 

An  undertaking  in  which  he  was  long  engaged  and  which,  though  it  proved  exceedingly 

interesting,  entailed  much  labour,  was  the  editing  of  the  "Electrical  Researches"  of  the  Hon. 
Henry  Cavendish.  This  work,  published  in  1879,  has  had  the  eflfect  of  increasing  the 
reputation  of  Cavendish,  disclosing  as  it  does  the  unsuspected  advances  which  that  acute 

physicist  had  made  in  the  Theory  of  Electricity,  especially  in  the  measurement  of  electrical 

quantities.  The  work  is  enriched  by  a  variety  of  valuable  notes  in  which  Cavendish's 
views  and  results  are  examined  by  the  light  of  modern  theory  and  methods.  Especially 

valuable  are  the  methods  applied  to  the  determination  of  the  electrical  capacities  of  con- 
ductors and  condensers,  a  subject  in  which  Cavendish  himself  shewed  considerable  skill 

both  of  a  mathematical  and  experimental  character. 

The  importance  of  the  task  undertaken  by  Maxwell  in  connection  with  Cavendish's 
papers  will  be  understood  from  the  following  extract  from  his  introduction  to  them. 

"It  is  somewhat  difficult  to  account  for  the  fact  that  though  Cavendish  had 
prepared  a  complete  description  of  his  experiments  on  the  charges  of  bodies,  and  had 
even  taken  the  trouble  to  write  out  a  fair  copy,  and  though  all  this  seems  to  have 
been  done  before  1774  and  he  continued  to  make  experiments  in  Electricity  till  1781 

and  lived  on  till  1810,  he  kept  his  manuscript  by  him  and  never  published  it." 

"Cavendish  cared  more  for  investigation  than  for  publication.  He  would  under- 
take the  most  laborious  researches  in  order  to  clear  up  a  difficulty  which  no  one 

but  himself  could  appreciate  or  was  even  aware  of,  and  we  cannot  doubt  that  the 

result  of  his  enquiries,  when  successful,  gave  him  a  certain  degree  of  satisfaction. 
But  it  did  not  excite  in  him  that  desire  to  communicate  the  discovery  to  others 

which  in  the  case  of  ordinary  men  of  science,  generally  ensures  the  publication  of 

their  results.  How  completely  these  researches  of  Cavendish  remained  unknown  to 

other  men  of  science  is  shewn  by  the  external  history  of  electricity." 

It  will  probably  be  thought  a  matter  of  some  difficulty  to  place  oneself  in  the 

position  of  a  physicist  of  a  century  ago  and  to  ascertain  the  exact  bearing  of  his 
experiments.     But   Maxwell   entered   upon   this  undertaking  with   the    utmost  enthusiasm  and 
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succeeded  in  completely  identifying  himself  with  Cavendish's  methods.  He  shewed  that 
Cavendish  had  really  anticipated  several  of  the  discoveries  in  electrical  science  which  have  been 

made  since  his  time.  Cavendish  was  the  first  to  form  the  conception  of  and  to  measure 

Electrostatic  Capacity  and  Specific  Inductive  Capacity;  he  also  anticipated  Ohm's  law. 
The  Cavendish  papers  were  no  sooner  disposed  of  than  Maxwell  set  about  preparing 

a  new  edition  of  his  work  on  Electricity  and  Magnetism;  but  unhappily  in  the  summer 

term  of  1879  his  health  gave  way.  Hopes  were  however  entertained  that  when  he  returned 

to  the  bracing  air  of  his  country  home  he  would  soon  recover.  But  he  lingered  through 

the  summer  months  with  no  signs  of  improvement  and  his  spirits  gradually  sank  He  was 

finally  informed  by  his  old  fellow-student,  Professor  Sanders,  that  he  could  not  live  more 
than  a  few  weeks.  As  a  last  resort  he  was  brought  back  to  Cambridge  in  October  that  he 

might  be  under  the  charge  of  his  favourite  physician,  Dr  Paget*.  Nothing  however  could 
be  done  for  •  his  malady,  and,  after  a  painful  illness,  he  died  on  the  5th  of  November,  1879, 
in  his  49th   year. 

Maxwell  was  thus  cut  oflf  in  the  prime  of  his  powers,  and  at  a  time  when  the  depart- 
ments of  science,  which  he  had  contributed  so  much  to  develop,  were  being  every  day 

extended  by  fresh  discoveries.  His  death  was  deplored  as  an  irreparable  loss  to  science  and 

to  the  University,  in  which  his  amiable  disposition  was  as  universally  esteemed  as  his  genius 
was  admired. 

It  is  not  intended  in  this  preface  to  enter  at  length  into  a  discussion  of  the  relation 

which  Maxwell's  work  bears  historically  to  that  of  his  predecessors,  or  to  attempt  to  estimate 
the  effect  which  it  has  had  on  the  scientific  thought  of  the  present  day.  In  some  of  his 

papers  he  has  given  more  than  usually  copious  references  to  the  works  of  those  by  whom 
he  had  been  influenced;  and  in  his  later  papers,  especially  those  of  a  more  popular  nature 

which  appeared  in  the  Encyclopoedia  Britannica,  he  has  given  full  historical  outlines  of  some 

of  the  most  prominent  fields  in  which  he  laboured.  Nor  does  it  appear  to  the  present 

editor  that  the  time  has  yet  arrived  when  the  quickening  influence  of  Maxwell's  mind  on 
modem  scientific  thought  can  be  duly  estimated.  He  therefore  proposes  to  himself  the  duty 

of  recalling  briefly,  according  to  subjects,  the  most  important  speculations  in  which  Maxwell 
engaged. 

His  works  have  been  arranged  as  far  as  possible  in  chronological  order  but  they  fall 

naturally  under  a  few  leading  heads;  and  perhaps  we  shall  not  be  far  wrong  if  we  place 
first  in  importance  his  work  in  Electricity. 

His  first  paper  on  this  subject  bearing  the  title  "On  Faraday's  Lines  of  Force"  was 
read  before  the  Cambridge  Philosophical  Society  on  Dec.  11th,  1855.  He  had  been  previously 

attracted  by  Faraday's  method  of  expressing  electrical  laws,  and  he  here  set  before  himself 

the  task  of  shewing  that  the  ideas  which  had  guided  Faraday's  researches  were  not  incon- 
sistent with  the  mathematical  formulae  in  which  Poisson  and  others  had  cast  the  laws  of 

♦  Now  Sir  George  Edward  Paget,  K.C.B. 
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Electricity.  His  object,  he  says,  is  to  find  a  physical  analogy  which  shall  help  the  mind 

to  grasp  the  results  of  previous  investigations  "without  being  committed  to  any  theory 

founded  on  the  physical  science  from  which  that  conception  is  borrowed,  so  that  it  is  neither 

draw  aside  from  the  subject  in  the  pursuit  of  analytical  subtleties  nor  carried  beyond  the 

truth  by  a  favorite  hypothesis." 

The  laws  of  electricity  are  therefore  compared  with  the  properties  of  an  incompressible 

fluid  the  motion  of  which  is  retarded  by  a  force  proportional  to  the  velocity,  and  the  fluid 

is  supposed  to  possess  no  inertia.  He  shews  the  analogy  which  the  lines  of  flow  of  such 

a  fluid  would  have  with  the  lines  of  force,  and  deduces  not  merely  the  laws  of  Statical 

Electricity  in  a  single  medium  but  also  a  method  of  representing  what  takes  place  when  the 

action  passes  from  one  dielectric  into  another. 

In  the  latter  part  of  the  paper  he  proceeds  to  consider  the  phenomena  of  Electro- 

magnetism  and  shews  how  the  laws  discovered  by  Ampere  lead  to  conclusions  identical  with 

those  of  Faraday.  In  this  paper  three  expressions  are  introduced  which  he  identifies  with 

the  components  of  Faraday's  electrotonic  state,  though  the  author  admits  that  he  has  not 

been  able  to  frame  a  physical  theory  which  would  give  a  clear  mental  picture  of  the 

various  connections  expressed  by  the  equations. 

Altogether  this  paper  is  most  important  for  the  light  which  it  throws  on  the  principles 

which  guided  Maxwell  at  the  outset  of  his  electrical  work.  The  idea  of  the  electrotonic 

state  had  afready  taken  a  firm  hold  of  his  mind  though  as  yet  he  had  formed  no  physical 

explanation  of  it.  In  the  paper  "On  Physical  Lines  of  Force"  printed  in  the  Philosophical 

Magazine,  Vol.  xxi.  he  resumes  his  speculations.  He  explains  that  in  his  former  paper  he 

had  found  the  geometrical  significance  of  the  Electrotonic  state  but  that  he  now  proposes 

"to  examine  magnetic  phenomena  from  a  mechanical  point  of  view."  Accordingly  he  propounds 

his  remarkable  speculation  as  to  the  magnetic  field  being  occupied  by  molecular  vortices, 

the  axes  of  which  coincide  with  the  lines  of  force.  The  cells  within  which  these  vortices 

rotate  are  supposed  to  be  separated  by  layers  of  particles  which  serve  the  double  purpose 

of  transmitting  motion  from  one  cell  to  another  and  by  their  own  motions  constituting  an 

electric  current.  This  theory,  the  parent  of  several  working  models  which  have  been  devised 

to  represent  the  motions  of  the  dielectric,  is  remarkable  for  the  detail  vnth  which  it  is 

worked  out  and  made  to  explain  the  various  laws  not  only  of  magnetic  and  electromagnetic 

action,  but  also  the  various  forms  of  electrostatic  action.  As  Maxwell  subsequently  gave  a 

more  general  theory  of  the  Electromagnetic  Field,  it  may  be  inferred  that  he  did  not  desire 

it  to  be  supposed  that  he  adhered  to  the  views  set  forth  in  this  paper  in  every  particular; 

but  there  is  no  doubt  that  in  some  of  its  main  features,  especially  the  existence  of 

rotation  round  the  lines  of  magnetic  force,  it  expressed  his  permanent  convictions.  In  his 

treatise  on  "Electricity  and  Magnetism,"  Vol.  ii.  p.  416,  (2nd  edition  427)  after  quoting  from 

Sir  W.  Thomson  on  the  explanation  of  the  magnetic  rotation  of  the  plane  of  the  polarisation 

of  light,  he  goes  on  to  say  of  the  present  paper, 
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"A   theory   of  molecular    vortices   which    T    worked    out   at  considerable  length  was 

published  in  the  Phil.  Mag.  for  March,  April  and  May,  1861,  Jan.  and  Feb.  1862." 

- "  I  think  we  have  good  evidence  for  the  opinion  that  some  phenomenon  of  rotation 

is  going  on  in  the  magnetic  field,  that  this  rotation  is  performed  by  a  great  number 

of  very  small  portions  of  matter,  each  rotating  on  its  own  axis,  that  axis  being  parallel 

to  the  direction  of  the  magnetic  force,  and  that  the  rotations  of  these  various  vortices 

are  made  to  depend  on  one  another  by  means  of  some  mechanism  between  them." 

"The  attempt  which  I  then  made  to  imagine  a  working  model  of  this  mechanism 

must   be   taken   for   no   more   than   it   really   is,  a   demonstration   that   mechanism  may 

be   imagined   capable  of  producing  a  connection  mechanically  equivalent  to  the  actual 

connection  of  the  parts  of  the  Electromagnetic  Field." 

This   paper   is   also   important  as  containing  the  first  hint  of  the  Electromagnetic  Theory 

of    Light   which    was    to    be    more    fully    developed    afterwards    in    his    third    great    memoir 

"  On  the  Dynamical  Theory  of  the  Electromagnetic  Field."     This  memoir,  which  was  presented 

to   the   Royal   Society   on   the   27th  October,  1864,  contains  Maxwell's   mature   thoughts  on  a 

subject  which   had   so   long   occupied  his  mind.     It  was  afterwards  reproduced  in   his  Treatise 

with    trifling    modifications    in    the    treatment   of    its   parts,  but   without   substantial   changes 

in    its    main    features.      In    this    paper    Maxwell    reverses    the    mode    of    treating    electrical 

phenomena   adopted   by   previous   mathematical   writers;   for  while   they   had   sought   to   build 

up    the    laws    of    the    subject    by    starting    from    the    principles   discovered   by   Ampere,  and 

deducing    the    induction    of    currents    from   the   conservation    of    energy,   Maxwell   adopts   the 

method    of    first    arriving    at    the    laws    of    induction    and    then    deducing    the    mechanical 

attractions  and  repulsions. 

After  recalling  the  general  phenomena  of  the  mutual  action  of  cuiTents  and  magnets 

and  the  induction  produced  in  a  circuit  by  any  variation  of  the  strength  of  the  field  m 

which  it  lies,  the  propagation  of  light  through  a  luminiferous  medium,  the  properties  of 

dielectrics  and  other  phenomena  which  point  to  a  medium  capable  of  transmittmg  force 

and   motio^i,   he   proceeds. — 

"Thus    then   we   are   led   to   the   conception  of  a  complicated   mechanism   capable 

of  a   vast  variety  of  motions  but  at  the  same  time   so  connected   that   the   motion   of 

one   part  depends,  according  to  definite  relations,  on  the   motion  of  other   parts,   these 

teotions  being   communicated   by  forces   arising  from  the  relative  displacement  of  their 

connected  parts,    in    virtue    of   their    elasticity.      Such   a   mechanism   must   be   subject 

to  the  laws   of  Dynamics." 

On  applying  dynamical  principles  to  such  a  connected  system   he   attains  certain   ge
neral 

propositions    which,    on   being   compared    with   the   laws    of    induced   currents,    enable   him  
 to 

identify    certain   features   of  the    mechanism    with    properties    of  currents.      The   induction    of 

currehts  and  their  electromagnetic  attraction  are  thus  explained  and  connected. 
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In  a  subsequent  part  of  the  memoir  he  proceeds  to  establish  from  these  premises 

the  general  equations  of  the  Field  and  obtains  the  usual  formulae  for  the  mechanical 

force  on  currents,  magnets  and  bodies  possessing  an  electrostatic  charge. 

He  also  returns  to  and  elaborates  more  fully  the  electromagnetic  Theory  of  Light. 

His  equations  shew  that  dielectrics  can  transmit  only  transverse  vibrations,  the  speed  of 

propagation  of  which  in  air  as  deduced  from  electrical  data  comes  out  practically  identical 

with  the  known  velocity  of  light.  For  other  dielectrics  the  index  of  refraction  is  equal 

to  the  square  root  of  the  product  of  the  specific  inductive  capacity  by  the  coefficient  of 

magnetic  induction,  which  last  factor  is  for  most  bodies  practically  unity.  Various  comparisons 

have  been  made  with  the  view  of  testing  this  deduction.  In  the  case  of  paraffin  wax  and 

some  of  the  hydrocarbons,  theory  and  experiment  agree,  but  this  is  not  the  case  with 

glass  and  some  other  substances.  Maxwell  has  also  applied  his  theory  to  media  which 

are  not  perfect  insulators,  and  finds  an  expression  for  the  loss  of  light  in  passing  through 

a  stratum  of  given  thickness.  He  remarks  in  confirmation  of  his  result  that  most  good 

conductors  are  opaque  while  insulators  are  transparent,  but  he  also  adds  that  electrolytes 

which  transmit  a  current  freely  are  often  transparent,  while  a  piece  of  gold  leaf  whose 

resistance  was  determined  by  Mr  Hockin  allowed  far  too  great  an  amount  of  light  to 

pass.  He  observes  however  that  it  is  possible  "there  is  less  loss  of  energy  when  the 
electromotive  forces  are  reversed  with  the  rapidity  of  light  than  when  they  act  for  sensible 

times  as  in  our  experiments."  A  similar  explanation  may  be  given  of  the  discordance 
between  the  calculated  and  observed  values  of  the  specific  inductive  capacity.  Prof.  J.  J, 

Thomson  in  the  Proceedings  of  the  Royal  Society,  Vol.  46,  has  described  an  experiment  by 

which  he  has  obtained  the  specific  inductive  capacities  of  various  dielectrics  when  acted 

on  by  alternating  electric  forces  whose  frequency  is  25,000,000  per  second.  He  finds  that 

under  these  conditions  the  specific  inductive  capacity  of  glass  is  very  nearly  the  same  as 

the  square  of  the  refractive  index,  and  very  much  less  than  the  value  for  slow  rates  of 

reversals.  In  illustration  of  these  remarks  may  be  quoted  the  observations  of  Prof.  Hertz  who 

has  shewn  that  vulcanite  and  pitch  are  transparent  for  waves,  whose  periods  of  vibration  are 

about  three  hundred  millionths  of  a  second.  The  investigations  of  Hertz  have  shewn  that 

electro-dynamic  radiations  are  transmitted  in  waves  with  a  velocity,  which,  if  not  equal  to,  is 

comparable  with  that  of  light,  and  have  thus  given  conclusive  proof  that  a  satisfactory 

theory  of  Electricity  must  take  into  account  in  some  form  or  other  the  action  of  the 

dielectric.  But  this  does  not  prove  that  Maxwell's  theory  is  to  be  accepted  in  every 
particular.  A  peculiarity  of  his  theory  is,  as  he  himself  points  out  in  his  treatise,  that 

the  variation  of  the  electric  displacement  is  to  be  treated  as  part  of  the  current  as  well 

as  the  current  of  conduction,  and  that  it  is  the  total  amount  due  to  the  sum  of  these 

which  flows  as  if  electricity  were  an  incompressible  fluid,  and  which  determines  external 

electrodynamic  actions.  In  this  respect  it  differs  from  the  theory  of  Helmholtz  which 

also  takes  into  account  the  action  of  the  dielectric.  Professor  J.  J.  Thomson  » in  his 

Review   of    Electric   Theories    has    entered    into    a    full    discussion    of   the    points    at    issue 
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between  the  two  above  mentioned  theories,  and  the  reader  is  referred  to  his  paper  for 

further  information  *.  Maxwell  in  the  memoir  before  us  has  also  applied  his  theory  to 
the  passage  of  light  through  crystals,  and  gets  rid  at  once  of  the  wave  of  normal  vibrations 
which  has  hitherto  proved  the  stumbling  block  in  other  theories  of  light. 

The  electromagnetic  Theory  of  Light  has  received  numerous  developments  at  the  hands 

of  Lord  Rayleigh,  Mr  Glazebrook,  Professor  J.  J.  Thomson  and  others.  These  volumes 
also  contain  various  shorter  papers  on  Electrical  Science,  though  perhaps  the  most  complete 

record  of  Maxwell's  work  in  this  department  is  to  be  found  in  his  Treatise  on  Electricity 
and  Magnetism  in  which  they  were  afterwards  embodied. 

Another  series  of  papers  of  hardly  less  importance  than  those  on  Electricity  are  the 
various  memoirs  on  the  Dynamical  Theory  of  Gases.  The  idea  that  the  properties  of 

matter  might  be  explained  by  the  motions  and  impacts  of  their  ultimate  atoms  is  as 

old  as  the  time  of  the  Greeks,  and  Maxwell  has  given  in  his  paper  on  "  Atoms "  a  full 
sketch  of  the  ancient  controversies  to  which  it  gave  rise.  The  mathematical  difficulties  of 

the  speculation  however  were  so  great  that  it  made  little  real  progress  till  it  was  taken 

up  by  Clausius  and  shortly  afterwards  by  Maxwell.  The  first  paper  by  Maxwell  on  the 

subject  is  entitled  "Illustrations  of  the  Dynamical  Theory  of  Gases"  and  was  published 
in  the  Philosophical  Magazine  for  January  and  July,  1860,  having  been  read  at  a  meeting 
of  the  British  Association  of  the  previous  year.  Although  the  methods  developed  in  this 

paper  were  afterwards  abandoned  for  others,  the  paper  itself  is  most  interesting,  as  it  indicates 
clearly  the  problems  in  the  theory  which  Maxwell  proposed  to  himself  for  solution,  and  so  far 

contains  the  germs  of  much  that  was  treated  of  in  his  next  memoir.  It  is  also  epoch-making, 

inasmuch  as  it  for  the  first  time  enumerates  various  propositions  which  ai-e  characteristic 

of  Maxwell's  work  in  this  subject.  It  contains  the  first  statement  of  the  distribution  of  velo- 
cities according  to  the  law  of  errors.  It  also  foreshadows  the  theorem  that  when  two  gases 

are  in  thermal  equilibrium  the  mean  kinetic  energy  of  the  molecules  of  each  system  is  the 

same ;    and   for   the  first   time   the  question  of  the  viscosity  of  gases  is  treated  dynamically. 

In  his  great  memoir  "On  the  Dynamical  Theory  of  Gases"  published  in  the  Philo- 
sophical Transactions  of  the  Royal  Society  and  read  before  the  Society  in  May,  1866,  he 

returns  to  this  subject  and  lays  down  for  the  first  time  the  general  d3niamical  methods 

appropriate  for  its  treatment.  Though  to  some  extent  the  same  ground  is  traversed  as  in 
his  former  paper,  the  methods  are  widely  different.  He  here  abandons  his  former  h}^othesis 
that  the  molecules  are  hard  elastic  spheres,  and  supposes  them  to  repel  each  other  with 

forces  varying  inversely  as  the  fifth  power  of  the  distance.  His  chief  reason  for  assuming 
this  law  of  action  appears  to  be  that  it  simplifies  considerably  the  calculation  of  the 
collisions  between  the  molecules,  and  it  leads  to  the  conclusion  that  the  coefficient  of 

viscosity  is  directly  proportional  to  the  absolute  temperature.  He  himself  undertook  an 

experimental  enquiry  for  the  purpose  of  verifying  this  conclusion,  and,  in  his  paper  on  the 

Viscosity  of  Gases,  he  satisfied  himself  of  its  correctness.     A  re-examination  of  the  numerical 
*  British  Association  Report,  1885. 
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reductions  made  in  the  course  of  his  work  discloses  however  an  inaccuracy  which  materially 

affects  the  values  of  the  coefl&cient  of  viscosity  obtained.  Subsequent  experiments  also  seem 
to  shew  that  the  concise  relation  he  endeavoured  to  establish  is  by  no  means  so  near 

the  truth  as  he  supposed,  and  it  is  more  than  doubtful  whether  the  action  between  two 
molecules  can  be  represented  by  any  law  of  so  simple  a  character. 

In  the  same  memoir  he  gives  a  fresh  demonstration  of  the  law  of  distribution  of 
velocities,  but  though  the  method  is  of  permanent  value,  it  labours  under  the  defect  of 
assuming  that  the  distribution  of  velocities  in  the  neighbourhood  of  a  point  is  the  same 

in  every  direction,  whatever  actions  may  be  taking  place  within  the  gas.  This  flaw  in 
the  argument,  first  pointed  out  by  Boltzmann,  seems  to  have  been  recognised  by  Maxwell, 

who  in  his  next  paper  "On  the  Stresses  in  Rarefied  Gases  arising  from  inequalities  of 

Temperature,"  published  in  the  Philosophical  Transactions  for  1879,  Part  I.,  adopts  a  form 
of  the  distribution  function  of  a  somewhat  different  shape.  The  object  of  this  paper  was 

to  arrive  at  a  theory  of  the  effects  observed  in  Crookes's  Radiometer.  The  results  of  the 
investigation  are  stated  by  Maxwell  in  the  introduction  to  the  paper,  from  which  it  would 
appear  that  the  observed  motion  cannot  be  explained  on  the  Dynamical  Theory,  unless  it 

be  supposed  that  the  gas  in  contact  with  a  solid  can  slide  along  the  surface  with  a  finite 
velocity  between  places  whose  temperatures  are  different.  In  an  appendix  to  the  paper 
he  shews  that  on  certain  assumptions  regarding  the  nature  of  the  contact  of  the  solid 

and  gas,  there  will  be,  when  the  pressure  is  constant,  a  flow  of  gas  along  the  surface 
from  the  colder  to  the  hotter  parts.  The  last  of  his  longer  papers  on  this  subject  is 

one  on  Boltzmann's  Theorem.  Throughout  these  volumes  will  be  found  numerous  shorter 
essays  on  kindred  subjects,  published  chiefly  in  Nature  and  in  the  Encyclopcedia  Britannica. 
Some  of  these  contain  more  or  less  popular  expositions  of  this  subject  which  Maxwell 

bad  himself  in  great  part  created,  while  others  deal  with  the  work  of  other  writers  in 

the  same  field.  They  are  profoundly  suggestive  in  almost  every  page,  and  abound  in  acute 
criticisms  of  speculations  which  he  could  not  accept.  They  are  always  interesting;  for 

although  the  larger  papers  are  sometimes  difficult  to  follow,  Maxwell's  more  popular  writings 
are  characterized  by  extreme  lucidity  and  simplicity  of  style. 

The  first  of  Maxwell's  papers  on  Colour  Perception  is  taken  from  the  Transactions  of 
the  Royal  Scottish  Society  of  Arts  and  is  in  the  form  of  a  letter  to  Dr  G.  Wilson  dated 
Jan.  4,  1855.  It  was  followed  directly  afterwards  by  a  communication  to  the  Royal  Society 

of  Edinburgh,  and  the  subject  occupied  his  attention  for  some  years.  The  most  important 

of  his  subsequent  work  is  to  be  found  in  the  papers  entitled  "An  account  of  Experiments 

on  the  Perception  of  Colour "  published  in  the  Philosophical  Magazine,  Vol  xiv.  and  "  On 

the  Theory  of  Compound  Colours  and  its  relation  to  the  colours  of  the  spectrum "  in  the 
Philosophical  Transactions  for  the  year  1860.  We  may  also  refer  to  two  lectures  delivered 
at  the  Royal  Institution,  in  which  he  recapitulates  and  enforces  his  main  positions  in  his 

usual  luminous  style.  Maxwell  from  the  first  adopts  Young's  Theory  of  Colour  Sensation, 
according  to   which   all   colours    may   ultimately   be    reduced    to    three,   a    red,   a   green    and 
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a  violet.  This  theory  had  been  revived  by  Helmholtz  who  endeavoured  to  find  for  it  a 

physiological  basis.  Maxwell  however  devoted  himself  chiefly  to  the  invention  of  accurate 

methods  for  combining  and  recording  mixtures  of  colours.  His  first  method  of  obtaining 

mixtures,  that  of  the  Colour  Top,  is  an  adaptation  of  one  formerly  employed,  but  in 

Maxwell's  hands  it  became  an  instrument  capable  of  giving  precise  numerical  results  by 
means  which  he  added  of  varying  and  measuring  the  amounts  of  colour  which  were 

blended  in  the  eye.  In  the  representation  of  colours  diagrammatical ly  he  followed  Young 

in  employing  an  equilateral  triangle  at  the  angles  of  which  the  fundamental  colours  were 

placed.  All  colours,  white  included,  which  may  be  obtained  by  mixing  the  fundamental 

colours  in  any  proportions  will  then  be  represented  by  points  lying  within  the  triangle. 

Points  without  the  triangle  represent  colours  which  must  be  mixed  with  one  of  the  funda- 
mental tints  to  produce  a  mixture  of  the  other  two,  or  with  which  two  of  them  must  be 

mixed  to  produce  the  third. 

In  his  later  papers,  notably  in  that  printed  in  the  Philosophical  Transactions,  he 

adopts  the  method  of  the  Colour  Box,  by  which  different  parts  of  the  spectrum  may  be 

mixed  in  different  proportions  and  matched  with  white,  the  intensity  of  which  has  been 

suitably  diminished.  In  this  way  a  series  of  colour  equations  are  obtained  which  can  be 

used  to  evaluate  any  colour  in  terms  of  the  three  fundamental  colours.  These  observations 

on  which  Maxwell  expended  great  care  and  labour,  constitute  by  far  the  most  important 

data  regarding  the  combinations  of  colour  sensations  which  have  been  yet  obtained,  and 

are  of  permanent  value  whatever  theory  may  ultimately  be  adopted  of  the  physiology  of  the 

perception  of  colour. 

In  connection  with  these  researches  into  the  sensations  of  the  normal  eye,  may  be 

mentioned  the  subject  of  colour-blindness,  which  also  engaged  Maxwell's  attention,  and  is 
discussed  at  considerable  length  in  several  of  his  papers. 

Geometrical  Optics  was  another  subject  in  which  Maxwell  took  much  interest.  At  an  early 

period  of  his  career  he  commenced  a  treatise  on  Optics,  which  however  was  never  completed. 

His  first  paper  "On  the  general  laws  of  optical  instruments,"  appeared  in  1858,  but  a  brief 
account  of  the  first  part  of  it  had  been  previously  communicated  to  the  Cambridge  Philosophical 

Society.  He  therein  lays  down  the  conditions  which  a  perfect  optical  instrument  must  fulfil, 

and  shews  that  if  an  instrument  produce  perfect  images  of  an  object,  i.e.  images  free  from 

astigmatism,  curvature  and  distortion,  for  two  different  positions  of  the  object,  it  will  give 

perfect  images  at  all  distances.  On  this  result  as  a  basis,  he  finds  the  relations  between 

the  foci  of  the  incident  and  emergent  pencils,  the  magnifying  power  and  other  characteristic 

quantities.  The  subject  of  refraction  through  optical  combinations  was  afterwards  treated 

by  him  in  a  different  manner,  in  three  papers  communicated  to  the  London  Mathematical 

Society.  In  the  first  (1873),  "On  the  focal  lines  of  a  refracted  pencil,"  he  applies  Hamilton's 
characteristic  function  to  determine  the  focal  lines  of  a  thin  pencil  refracted  from  one 

isotropic   medium   into   another    at    any   surface    of    separation.      In    the   second    (1874),   "On 
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Hamilton's  characteristic  function  for  a  narrow  beam  of  light,"  he  considers  the  more  general 
question  of  the  passage  of  a  ray  from  one  isotropic  medium  into  another,  the  two  media 

being  separated  by  a  third  which  may  be  of  a  heterogeneous  character.  He  finds  the  most 

general  form  of  Hamilton's  characteristic  function  from  one  point  to  another,  the  first  being 
in  the  medium  in  which  the  pencil  is  incident  and  the  second  in  the  medium  in  which 

it  is  emergent,  and  both  points  near  the  principal  ray  of  the  pencil.  This  result  is  then 

applied  in  two  particular  cases,  viz.  to  determine  the  emergent  pencil  (1)  from  a  spectroscope, 
(2)  from  an  optical  instrument  symmetrical  about  its  axis.  In  the  third  paper  (1875)  he 

resumes  the  last-mentioned  application,  discussing  this  case  more  fully  under  a  somewhat 
simplified   analysis. 

It  may  be  remarked  that  all  these  papers  are  connected  by  the  same  idea,  which  was — 
first  to  study  the  optical  efiects  of  the  entire  instrument  without  examining  the  mechanism 

by  which  these  effects  are  produced,  and  then,  as  in  the  paper  in  1858,  to  supply  whatever 

data  may  be  necessary  by  experiments  upon  the  instrument  itself. 

Connected  to  some  extent  with  the  above  papers  is  an  investigation  which  was  published 

in  1868  "  On  the  cyclide."  As  the  name  imports,  this  paper  deals  chiefly  with  the  geometrical 
properties  of  the  surface  named,  but  other  matters  are  touched  on,  such  as  its  conjugate 
isothermal  functions.  Primarily  however  the  investigation  is  on  the  orthogonal  surfaces  to 

a  system  of  rays  passing  accurately  through  two  lines.  In  a  footnote  to  this  paper  Maxwell 
describes  the  stereoscope  which  he  invented  and  which  is  now  in  the  Cavendish   Laboratory. 

In  1868  was  also  published  a  short  but  important  article  entitled  "  On  the  best  arrange- 

ment for  producing  a  pure  spectrum  on  a  screen." 

The  various  papers  relating  to  the  stresses  experienced  by  a  system  of  pieces  joined 

together  so  as  to  form  a  frame  and  acted  on  by  forces  form  an  important  group  connected 

with  one  another.  The  first  in  order  was  "On  reciprocal  figures  and  diagrams  of  forces," 

published  in  1864.  It  was  immediately  followed  by  a  paper  on  a  kindred  subject,  "On 
the  calculation  of  the  equilibrium  and  stiffness  of  frames."  In  the  first  of  these  Maxwell 
demonstrates  certain  reciprocal  properties  in  the  geometry  of  two  polygons  which  are  related 

to  one  another  in  a  particular  way,  and  establishes  his  well-known  theorem  in  Graphical 
Statics  on  the  stresses  in  frames.  In  the  second  he  employs  the  principle  of  work  to 

problems  connected  with  the  stresses  in  frames  and  structures  and  with  the  deflections 

arising  from   extensions   in   any   of  the   connecting   pieces. 

A  third  paper  "  On  the  equilibrium  of  a  spherical  envelope,"  published  in  1867,  may 
here  be  referred  to.  The  author  therein  considers  the  stresses  set  up  in  the  envelope  by 

a  system  of  forces  applied  at  its  surface,  and  ultimately  solves  the  problem  for  two  normal 

forces  applied  at  any  two  points.  The  solution,  in  which  he  makes  use  of  the  principle 

of  inversion  as  it  is  applied  in  various  electrical  questions,  turns  ultimately  on  the  deter- 
mination  of  a   certain   function   first  introduced   by  Sir  George  Airy,  and   called   by  Maxwell 
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Airy's  Function  of  Stress.  The  methods  which  in  this  paper  were  attended  with  so  much 
success,  seem  to  have  suggested  to  Maxwell  a  reconsideration  of  his  former  work,  with  the 

view  of  extending  the  character  of  the  reciprocity  therein  established.  Accordingly  in  1870 

there  appeared  his  fourth  contribution  to  the  subject,  "On  reciprocal  figures,  frames  and 

diagrams  of  forces."  This  important  memoir  was  published  in  the  Transactions  of  the  Royal 
Society  of  Edinburgh,  and  its  author  received  for  it  the  Keith  Prize.  He  begins  with  a 

remarkably  beautiful  construction  for  drawing  plane  reciprocal  diagrams,  and  then  proceeds 
to  discuss  the  geometry  and  the  degrees  of  freedom  and  constraint  of  polyhedral  frames, 

his  object  being  to  lead  up  to  the  limiting  case  when  the  faces  of  the  polyhedron  become 

infinitely  small  and  form  parts  of  a  continuous  surface.  In  the  course  of  this  work  he 

obtains  certain  results  of  a  general  character  relating  to  inextensible  surfaces  and  certain 

otjiers  of  practical  utility  relating  to  loaded  frames.  He  then  attacks  the  general  problem  of 

representing  graphically  the  internal  stress  of  a  body  and  by  an  extension  of  the  meaning 

of  "Diagram  of  Stress,"  he  gives  a  construction  for  finding  a  diagram  which  has  mechanical 
as  well  as  geometrical  reciprocal  properties  with  the  figure  supposed  to  be  under  stress.  It 

is  impossible  with  brevity  to  give  an  account  of  this  reciprocity,  the  development  of  which 

in  Maxwell's  hands  forms  a  very  beautiful  example  of  analysis.  It  will  be  suflScient  to 
state  that  under  restricted  conditions  this  diagram  of  stress  leads  to  a  solution  for  the 

components  of  stress  in  terms  of  a  single  function  analogous  to  Airy's  Function  of  Stress. 
In  the  remaining  parts  of  the  memoir  there  is  a  discussion  of  the  equations  of  stress,  and 

it  is  shewn  that  the  general  solution  may  be  expressed  in  terms  of  three  functions  analogous 

to  Airy's  single  function  in  two  dimensions.  These  results  are  then  applied  to  special 
cases,  and  in  particular  the  stresses  in  a  horizontal  beam  with  a  uniform  load  on  its  upper 
surface   are   fully   investigated. 

On  the  subjects  in  which  Maxwell's  investigations  were  the  most  numerous  it  has 
been  thought  necessary,  in  the  observations  which  have  been  made,  to  sketch  out  briefly 

the  connections  of  the  various  papers  on  each  subject  with  one  another.  It  is  not  how- 

ever intended  to  enter  into  an  account  of  the  contents  of  his  other  contributions  to  science, 

and  this  is  the  less  necessary  as  the  reader  may  readily  obtain  the  information  he  may 

require  in  Maxwell's  own  language.  It  was  usually  his  habit  to  explain  by  way  of 
introduction  to  any  paper  his  exact  position  with  regard  to  the  subject  matter  and  to 

give  a  brief  account  of  the  nature  of  the  work  he  was  contributing.  There  are  however 

several  memoirs  which  though  unconnected  with  others  are  exceedingly  interesting  in  them- 

selves. Of  these  the  essay  on  Saturn's  Rings  will  probably  be  thought  the  most  important 
as  containing  the  solution  of  a  diflScult  cosmical  problem ;  there  are  also  various  papers  on 

Dynamics,  Hydromechanics  and  subjects  of  pure  mathematics,  which  are  most  useful  con- 

tributions  on   the   subjects   of  which   they   treat. 

The  remaining  miscellaneous  papers  may  be  classified  under  the  following  heads:  (a) 

Lectures  and  Addresses,  (b)  Essays  or  Short  Treatises,  (c)  Biographical  Sketches,  (d)  Criticisms 
and  Reviews. 
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Class  (a)  comprises  his  addresses  to  the  British  Association,  to  the  London  Mathematical 

Society,  the  Rede  Lecture  at  Cambridge,  his  address  at  the  opening  of  the  Cavendish 

Laboratory  and  his  Lectures  at  the  Royal  Institution  and  to  the  Chemical  Society. 

Class  (6)  includes  all  but  one  of  the  articles  which  he  contributed  to  the  Encyclo- 

pcedia  Britanrdca  and  several  others  of  a  kindred  character  to  Nature. 

Class  (c)  contains  such  articles  as  "  Fai-aday "  in  the  Encyclopcedia  Britannica  and 
"  Helmholtz  "  in  Nature. 

Class  (d)  is  chiefly  occupied  with  the  reviews  of  scientific  books  as  they  were  pub- 
lished. These  appeared  in  Nature  and  the  most  important  have  been  reprinted  in  these 

pages. 

In  some  of  these  writings,  particularly  those  in  class  (b),  the  author  allowed  himself  a 

gi-eater  latitude  in  the  use  of  mathematical  symbols  and  processes  than  in  others,  as 

for  instance  in  the  article  "  Capillary  Attraction,"  which  is  in  fact  a  treatise  on  that  subject 
treated  mathematically.  The  lectures  were  upon  one  or  other  of  the  three  departments 

of  Physics  with  which  he  had  mainly  occupied  himself; — Colour  Perception,  Action  through 

a  Medium,  Molecular  Physics;  and  on  this  account  they  are  the  more  valuable.  In  the 

whole  series  of  these  more  popular  sketches  we  find  the  same  clear,  graceful  delineation  of 

principles,  the  same  beauty  in  arrangement  of  subject,  the  same  force  and  precision  in 

expounding  proofs  and  illustrations.  The  style  is  simple  and  singularly  free  fi-om  any  kind 
of  haze  or  obscurity,  rising  occasionally,  as  in  his  lectures,  to  a  strain  of  subdued  eloquence 

when   the   emotional    aspects   of  the   subject   overcome   the  purely  speculative. 

The  books  which  were  written  or  edited  by  Maxwell  and  published  in  his  lifetime  but 

which  are  not  included  in  this  collection  were  the  "Theory  of  Heat"  (1st  edition,  1871); 

"Electricity  and  Magnetism"  (1st  edition,  1873);  "The  Electrical  Researches  of  the  Hon- 
ourable Henry  Cavendish,  F.R.S.,  written  between  1771  and  1781,  edited  from  the  original 

manuscripts  in  the  possession  of  the  Duke  of  Devonshire,  K.G."  (1879).  To  these  may  be 

added  a  graceful  little  introductory  treatise  on  Dynamics  entitled  "Matter  and  Motion" 
(published  in  1876  by  the  Society  for  promoting  Christian  Knowledge).  Maxwell  also 

contributed  part  of  the  British  Association  Report  on  Electrical  Units  which  was  afterwards 

published  in  book  form  by  Fleeming  Jenkin. 

The  "Theory  of  Heat"  appeai-ed  in  the  Text  Books  of  Science  series  published  by 
Longmans,  Green  and  Co.,  and  was  at  once  hailed  as  a  beautiful  exposition  of  a  subject, 

part  of  which,  and  that  the  most  interesting  part,  the  mechanical  theory,  had  as  yet  but 

commenced  the  existence  which  it  owed  to  the  genius  and  laboui-s  of  Rankine,  Thomson  and 

Clausius.  There  is  a  certain  charm  in  Maxwell's  treatise,  due  to  the  freshness  and  originality 
of  its  expositions  which  has  rendered  it  a  great  favourite  with  students  of  Heat. 

After  his  death  an  "  Elementary  Treatise  on  Electricity,"  the  greater  part  of  which  he 
had   written,   was   completed    by   Professor   Garnett   and   published  in  1881.     The  aim  of  this 
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treatise  and   its  position   relatively   to   his   larger   work    may   be   gathered   from   the   following 

extract   from    Maxwell's  preface. 

"  In  this  smaller  book  I  have  endeavoured  to  present,  in  as  compact  a  form  as  I 
can,  those  phenomena  which  appear  to  throw  light  on  the  theory  of  electricity  and  to 

use  them,  each  in  its  place,  for  the  development  of  electrical  ideas  in  the  mind  of 

the   reader." 

"In  the  larger  treatise  I  sometimes  made  use  of  methods  which  I  do  not  think 
the  best  in  themselves,  but  without  which  the  student  cannot  follow  the  investigations 

of  the  founders  of  the  Mathematical  Theory  of  Electricity.  I  have  since  become  more 

convinced  of  the  superiority  of  methods  akic  to  those  of  Faraday,  and  have  therefore 

adopted   them    from   the   first." 

Of  the  "Electricity  and  Magnetism"  it  is  difficult  to  predict  the  future,  but  there  is 
no  doubt  that  since  its  publication  it  has  given  direction  and  colour  to  the  study  of 

Electrical  Science.  It  was  the  master's  last  word  upon  a  subject  to  which  he  had  devoted 
several  years  of  his  life,  and  most  of  what  he  wrote  found  its  proper  place  in  the  treatise. 

Several  of  the  chapters,  notably  those  on  Electromagnetism,  are  practically  reproductions  of 

his  memoirs  in  a  modified  or  improved  form.  The  treatise  is  also  remarkable  for  the  handling 

of  the  mathematical  details  no  less  than  for  the  exposition  of  physical  principles,  and  is 

enriched  incidentally  by  chapters  of  much  originality  on  mathematical  subjects  touched  on 

in  the  course  of  the  work.  Among  these  may  be  mentioned  the  dissertations  on  Spherical 

Harmonics  and  Lagrange's  Equations  in  Dj-namics. 

The  origin  and  growth  of  Maxwell's  ideas  and  conceptions  of  electrical  action,  cul- 
minating in  his  treatise  where  all  these  ideas  are  arranged  in  due  connection,  form  an 

interesting  chapter  not  only  in  the  history  of  an  individual  mind  but  in  the  history  of 

electrical  science.  The  importance  of  Faraday's  discoveries  and  speculations  can  hardly  be 
overrated  in  their  influence  on  Maxwell,  who  tells  us  that  before  he  began  the  study  of 

electricity  he  resolved  to  read  none  of  the  mathematics  of  the  subject  till  he  had  first 

mastered  the  "Experimental  Researches."  He  was  also  at  first  under  deep  obligations  to 
the  ideas  contained  in  the  exceedingly  important  papers  of  Sir  W.  Thomson  on  the  analogy 

between  Heat-Conduction  and  Statical  Electricity  and  on  the  Mathematical  Theory  of 

Electricity  in  Equilibrium.  In  his  subsequent  efforts  we  must  perceive  in  Maxwell,  possessed 

of  Faraday's  views  and  embued  with  his  spirit,  a  vigorous  intellect  bringing  to  bear  on  a 
subject  still  full  of  obscurity  the  steady  light  of  patient  thought  and  expending  upon  it 

all  the  resources  of  a  never  failing  ingenuity. 

Royal  Navax  College, 
Greenwich, 

August,  1890. 
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ERRATA. 

Page  40.     In  the  first  of  equations  (12),  second  group  of  terms,  read 

(hP         dy'         d^ 
instead  of 

d^^^d^^^d^^ 
with  corresponding  changes  in  the  other  two  equations. 

Page  153,  five  lines  from  bottom  of  page,  read  127  instead  of  276 

Page  591,  four  lines  from  bottom  of  page  the  equation  should  be 

d^M     d2M_ldM 

da?  "^  db'      a  da~ 

Page  592,  in  the  first  line  of  the  expression  for  L  change 

-  K  cos  26    into     -  ̂  cosec  26. 



[From  the  Proceedings  of  the  Royal  Society  of  Edinburgh,  Vol,  li.  April,  1846.] 

I.     On  the  Description  of  Oval  Curves,  and  those  having  a  plurality  of  Foci;  ivith 
remarks  by  Professor  Forbes.     Communicated  by  Professor  Forbes. 

Mr  Clerk  Maxwell  ingeniously  suggests  the  extension  of  the  common 

theory  of  the  foci  of  the  conic  sections  to  curves  of  a  higher  degree  of  com- 

plication in  the  following  manner : — 

(1)  As  in  the  ellipse  and  hyperbola,  any  point  in  the  curve  has  the 

sum  or  difference  of  two  lines  drawn  from  two  points  or  foci  =  a.  constant 
quantity,  so  the  author  infers,  that  curves  to  a  certain  degree  analogous,  may 
be  described  and  determined  by  the  condition  that  the  simple  distance  from 

one  focus  pliLS  a  multiple  distance  from  the  other,  may  be  =  a  constant  quantity; 

or  more  generally,   m  times  the  one  distance +  n  times  the  other  =  constant. 

(2)  The  author  devised  a  simple  mechanical  means,  by  the  wrapping 

of  a   thread   round  pins,  for   producing   these   curves.      See   Figs.   1    and   2.     He 

Fig.  1.     Two  FocL     Katios  1, Fig.  2.     Two  Foci     Ratios  2,  3. 

then    thought    of    extending    the    principle    to     other    curves,    whose    property 

should   be,   that   the  sum   of  the   simple   or    multiple   distances   of  any   point   of 
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the  curve  from  three  or  more  points  or  foci,  should  be  =  a  constant  quantity ; 
and  this,  too,  he  has  effected  mechanically,  by  a  very  simple  arrangement  of 

a  string  of  given  length  passing  round  three  or  more  fixed  pins,  and  con- 
straining a  tracing   point,  P.     See  Fig.    3.     Farther,   the  author  regards   curves 

Fig.  3.     Three  Foci.     Eatios  of  Equality. 

of  the  first  kind  as  constituting  a  particular  class  of  curves  of  the  second 

kind,  two  or  more  foci  coinciding  in  one,  a  focus  in  which  two  strings  meet 

being  considered  a  double  focus;  when  three  strings  meet  a  treble  focus,  &c. 
Professor  Forbes  observed  that  the  equation  to  curves  of  the   first   class   is 

easily  found,  having  the  form 

V^+7=  a-VhJ{x-  c)'  +  y\ 
which  is  that  of  the  curve  known  under  the  name  of  the  First  Oval  of 

Descartes*.  Mr  Maxwell  had  already  observed  that  when  one  of  the  foci  was 
at  an  infinite  distance  (or  the  thread  moved  parallel  to  itself,  and  was  confined 

in  respect  of  length  by  the  edge  of  a  board),  a  curve  resembling  an  ellipse 

was  traced ;  from  which  property  Professor  Forbes  was  led  first  to  infer  the 

identity  of  the  oval  with  the  Cartesian  oval,  which  is  well  known  to  have  this 

property.  But  the  simplest  analogy  of  all  is  that  derived  from  the  method  of 

description,  r  and  r    being  the  radients  to  any  point  of  the  curve  from  the  two 
foci ; 

mr  +  nr  —  constant, 

which  in  fact  at  once  expresses  on  the  undulatory  theory  of  light  the  optical 

character  of  the  surface  in  question,  namely,  that  light  diverging  from  one 

focus   F  without  the   medium,   shall  be   correctly   convergent  at  another  point  / 

*  Herschel,  On  Light,  Art.  232 ;  Lloyd,  On  Light  and  Vision,  Chap.  vii. 
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within   it ;    and   in    this   case   the   ratio   —   expresses   the   index   of  refraction   of 

the  medium*. 

If  we  denote  by  the  power  of  either  focus  the  number  of  strings  leading 

to  it  by  Mr  Maxwell's  construction,  and  if  one  of  the  foci  be  removed  to  an 
infinite  distance,  if  the  powers  of  the  two  foci  be  equal  the  curve  is  a  parabola ; 

if  the  power  of  the  nearer  focus  be  greater  than  the  other,  the  curve  is  an 

eUipse;  if  the  power  of  the  infinitely  distant  focus  be  the  greater,  the  curve 

is  a  hyperbola.  The  first  case  evidently  corresponds  to  the  case  of  the  reflection 

of  parallel  rays  to  a  focus,  the  velocity  being  unchanged  after  reflection;  the 

second,  to  the  refraction  of  parallel  rays  to  a  focus  in  a  dense  medium  (in 

which  light  moves  slower) ;   the  third  case  to  refraction  into  a  rarer  medium. 
The  ovals  of  Descartes  were  described  in  his  Geometry,  where  he  has  also 

given  a  mechanical  method  of  describing  one  of  themt,  but  only  in  a  particular 

case,  and  the  method  is  less  simple  than  Mr  Maxwell's.  The  demonstration  of 

the  optical  properties  was  given  by  Newton  in  the  Principia,  Book  i.,  prop.  97, 

by  the  law  of  the  sines;  and  by  Huyghens  in  1690,  on  the  Theory  of  Undu- 
lations in  his  Traite  de  la  Lumiere.  It  probably  has  not  been  suspected  that 

so  easy  and  elegant  a  method  exists  of  describing  these  curves  by  the  use  of 

a  thread  and  pins  whenever  the  powers  of  the  foci  are  commensurable.  For 

instance,  the  curve.  Fig.  2,  drawn  with  powers  3  and  2  respectively,  give  the 

proper  form  for  a  refracting  surface  of  a  glass,  whose  index  of  refraction  is  1'50, 
in  order  that  rays  diverging  from  f  may  be  refracted  to  F. 

As  to  the  higher  classes  of  curves  with  three  or  more  focal  points,  we 

cannot  at  present  invest  them  with  equally  clear  and  curious  physical  properties, 

but  the  method  of  drawing  a  curve  by  so  simple  a  contrivance,  which  shall 

satisfy  the  condition 

mr  +  nr  +pr"  +  &c.  =  constant, 

is  in  itself  not  a  little  interesting;  and  if  we  regard,  with  Mr  Maxwell,  the 

ovals  above  described,  as  the  limiting  case  of  the  others  by  the  coalescence 

of  two  or  more  foci,  we  have  a  farther  generalization  of  the  same  kind  as  that 

so  highly  recommended  by  Montucla^  by  which  Descartes  elucidated  the  conic 

sections  as  particular  cases  of  his  oval  curves. 

♦  This  was  perfectly  well  shewn  by  Hnyghens  in  his  Traite  de  la  Lumiere,  p.  111.     (1690.) 
+  Edit.  1683.     Geometria,  Lib.  ii.  p.  54. 

X  Histoire  dea  Mathematiqties.     First  Edit  IL  102. 



[From  the  Transactions  of  the  Royal  Society  of  Edinburgh,  Vol.  xvi.  Part  v.] 

II.     On   the    Theory   of  Rolling    Curves.      Communicated   by   the   Eev.    Professor 
Kelland. 

There  is  an  important  geometrical  problem  which  proposes  to  find  a  curve 

having  a  given  relation  to  a  series  of  curves  described  according  to  a  given 
law.     This  is  the  problem  of  Trajectories  in  its  general  form. 

The  series  of  curves  is  obtained  from  the  general  equation  to  a  curve  by 

the  variation  of  its  parameters.  In  the  general  case,  this  variation  may  change 
the  form  of  the  curve,  but,  in  the  case  which  we  are  about  to  consider,  the 

curve  is  changed  only  in  position. 

This  change  of  position  takes  place  partly  by  rotation,  and  partly  by  trans- 
ference through  space.  The  roUing  of  one  curve  on  another  is  an  example  of 

this  compound  motion. 

As  examples  of  the  way  in  which  the  new  curve  may  be  related  to  the 

series  of  curves,  we  may  take  the  following : — 

1.  The  new  curve  may  cut  the  series  of  curves  at  a  given  angle.  When 

this  angle  becomes  zero,  the  curve  is  the  envelope  of  the  series  of  curves. 

2.  It  may  pass  through  correspondiug  points  in  the  series  of  curves. 
There  are  many  other  relations  which  may  be  imagined,  but  we  shall  confine 
our  attention  to  this,  partly  because  it  aSbrds  the  means  of  tracing  various 

curves,  and  partly  on  account  of  the  connection  which  it  has  with  many 
geometrical  problems. 

Therefore  the  subject  of  this  paper  will  be  the  consideration  of  the  relations 
of  three  curves,  one  of  which  is  fixed,  while  the  second  rolls  upon  it  and 

traces  the  third.  The  subject  of  rolling  curves  is  by  no  means  a  new  one. 

The  first  idea  of  the  cycloid  is  attributed  to  Aristotle,  and  involutes  and 
evolutes  have  been  long  known. 
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In  the  Histmy  of  the  Royal  Academy  of  Sciences  for  1704,  page  97, 

there  is  a  memoir  entitled  "Nouvelle  formation  des  Spirales,"  by  M.  Varignon, 
in  which  he  shews  how  to  construct  a  polar  curve  from  a  curve  referred  to 

rectangular  co-ordinates  by  substituting  the  radius  vector  for  the  abscissa,  and 
a  circular  arc  for  the  ordinate.  After  each  curve,  he  gives  the  curve  into 

which  it  is  "  unrolled,"  by  which  he  means  the  curve  which  the  spiral  must 
be  rolled  upon  in  order  that  its  pole  may  trace  a  straight  line;  but  as  this 

18  not  the  principal  subject  of  his  paper,  he  does  not  discuss  it  very  fully. 
There  is  also  a  memoir  by  M.  de  la  Hire,  in  the  volume  for  1706,  Part  ii., 

page  489,  entitled  "Methode  generale  pour  r^duire  toutes  les  Lignes  courbes  ̂  

des  Roulettes,  leur  generatrice  ou  leur  base  ̂ tant  donnde  telle  qu'on  voudra." 
M.  de  la  Hire  treats  curves  as  if  they  were  polygons,  and  gives  geome- 

trical constructions  for  finding  the  fixed  curve  or  the  rolling  curve,  the  other 

two  being  given;    but  he  does  not  work  any  examples. 

In  the  volume  for  1707,  page  79,  there  is  a  paper  entitled,  "Methode 
generale  pour  determiner  la  nature  des  Courbes  form^es  par  le  roulement  de 

toutes  sortes  de  Courbes  sur  une  autre  Courbe  quelconque."     Par  M.  Nicole. 
M.  Nicole  takes  the  equations  of  the  three  curves  referred  to  rectangular 

co-ordinates,  and  finds  three  general  equations  to  connect  them.  He  takes  the 

tracing-point  either  at  the  origin  of  the  co-ordinates  of  the  rolled  curve  or  not. 
He  then  shews  how  these  equations  may  be  simplified  in  several  particular 

cases.     These  cases  are — 

(1)  When  the  tracing-point  is  the  origin  of  the  roUed  curve. 
(2)  When  the  fixed  curve  is  the  same  as  the  rolling  cxirve. 

(3)  When  both  of  these  conditions  are  satisfied. 
(4)  When  the  fixed  line  is  straight. 

He  then  says,  that  if  we  roll  a  geometric  curve  on  itself,  we  obtain  a  new 

geometric  curve,  and  that  we  may  thus  obtain  an  infinite  number  of  geometric 
curves. 

The  examples  which  he  gives  of  the  application  of  his  method  are  all  taken 

from  the  cycloid  and  epicycloid,  except  one  which  relates  to  a  parabola,  rolling 
on  itself,  and  tracing  a  cissoid  with  its  vertex.  The  reason  of  so  small  a 

number  of  examples  being  worked  may  be,  that  it  is  not  easy  to  eliminate 

the  co-ordinates  of  the  fixed  and  rolling  curves  from  his  equations. 

The  case  in  which  one  curve  roUing  on  another  produces  a  circle  is  treated 

of  in  Willis's  Principles  of  Mechanism.     Class  C.     Boiling  Contact. 
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He  employs  the  same  method  of  finding  the  one  curve  from  the  other 
which  is  used  here,  and  he  attributes  it  to  Euler  (see  the  Acta  Petropolitana, 

Vol.  v.). 

Thus,  nearly  all  the  simple  cases  have  been  treated  of  by  different  authors; 

but  the  subject  is  still  far  from  being  exhausted,  for  the  equations  have  been 

applied  to  very  few  curves,  and  we  may  easily  obtain  new  and  elegant  proper- 
ties from  any  curve  we  please. 
Almost  all  the  more  notable  curves  may  be  thus  linked  together  in  a  great 

variety  of  ways,  so  that  there  are  scarcely  two  curves,  however  dissimilar, 
between  which  we  cannot  form  a  chain  of  connected  curves. 

This  will  appear  in  the  list  of  examples  given  at  the  end  of  this  paper. 

Let  there  be  a  curve  KAS,  whose  pole  is  at  C. 
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Let  the  angle  DCA  =  6,  and   CA=r,  and  let 

Let  this  curve  remain  fixed  to  the  paper. 

Let  there  be  another  curve  BAT,  whose  pole  is  B. 

Let  the  angle  MBA  =  0t,  and  BA=r^,  and  let 

Let  this  curve  roll  along  the  curve  KAS  without  slipping. 

Then  the  pole  B  will  describe  a  third  curve,  whose  pole  is  C. 

Let  the  angle  DCB  =  0^,  and   CB  =  r„  and  let 

We  have  here  six  unknown  quantities  0,dAr,r^r^;  but  we  have  only  three 

equations  given  to  connect  them,  therefore  the  other  three  must  be  sought  for 
in  the  enunciation. 

But  before  proceeding  to  the  investigation  of  these  three  equations,  we  must 

premise  that  the  three  curves  will  be  denominated  as  follows  : — 

The  Fixed  Curve,  Equation,     e^  =  ̂^{r^. 

The  Rolled  Curve,  Equation,   0.  =  <f>,{r,). 

Tlie  Traced  Curve,  Equation,   6^  =  4>.,{r^. 

When  it  is  more  convenient  to  make  use  of  equations  between  rectangular 

co-ordinates,  we  shall  use  the  letters  x^^,  x^^,  x^ij^.  We  shall  always  employ  the 

letters  s^s^^  to  denote  the  length  of  the  curve  from  the  pole,  p.p^p^  for  the  per- 
pendiculars from  the  pole  on  the  tangent,  and  q^q/i^  for  the  intercepted  part  of 

the  tangent. 

Between  these  quantities,  we  have  the  following  equations: — 

r  =  ̂ /^T?,  ^  =  tan-|, 

a?  =  r  cos  ̂ ,  y  =  r  sin  6, 

r"  ydx  —  xdy 

jm'S         ""^w+w'
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rdr 
dS  _    xdx  +  ydy 

2=-r=7x!fi'  r- 

J{dxy  +  (dyY' 

'  "^    W      '^d^  daf 
We  come  now  to  consider  the  three  equations  of  rolling  which  are  involved 

in  the  enunciation.  Since  the  second  curve  rolls  upon  the  first  without  slipping, 

the  length  of  the  fixed  curve  at  the  point  of  contact  is  the  measure  of  the 

length  of  the  rolled  curve,  therefore  we  have  the  following  equation  to  connect 
the  fixed  curve  and  the  rolled  curve — 

«!  =  Sj. 

Now,  by  combining  this  equation  with  the  two  equations 

it  is  evident  that  from  any  of  the  four  quantities  6{r^6^r^  or  x^^x^^,  we  can 
obtain  the  other  three,  therefore  we  may  consider  these  quantities  as  known 
functions  of  each  other. 

Since  the  curve  rolls  on  the  fixed  curve,  they  must  have  a  common  tangent. 

Let  PA  be  this  tangent,  draw  BP,  CQ  perpendicular  to  PA,  produce  CQ, 

and  draw  BR  perpendicular  to  it,  then  we  have  CA=r^,  BA  =  r^,  and  CB  =  r,; 

CQ=p„  PB=p,,  and  BN=p,;   AQ  =  q„  AP  =  q„  and  CN=q,. 

Also  r,'=CR=CR  +  RR  =  (CQ  +  PBY+(AP-AQf 

=p,'  +  2p,p,  +p,'  +  r,'  -p,'  -  2q,q,  +  r,"  -p,' 

fz  =  n'  +  n'  +  2piPa  -  2q,q^. 

Since  the  first  curve  is  fixed  to  the  paper,  we  may  find  the  angle  6,. 

Thus  e,  =  DCB  =  DCA  +  ACQ  +  RCB 

=  e?.  +  tan-|  +  tan-|§ 

^,  =  ̂,  +  tan--^  +  tan-^  ̂ ^^^ 
TjdO^  Pi  +pi 
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Thus  we  have  found  three  independent  equations,  which,  together  with  the 

equations  of  the  curves,  make  up  six  equations,  of  which  each  may  be  d
educed 

from  the  others.  There  is  an  equation  connecting  the  radii  of  curvature  of  the
 

three  curves  which  is  sometimes  of  use. 

The  angle  through  which  the  rolled  curve  revolves  during  the  description  of 

the  element  ds„  is  equal  to  the  angle  of  contact  of  the  fixed  curve  and  the 

rolling  curve,  or  to  the  sum  of  their  curvatures, 

ds^     ds^     ds. 

But  the  radius  of  the  rolled  curve  has  revolved  In  the  opposite  direction 

through  an  angle  equal  to  dO,,  therefore  the  angle  between  two  successive  posi- 

tions  of  r,   is   equal   to    -^-dd,.     Now    this    angle    is    the    angle    between    two 

successive  positions  of  the  normal  to  the  traced  curve,  therefore,  if  0  be  the 

centre  of  curvature  of  the  traced  curve,  it  is  the  angle  which  ds^  or  ds^  subtends 

at  0.     Let  OA^T,  then 

ds^     r4d^     ds,      ,^  _  ds^     ds,      ,. 

^J__J_      1    _^ •*•  '^'ds,   T~  R,     R,     ds/ 

-tAt^tJ    RJR.' 
As  an  example  of  the  use  of  this  equation,  we  may  examine  a  property 

of  the  logarithmic  spiral. 

In    this    curve,    p  =  mr,   and    R  =  —  ,   therefore    if    the   rolled    curve   be   the ■^  m 

logarithmic  spiral 
/I        1\       1  ̂ m "^[t^tJ-r^v/ 

m_  1 t~r:,* 
AO 

therefore  ̂ 0  in  the  figure  =  ?ni2i,  and  -^  =  m. 

Let  the  locus  of  0,  or  the  evolute  of  the  traced  curve  LYBH,  be  the 

curve  OZY,  and  let  the  evolute  of  the  fixed  curve  KZAS  be  FEZ,  and  let 

us  consider  FEZ  as  the  fixed  curve,  and  OZF  as  the  traced  curve. 
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Then  in  the  triangles  BPA,  AOF,  we  have  OAF=PBA,  and  ̂ ='^  =  ̂ y 

therefore  the  triangles  are  similar,  and  FOA  =  APB  =  - ,  therefore  OF  is  perpen- 

dicular to  OA,  the  tangent  to  the  curve  OZY,  therefore  OF  is  the  radius  of 
the  curve  which  when  roUed  on  FEZ  traces  OZY,  and  the  angle  which  the 

curve  makes  with  this  radius  is  OFA=PAB  =  %mr^m,  which  is  constant,  there- 
fore the  curve,  which,  when  rolled  on  FEZ,  traces  OZY,  is  the  logarithmic 

spiral.  Thus  we  have  proved  the  following  proposition :  "  The  involute  of  the 
curve  traced  by  the  pole  of  a  logarithmic  spiral  which  rolls  upon  any  curve, 
is  the  curve  traced  by  the  pole  of  the  same  logarithmic  spiral  when  rolled  on 

the  involute  of  the  primary  curve." 
It  follows  from  this,  that  if  we  roll  on  any  curve  a  curve  having  the 

property  _2:»i  — Wjri,  and  roll  another  curve  having  Pi  =  'm^r^  on  the  curve  traced, 
and  so  on,  it  is  immaterial  in  what  order  we  roll  these  curves.  Thus,  if  we 

roll  a  logarithmic  spiral,  in  which  jp  =  mr,  on  the  nth  involute  of  a  circle  whose 
radius  is  a,  the  curve  traced  is  the  w+lth  involute  of  a  circle  whose  radius 
is  Jl-m\ 

Or,  if  we  roll  successively  m  logarithmic  spirals,  the  resulting  curve  is  the 
n  +  mth  involute  of  a  circle,  whose  radius  is 

aJl—m^  sll- m/,    Jkc. 

We  now  proceed  to  the  cases  in  which  the  solution  of  the  problem  may 

be  simplified.  This  simplification  is  generally  effected  by  the  consideration  that 
the  radius  vector  of  the  rolled  curve  is  the  normal  drawn  from  the  traced 
curve  to  the  fixed  curve. 

In  the  case  in  which  the  curve  is  rolled  on  a  straight  line,  the  perpen- 
dicular on  the  tangent  of  the  rolled  curve  is  the  distance  of  the  tracing  point 

from  the  straight  line ;  therefore,  if  the  traced  curve  be  defined  by  an  equation 
in  iCg  and  y„ 

'^.°p.=  /  "'„...   (1)' 

and '••=^'^©^   ^'^- 
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By   substituting   for   r,   in   the   first   equation,    its  value,  as  derived  from  the 
second,  we  obtain 

-■©■[©■-]=©'■ 

If    we    know    the    equation    to    the     rolled    curve,    we    may   find    (-7-^')     in 

terms   of   r,,    then   by   substituting   for   r,   its   value    in   the   second   equation,    we 
dx  (1 X 

have   an   equation   containing  x^   and   -^,    from   which  we   find   the  value  of  -t— ' dy,  du, 
in  terms  of  x^;  the  integration  of  this  gives  the  equation  of  the  traced  curve. 

As   an  example,    we  may  find  the  curve  traced  by  the  pole  of  a  hyperbolic 
spiral  which  rolls  on  a  straight  line. 

a 

fdrA'  _  rl 

,ddj  ~  a' 

The  equation  of  the  rolled  curve  is  6^  = 

-  •■©■-■[(IJ-]' 
dx^  _       ̂ 3 

'*  dy,~Ja'-x,'' 

This   is   the   differential  equation  of  the  tractory  of  the  straight  line,   which 

is  the  curve  traced  by  the  pole  of  the  hyperbolic  spiral. 

By  eliminating  x^  in  the  two  equations,  we  obtain 

dr^_      /dxA 

This  equation  serves  to  determine  the  rolled  curve  when  the  traced  cuive 
is  given. 

As  an  example  we  shall  find  the  curve,  which  being  rolled  on  a  straight 
line,  traces  a  common  catenary. 

Let  the  equation  to  the  catenary  be 

'l(e'  +  e-^. 
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Then 

dy,~N  a'       ' 

dr 

then  by  integration  ^  =cos'^  (   1  j 
2a 

r  = 1+COS0' 
This  is  the  polar  equation  of  the  parabola,  the  focus  being  the  pole ;  there- 

fore, if  we  roll  a  parabola  on  a  straight  line,  its  focus  will  trace  a  catenary. 
The  rectangiilar  equation  of  this  parabola  is  af  =  Aay,  and  we  shall  now 

consider  what  curve  must  be  rolled  along  the  axis  of  y  to  trace  the  parabola. 

By  the  second  equation  (2), 

n  =  ̂ 9    /-4-  +  l>    but  x^^Pi, 

V  ̂ » 

.-.  r/=^/  +  4a", 

.-.  2a  =  Vr/-jp/  =  g'„ 

but  q^  is   the  perpendicular   on  the   normal,   therefore   the  normal   to  the  curve 

always  touches  a  circle  whose  radius  is  2a,  therefore  the  curve  is  the  involute 
of  this  circle. 

Therefore  we  have  the  following  method  of  describing  a  catenary  by  con- 
tinued motion. 

Describe  a  circle  whose  radius  is  twice  the  parameter  of  the  catenary;  roll  a 

straight  line  on  this  circle,  then  any  point  in  the  line  will  describe  an  involute 
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of  the  circle  ;  roll  this  curve  on  a  straight  line,  and  the  centre  of  the  circle  will 

describe  a  parabola  ;  roll  this  parabola  on  a  straight  line,  and  its  focus  will  trace 

the  catenary  required. 

We  come  now  to  the  case  in  which  a  straight  line  rolls  on  a  curve. 

When  the  tracing-point  is  in  the  straight  line,  the  problem  becomes  that 

of  involutes  and  evolutes,  which  we  need  not  enter  upon ;  and  when  the  tracmg- 

point  is  not  in  the  straight  line,  the  calculation  is  somewhat  complex;  we  shall 

therefore  consider  only  the  relations  between  the  curves  described  in  the  first 
and  second  cases. 

Definition. — The  curve  which  cuts  at  a  given  angle  all  the  circles  of  a 

given  radius  whose  centres  are  in  a  given  curve,  is  called  a  tractory  of  the 

given  curve. 

Let  a  straight  line  roll  on  a  curve  A,  and  let  a  point  in  the  straight 

line  describe  a  curve  B,  and  let  another  point,  whose  distance  from  the  first 

point  is  b,  and  from  the  straight  line  a,  describe  a  curve  C,  then  it  is  evident 
that  the  curve  B  cuts  the  circle  whose   centre   is   in    C,   and  whose  radius  is  b, 

at  an  angle  whose  sine  is  equal  to   r,   therefore  the   curve   5   is   a   tractory   of 

the  curve  C. 

When  a  =  b,  the  curve  B  is  the  orthogonal  tractory  of  the  curve  C.  If 

tangents  equal  to  a  be  drawn  to  the  curve  B,  they  will  be  terminated  in 

the  curve  C;  and  if  one  end  of  a  thread  be  carried  along  the  curve  C,  the 
other  end  will  trace  the  curve  B. 

When  a  =  0,  the  curves  B  and  C  are  both  involutes  of  the  curve  A, 

they  are  always  equidistant  from  each  other,  and  if  a  circle,  whose  radius  is 
6,  be  rolled  on  the  one,  its  centre  will  trace  the  other. 

If  the  curve  A  is  such  that,  if  the  distance  between  two  points  measured 

along  the  curve  is  equal  to  6,  the  two  points  are  similarly  situate,  then  the 

curve  B  is  the  same  with  the  curve  C.  Thus,  the  curve  A  may  be  a  re- 

entrant curve,  the  circumference  of  which  is  equal  to  6. 

When  the  curve  -4  is  a  circle,  the  curves  B  and   C  are  always  the  same. 

The  equations  between  the  radii  of  curvature  become 
1     1  _  r 
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When  a  =  0,  T=0,  or  the  centre  of  curvature  of  the  curve  B  is  at  the 

point  of  contact.  Now,  the  normal  to  the  curve  C  passes  through  this  point, 
therefore — 

"The  normal  to  any  curve  passes  through  the  centre  of  curvature  of  its 

tractory," 
In  the  next  case,  one  curve,  by  rolling  on  another,  produces  a  straight 

line.  Let  this  straight  line  be  the  axis  of  y,  then,  since  the  radius  of  the 

rolled  curve  is  perpendicular  to  it,  and  terminates  in  the  fixed  curve,  and 
since  these  curves  have  a  common  tangent,  we  have  this  equation, 

If  the  equation  of  the  rolled  curve  be  given,  find  -j-^  in  terms  of  r^,  sub- 

stitute Xi  for  r^,  and  multiply  by  x^,  equate  the  result  to  -^ ,  and  integrate. 

Thus,  if  the  equation  of  the  rolled  curve  be 

d  =  Ar-""  +  &c.  +  Kr-^  +  Lr'^  +  if  log  r  +  iVr  +  &c.  +  Zr"", 

^  =  -  n^r-(»+^)  -  &c.  -  2Kr-'  -  I/p-'  +  Mr''  +  N+  &c.  +  wZr"-^ dr 

-r-=  -  nAx~'*  -  &c.  -  2Kx~"-  -  Lx~^  +  M+  Nx  +  &c.  +  nZx", ax 

y  =  -^  Aa^-""  +  &c.  +  2Kx-'  -L\ogx  +  Mx  +  ̂ Naf  +  &c.  +  -^  Zx""^', 

which  is  the  equation  of  the  fixed  curve. 

If  the  equation  of  the  fixed  curve  be  given,  find  -^  in  terms  of  cc,  sub- 

stitute r  for  X,  and  divide  by  r,  equate  the  result  to  -t-,  and  integrate. 

Thus,  if  the  fixed  curve  be  the  orthogonal  tractory  of  the  straight  line, 
whose  equation  is 

y  =  a  log   .  +  Ja^ 

a  +  \la^  —  x^ 

dy  _  Jo'  —  af dx~       X 
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de  _Ja?-7* 
dr  r* 

0  =  cos"^ 
this  is  the  equation  to  the  orthogonal  tractory  of  a  circle  whose  diameter  is 
equal  to  the  constant  tangent  of  the  fixed  curve,  and  its  constant  tangent 
equal  to  half  that  of  the  fixed  curve. 

This  property  of  the  tractory  of  the  circle  may  be  proved  geometrically, 
thus — Let  P  be  the  centre  of  a  circle  whose  radius  is  PD,  and  let  CD  be 

a  line  constantly  equal  to  the  radius.  Let  BCP  be  the  curve  described  by 

the  point  C  when  the  point  D  is  moved  along  the  circumference  of  the  circle, 

then  if  tangents  equal  to  CD  be  drawn  to  the  curve,  their  extremities  will 
be  in  the  circle.  Let  ACH  be  the  curve  on  which  BCP  rolls,  and  let  OPE 

be  the  straight  line  traced  by  the  pole,  let  CDE  be  the  common  tangent, 
let  it  cut  the  circle  in  D,  and  the  straight  line  in  E. 

Then  CD  =  PD,  .'.  LDCP^  LDPC,  and  CP  is  perpendicular  to  OE, 

.'.  L  CPE=  LDCP+  LDEP.  Take  away  LDCP-^  L  DPC,  and  there  remains 
DPE=DEP,  .-.  PD=^DE,  .-.  CE=2PD. 
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Therefore  the  curve  ACH  haa  a  constant  tangent  equal  to  the  diameter  of 

the  circle,  therefore  ACH  is  the  orthogonal  tractorj  of  the  straight  line,  which 

is  the  tractrix  or  equitangential  curve. 

The  operation  of  finding  the  fixed  curve  from  the  rolled  curve  is  what 

Sir  John  Leslie  calls  "  divesting  a  curve  of  its  radiated  structure." 

The  method  of  finding  the  curve  which  must  be  rolled  on  a  circle  to 

trace  a  given  curve  is  mentioned  here  because  it  generally  leads  to  a  double 
result,  for  the  normal  to  the  traced  curve  cuts  the  circle  in  two  points,  either 

of  which  may  be  a  point  in  the  rolled  curve. 

Thus,  if  the  traced  curve  be  the  involute  of  a  circle  concentric  with  the 

given  circle,  the  rolled  curve  is  one  of  two  similar  logarithmic  spirals. 

If  the  curve  traced  be  the  spiral  of  Archimedes,  the  rolled  curve  may  be 

either  the  hyperbolic  spiral  or  the  straight  line. 

In  the  next  case,  one  curve  rolls  on  another  and  traces  a  circle. 

Since  the  curve  traced  is  a  circle,  the  distance  between  the  poles  of  the 

fixed  curve  and  the  rolled  curve  is  always  the  same;  therefore,  if  we  fix  the 

rolled  curve  and  roll  the  fixed  curve,  the  curve  traced  will  still  be  a  circle, 

and,  if  we  fix  the  poles  of  both  the  curves,  we  may  roU  them  on  each  other 
without  friction. 

Let  a  be  the  radius  of  the  traced  circle,  then  the  sum  or  difference  of 

the  radii  of  the  other  curves  is  equal  to  a,  and  the  angles  which  they  make 

with  the  radius  at  the  point  of  contact  are  equal, 

.♦.  n-=±(a±r,)andn^^  =  r,^\ 

dO, _  ±(a±r^  dS, 

drt~        r,         dvi' 

If  we  know  the  equation  between  ̂ j  and  r,,  we  may  find  ̂ —  in  terms  of  r„ 

substitute  ±  (a  ±  r,)  for  r„  multiply  by       ̂         \  and  integrate. 

Thus,  if  the  equation  between  6^  and  r^  be 

r,  =  a  sec  $,, 
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which  is  the  polar  equation   of  a   straight   line  touching  the  traced  circle   whose 

equation  is  r  =  ay  then 

dd  _         a 

dr,  ~  r,  -Jr.'-a' 
a 

{r,±a)Jr,'±2r,a 
dO^     r^±a  a 
dr,        r,     (r,±a)  Jrf±2r^ 

a 

_    2a     _     2a 

Now,   since   the  rolling    curve   is   a   straight  line,   and   the   tracing   point   is 

not  in  its   direction,   we  may  apply    to   this    example    the    observations    which 
have  been  made  upon  tractories. 

2a 
Let,  therefore,   the  curve  ^  =  ̂  — 7  be  denoted  by  A,  its  involute  by  B,  and 

the   circle  traced  by    C,   then   B  is  the  tractory   of   C;    therefore   the   involute 

2a 
of  the   curve   ^  =  ̂  — r  is   the   tractory   of    the   circle,    the   equation   of  which   is 

^  =  cos"'   /—  —  I.     The   curve  whose  equation  is  ̂ '=s — ;    seems  to  be  among 

spirals  what  the  catenary  is  among  curves  whose  equations  are  between  rec- 
tangular co-ordinates ;  for,  if  we  represent  the  vertical  direction  by  the  radius 

vector,  the  tangent  of  the  angle  which  the  curve  makes  with  this  line  is 

proportional  to  the  length  of  the  curve  reckoned  from  the  origin ;  the  point 

at  the  distance  a  from  a  straight  line  rolled  on  this  curve  generates  a  circle, 
and  when  rolled  on  the  catenary  produces  a  straight  line ;  the  involute  of  this 

curve  m  the  tractory  of  the  circle,  and  that  of  the  catenary  is  the  tractory 

of  the  straight  line,  and  the  tractory  of  the  circle  rolled  on  that  of  the  straight 

line  traces  the  straight  line ;  if  this  curve  is  rolled  on  the  catenary,  it  produces 

the  straight  line  touching  the    catenary    at    its    vertex ;    the   method   of  drawing 
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tangents  is   the   same  as  in  the  catenary,  namely,  by  describing  a  circle 

radius  is  a  on  the  production  of  the  radius  vector,  and  drawing  a  tangent  to  the 

circle  from  the  given  point. 

In  the  next  case  the  rolled  curve  is  the  same  as  the  fixed  curve.  It  is 

evident  that  the  traced  curve  wiU  be  similar  to  the  locus  of  the  intersection 

of  the  tangent  with  the  perpendicular  from  the  pole ;  the  magnitude,  however, 

of  the  traced  curve  will  be  double  that  of  the  other  curve;  therefore,  if  we 

call  n  =  <^o^o  the  equation  to  the  fixed  curve,  r,  =  <f>,6,  that  of  the  traced  curve, 
we  have 

also,  £^  =  f. 

SimUarly,  r,  =  2p,  =  2r,f  =  A^  Ar,  (^J,   0,^6,-2  cos-  ̂   . 

Similarly,  r„  =  2p„.,  =  2r„_,  ̂   &c.  =  2^  (^^J  , 

and  ^^f. 

^„  =  ̂ „-7lC0S-f-\ 

'o 

V 

0n  =  6.  —  ncos~^  -^ . 

Let  e,  become  6^';   0„  6,'  and  ̂  ,  ̂.     Let  ̂ „^-^„  =  a, 

^„^  =  ̂ ;-ncos-  ̂ , 

» «. 

a  =  ̂ „^-  e„  =  ̂ .^-^o-ncos-^  ̂ '  +n  cos-^  ̂  

-1  Pn  -1  Pn  O-    ,    ̂0  ~  ̂0 \  cos  ̂   ̂̂ -^  —  COS  *  -^—  =  -  4   . 
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Now,  cos"^  —   is   the  complement  of  the  angle  at  which  the  curve  cuts  the 

'  n 

radius  vector,  and  cos"'  — —cos"'  -^  is  the  variation  of  this  angle  when  6^  varies 

by  an  angle  equal  to  a.     Let  this  variation  =  (^  ;  then  if  6^  —  6 J  =  fi, 

^     n     n 

Now,  if  n  increases,  <f>  will  diminish ;   and  if  n  becomes  infinite, 

<^  =  ̂   +  ̂  =  0  when  a  and  )8  are  finite. 

Therefore,  when  n  is  infinite,  <}>  vanishes ;  therefore  the  curve  cuts  the  radius 

vector  at  a  constant  angle  ;  therefore  the  curve  is  the  logarithmic  spiral. 

Therefore,  if  any  curve  be  rolled  on  itself,  and  the  operation  repeated  an 

infinite  number  of  times,  the  resulting  curve  is  the  logarithmic  spiral 

Hence  we  may  find,  analytically,  the  curve  which,  being  rolled  on  itself, 
traces  itself. 

For  the  curve  which  has  this  property,  if  rolled  on  itself,  and  the  operation 

repeated  an  infinite  number  of  times,  will  still  trace  itself. 

But,  by  this  proposition,  the  resulting  curve  is  the  logarithmic  spiral ; 

therefore  the  curve  required  is  the  logarithmic  spiral.  As  an  example  of  a  curve 

rolling  on  itself,  we  will  take  the  curve  whose  equation  is 

n=2"a(cos|)". 

-1=2".  (sing  (oosf-; 

2"a'(cos^")'" 

.'.  r^  =  2p,=  2 

r,  =  2 

^2-a'(cosg%2-a^(sing    (c
osg"^'^ 

2"a  cos  —  /       n\  „+i 

^^cos-j+(sm-j 
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Now  ̂ 1-^0= -cos-^^"= -cos-' cos -"  =  -^, 

"        n+1 

substituting  this  value  of  6^  in  the  expression  for  r^, 

r.  =  2-'a^cos--J     , 

similarly,  if  the  operation  be  repeated  ni  times,  the  resulting  curve  is 

*afcos— ̂ ^y \      n  +  mj 

When  n=l,  the  curve  is 
r  =  2a  cos  9, 

the  equation  to  a  circle,  the  pole  being  in  the  circumference. 

When  n  =  2,  it  is  the  equation  to  the  cardioid 

r  =  4a  (cos -J  . 

In  order  to  obtain  the  cardioid  from  the  circle,  we  roll  the  circle  upon 

itself,  and  thus  obtain  it  by  one  operation ;  but  there  is  an  operation  which, 

bei6g  performed  on  a  circle,  and  again  on  the  resulting  curve,  will  produce  a 

cardioid,  and  the  intermediate  curve  between  the  circle  and  cardioid  is 

r  =  2 >     /       20\i 

As  the  operation  of  rolling  a  curve  on  itself  is  represented  by  changing  n 

into  (n  +  1)  in  the  equation,  so  this  operation  may  be  represented  by  changing  n 

into  (w  +  i). 

Similarly  there  may  be  many  other  fractional  operations  performed  upon 

the  curves  comprehended  under  the  equation 

r  =  2"a(cos-j. 

We  may  also  find  the  curve,  which,  being  rolled  on  itself,  will  produce  a 

given  curve,  by  making  7i=  —  1. 
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We  may  likewise  prove  by  the  same  method  as  before,  that  the  result  of 

performing  this  inverse  operation  an  infinite  number  of  times  is  the  logarithmic 
spiral. 

As  an  example  of  the  inverse  method,  let  the  traced  line  be  straight,  let 
its  equation  be 

r<,  =  2a  sec  d^, 

then  P^^p,^2a^2a_ 

therefore  suppressing  the  suflSx, 
=  ar, 

*  •  \d0j      a       ' 

dr r 

7i-'
' 

■■&-') 

-      2a 

^~l-cos^' 

the  polar  equation  of  the  parabola  whose  parameter  is  4rt. 

The  last  case  which  we  shall  here  consider  affords  the  means  of  constructing 
two  wheels  whose  centres  are  fixed,  and  which  shall  roll  on  each  other,  so  that 

the  angle  described  by  the  first  shall  be  a  given  function  of  the  angle  described 
by  the  second. 

Let  0^  =  (f}0i,  then  r^  +  r^  =  a,  and  -j^  =  —  ; 

d0^        a-r^' Let  us  take  as  an  example,  the  pair  of  wheels  which  will  represent  the 

angular  motion  of  a  comet  in  a  parabola. 
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Here  6^  =  tan  -^ , 
.  ̂ _ 

2  cos'  -^ 

a      2  +  cos  ̂ 1 ' 
therefore  the  first  wheel  is  an  ellipse,  whose  major  axis  is  equal  to  |  of  the 
distance  between  the  centres  of  the  wheels,  and  in  which  the  distance  between 

the  foci  is  half  the  major  axis. 

Now  since  ^i  =  2  tan"'  B^  and  r^  =  a  -  r„ 
'•  1+    1 

a        ̂ 2(2-^)' '-'-±;' 
a 

which  is  the  equation  to  the  wheel  which  revolves  with  constant  angular  velocity. 

Before  proceeding  to  give  a  list  of  examples  of  rolling  curves,  we  shall 

state  a  theorem  which  is  almost  self-evident  after  what  has  been  shewn  pre- 

viously. 

Let  there  be  three  curves.  A,  B,  and  C.  Let  the  curve  A,  when  rolled 

on  itself,  produce  the  curve  B,  and  when  rolled  on  a  straight  line  let  it 

produce  the  curve  C,  then,  if  the  dimensions  of  C  be  doubled,  and  B  be 
rolled  on  it,  it  will  trace  a  straight  line. 

A  Collection  of  Examples  of  Rolling  Curves. 

First.     Examples  of  a  curve  rolling  on  a  straight  line. 

Ex.  1.  When  the  rolling  curve  is  a  circle  whose  tracing-point  is  in  the 
circumference,  the  curve  traced  is  a  cycloid,  and  when  the  point  is  not  in  the 

circumference,  the  cycloid  becomes  a  trochoid. 

Ex.  2.  When  the  rolling  curve  is  the  involute  of  the  circle  whose  radius 
is  2a,  the  traced  curve  is  a  parabola  whose  parameter  is  4a. 
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Ex.  3.  When  the  rolled  curve  is  the  parabola  whose  parameter  is  4a,  the 

traced  curv^e  is  a  catenary  whose  parameter  is  a,  and  whose  vertex  is  distant 
a  from  the  straight  line. 

Ex.  4.  "When  the  rolled  curve  is  a  logarithmic  spiral,  the  pole  traces  a 
straight  line  which  cuts  the  fixed  line  at  the  same  angle  as  the  spiral  cuts 
the  radius  vector. 

Ex.  5.  When  the  rolled  curve  is  the  hyperbolic  spiral,  the  traced  curve 

is  the  tractory  of  the  straight  line. 

Ex.  6.     When  the  rolled  curve  is  the  polar  catenary 

r       2a 

the   traced  curve   is   a  circle   whose   radius   is   a,  and  which  touches  the  straight 
line. 

Ex.  7.     When  the  equation  of  the  rolled  curve  is 

the  traced  curve  is  the  hyperbola  whose  equation  is 

y'  =  d'  +  a^. 

Second.     In   the   examples    of    a   straight  Hne   I'olling  on   a   curve,   we  shall 
use  the  letters  A^  B,  and  C  to  denote  the  three  curves  treated  of  in  page  22. 

Ex.  1.     When  the  curve  ̂   is  a  circle  whose  radius  is  a,  then  the  cui-ve  B 

is  the  involute  of  that  circle,  and  the  curve  C  is  the  spiral  of  Archimedes,  r  =  ad. 

Ex.  2.     When  the  curve  ̂    is  a  catenary  whose  equation  is 

the  curve  B  is  the  tractory  of  the  straight  line,  whose  equation  is 

X  I   y  =  a  log   ,  +  JcL'  —  -f^, 

a  +  V  a'  -  ar" 
and  C  is  a  straight  line  at  a  distance  a  from  the  vertex  of  the  catenary. 



24  THE  THEORY  OF  ROLLING  CURVES. 

Ex.  3.     When  tKe  curve  A  is  the  polar  catenaxy 

the  curve  B  is  the  tractory  of  the  circle 

and  the  curve  (7  is  a  circle  of  which  the  radius  is  - . 

Third.     Examples   of  one   curve  rolling   on  another,   and  tracing  a  straight 
line. 

Ex.  1.     The  curve  whose  equation  is 

0  =  Ar-"*  +  &c.  +  Kr-'  +  Lr'^  +  Jf  log  r  +  iVr  +  &c.  +  Zt^, 

when  rolled  on  the  curve  whose  equation  is 

n  —  1  71+  L 

traces  the  axis  of  y. 

Ex.  2.     The   circle   whose   equation   is  r  =  a  cos  ̂   rolled  on  the  circle  whose 
radius  is  a  traces  a  diameter  of  the  circle. 

Ex.  3.     The  curve  whose  equation  is 

^=J'i- 
1  —  versm    - , a 

rolled  on  the  circle  whose  radius  is  a,  traces  the  tangent  to  the  circle. 

Ex.  4.  If  the  fixed  curve  be  a  parabola  whose  parameter  is  4a,  and  if  we 

roll  on  it  the  spiral  of  Archimedes  r  =  ad,  the  pole  will  trace  the  axis  of  the 

parabola. 

Ex.  5.  If  we  roll  an  equal  parabola  on  it,  the  focus  will  trace  the  directrix 
of  the  first  parabola. 

Ex.  6.  If  we  roll  on  it  the  curve  ^  =  t^  t^®  P^^®  "^^  ̂ ^^^  ̂ ^®  tangent 

at  the  vertex  of  the  parabola. 
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Ex.  7.     If  we  roll  the  curve  whose  equation  is 

r  =  a  cos  (t^) 

on  the  ellipse  whose  equation  is 

the  pole  will  trace  the  axis  h. 

Ex.  8.     K  we  roll  the  curve  whose  equation  ia 

on   the  hyperbola  whose  equation  is 

the  pole  will  trace  the  axis  h. 

Ex,  9.     If  we  roll  the  lituus,  whose  equation  is 

on  the  hyperbola  whose  equation  is 

the  pole  will  trace  the  asymptote. 

Ex.  10.     The  cardioid  whose  equation  is 

r  =  a(H- cos  ̂ ), 

rolled  on  the  cycloid  whose  equation  is 

12  =  a  versin"'  -  +  J2ax  -  ic*, 
^  a 

traces  the  base  of  the  cycloid. 

Ex.   11.     The  curve  whose  equation  is 

0  =  versm-'-  +  2^/   1, 

rolled  on  the  cycloid,  traces  the  tangent  at  the  vertex. 
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Ex.  12.    The  straight  line  whose  equation  is 
r  =  a  sec  B, 

rolled   on  a  catenary  whose   parameter  is  a,  traces  a  line  whose   distance  from 
the  vertex  is  a. 

Ex.  13.     The  part  of  the  polar  catenary  whose  equation  is 

rolled  on  the  catenary,  traces  the  tangent  at  the  vertex. 

Ex.  14.     The  other  part  of  the  polar  catenary  whose  equation  is 

rolled  on  the  catenary,  traces  a  line  whose  distance  from  the  vertex  is  equal  to  2a. 

Ex.  15.  The  tractory  of  the  circle  whose  diameter  is  a,  rolled  on  the 

tractory  of  the  straight  line  whose  constant  tangent  is  a,  produces  the  straight 
line. 

Ex.   16.     The  hyperbolic  spiral  whose  equation  is 
a 

'■=5' 

rolled  on  the  logarithmic  curve  whose  equation  is 

1      ̂  

2/  =  alog-, 

traces  the  axis  of  y  or  the  asymptote. 

Ex.  17.  The  involute  of  the  circle  whose  radius  is  a,  rolled  on  an  orthogonal 

trajectory  of  the  catenary  whose  equation  is 

traces  the  axis  of  y. 

Ex.   18.     The  curve  whose  equation  is 
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rolled  on  the  witch,  whose  equation  is 

traces  the  asymptote. 

Ex.   19.     The  curve  whose  equation  is 
r  —  a  tan  Q, 

rolled  on  the  curve  whose  equation  is 

traces  the  axis  of  y. 

Ex.  20.     The  curve  whose  equation  is 
2r 

e= 
rolled  on  the  curve  whose  equation  is 

y  =  /  ,   or  r  =  a  tan  $, 

traces  the  axis  of  y. 

Ex.  21.    The  curve  whose  equation  is 

r  =  a  (sec  d  —  tan  0), 

rolled  on  the  curve  whose  equation  is 

2/  =  alogg+l), 
traces  the  axis  of  y. 

Fourth.     Examples  of  pairs  of  rolling  curves  which  have  their  poles  at  a  fixed 
distance  =  a. 

Ce  straight  line  whose  equation  is         ̂ =sec"'- 

  ..„         ,         . r 
2a 

The  polar  catenary  whose  equation  is     0=  ±fj  I  ± 

Ex.  2.     Two  equal  ellipses  or  hyperbolas  centered  at  the  foci. 

Ex.  3.     Two  equal  logarithmic  spirals. 

(Circle  whose  equation  is  r  =  2a  cos  6. 

Curve  whose  equation  is  ^-/J^  —  l  +  versin"^-. 

Ex.  4. 



28  THE  THEORY  OF  ROLLING  CURVES. 

fCaxdioid  whose  equation  is  r=2a(l+co8^). 
Ex.  5. 

Ex.  6. 

Ex.  7. 

[Curve  whose  equation  is  ^  =  sin"*-  +  log  ,— — —       . 

(Conchoid,  r  =  a  (secg- 1). 

Icurve,  ^  =  >A-? 

Spiral  of  Archimedes,  r  =  a0. 
T  T 

Curve,  ^  =  -  +  log 
+  sec"^  - 

a 

a       °  a 

f Hyperbolic  spiral,  r=-Q 
Ex.  8.     -! 

ICurve, 
a 

e'+l 

1 

Cpse  whose  equation  is  ^"^^2+   ~Q' 

Ex.  10. (Involute  of  circle,  ^~Ja^^^  ®®^"^  a ' 

'curve,  e^J^±2l±log(-±l+J^.±2'^. 

Fifth.     Examples  of  curves  rolling  on  themselves. 

Ex.  1.     When  the  curve  which  rolls  on  itself  is  a  circle,  equation 
r  =  a  cos  6, 

the  traced  curve  is  a  cardioid,  equation  r  =  a(l+cos^). 

Ex.  2.     When  it  is  the  curve  whose  equation  is 

r  =  2"a  (cos-j  , 

the  equation  of  the  traced  curve  is 

Ex.  3.    When  it  is  the  involute  of  the  circle,  the  traced  curve  is  the  spiral 
of  Archimedes. 
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Ex.  4.    When  it  is  a  parabola,  the  focus  traces  the  directrix,  and  the  vertex 
traces  the  cissoid. 

Ex.  5.     When  it  is  the  hyperbolic  spiral,  the  traced  curve  is  the  tractory  of 
the  circle. 

Ex.  6.     When  it  is  the  polar  catenary,  the  equation  of  the  traced  curve  is 

J 2a     ,  .   .,  r   1  —  versin     -  . 
r  a 

Ex.  7.     When  it  is  the  curve  whose  equation  is 

the  equation  of  the  traced  curve  is  r  =  a  (e'  —  €~"). 

This  paper  commenced  with  an  outline  of  the  nature  and  history  of  the  problem  of  rolling 
curves,  and  it  was  shewn  that  the  subject  had  been  discussed  previously,  by  several  geometers, 

amongst  whom  were  De  la  Hire  and  Nicolfe  in  the  Memoir es  de  I'Academie,  Euler,  Professor 
Willis,  in  his  Principles  of  Mechanism,  and  the  Rev.  H.  Holditch  in  the  Cambridge  Philosophical 
Transactions. 

None  of  these  authors,  however,  except  the  two  last,  had  made  any  application  of  their 
methods ;  and  the  principal  object  of  the  present  communication  was  to  find  how  far  the  general 
equations  could  be  simplified  in  particular  cases,  and  to  apply  the  results  to  practice. 

Several  problems  were  then  worked  out,  of  which  some  were  applicable  to  the  generation 
of  curves,  and  some  to  wheelwork ;  while  others  were  interesting  as  shewing  the  relations  which 

exist  between  different  curves ;  and,  finally,  a  collection  of  examples  was  added,  as  an  illus- 
tration of  the  fertihty  of  the  methods  employed. 



[From  the  Transactions  of  the  Royal  Society  of  Edinburgh,  Vol.  XX.  Part  i,] 

III. — On  the  Equilibrium  of  Elastic  Solids. 

There  are  few  parts  of  mechanics  in  which  theory  has  differed  more  from 
experiment  than  in  the  theory  of  elastic  sohds. 

Mathematicians,  setting  out  from  very  plausible  assumptions  with  respect  to 
the  constitution  of  bodies,  and  the  laws  of  molecular  action,  came  to  conclusions 

which  were  shewn  to  be  erroneous  by  the  observations  of  experimental  philoso- 

phers. The  experiments  of  (Ersted  proved  to  be  at  variance  with  the  mathe- 
matical theories  of  Navier,  Poisson,  and  Lame  and  Clapeyron,  and  apparently 

deprived  this  practically  important  branch  of  mechanics  of  all  assistance  from 
mathematics. 

The  assumption  on  which  these  theories  were  founded  may  be  stated  thus : — 

Solid  bodies  are  composed  of  distinct  ̂ molecules,  which  are  kept  at  a  certain 
distance  from  each  other  by  the  opposing  principles  of  attraction  and  heat.  When 
the  distance  between  two  molecules  is  changed,  they  act  on  each  other  with  a  force 

whose  direction  is  in  the  line  joining  the  centres  of  the  molecules,  and  whose 

magnitude  is  equal  to  the  change  of  distance  multiplied  into  a  function  of  the 
distance  which  vanishes  when  that  distance  becomes  sensible. 

The  equations  of  elasticity  deduced  from  this  assumption  contain  only  one 
coefficient,  which  varies  with  the  nature  of  the  substance. 

The  insufficiency  of  one  coefficient  may  be  proved  from  the  existence  of 
bodies  of  different  degrees  of  solidity. 

No  effort  is  required  to  retain  a  liquid  in  any  form,  if  its  volume  remain 
unchanged;  but  when  the  form  of  a  solid  is  changed,  a  force  is  called  into 

action  which  tends  to  restore  its  former  figure ;    and  this  constitutes  the  differ- 
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ence  between  elastic  solids  and  fluids.  Both  tend  to  recover  their  vohirne,  but 

fluids  do  not  tend  to  recover  their  shape. 

Now,  since  there  are  in  nature  bodies  which  are  in  every  intermediate  state 

from  perfect  soHdity  to  perfect  liquidity,  these  two  elastic  powers  cannot  exist 

in  every  body  in  the  same  proportion,  and  therefore  all  theories  which  assign  to 
them  an  invariable  ratio  must  be  erroneous. 

I  have  therefore  substituted  for  the  assumption  of  Navier  the  following 
axioms  as  the  results  of  experiments. 

If  three  pressures  in  three  rectangular  axes  be  applied  at  a  point  in  an 

elastic  solid, — 

1.  TTie  sum  of  the  three  pressures  is  proportional  to  the  sum  of  the  com- 
pressions ichich  they  produce. 

2.  The  difference  between  two  of  the  pressures  is  propo7'tional  to  the  differ- 
ence of  the  compressions  which  they  produce. 

The  equations  deduced  from  these  axioms  contain  two  coefficients,  and  differ 

from  those  of  Navier  only  in  not  assuming  any  invariable  ratio  between  the 

cubical  and  linear  elasticity.  They  are  the  same  as  those  obtained  by  Professor 

Stokes  from  his  equations  of  fluid  motion,  and  they  agree  with  all  the  laws  of 

elasticity  which  have  been  deduced  from  experiments. 

In  this  paper  pressures  are  expressed  by  the  number  of  units  of  weight  to 

the  unit  of  surface ;  if  in  English  measure,  in  pounds  to  the  square  inch,  or 

in  atmospheres  of  15  pounds  to  the  square  inch. 

Compression  is  the  proportional  change  of  any  dimension  of  the  solid  caused 

by  pressure,  and  is  expressed  by  the  quotient  of  the  change  of  dimension  divided 

by  the  dimension  compressed'". 
Pressure  will  be  understood  to  include  tension,  and  compression  dilatation ; 

pressure  and  compression  being  reckoned  positive. 

Elasticity  is  the  force  which  opposes  pressure,  and  the  equations  of  elasticity 

are  those  which  express  the  relation  of  pressure  to  compression  f. 

Of  those  who  have  treated  of  elastic  solids,  some  have  confined  themselves 

to   the   investigation   of  the   laws   of  the  bending  and  twisting  of  rods,  without 

*  The  laws  of  pressure  and  compression  may  be  found  in  the  Memoir  of  Lam6  and  Clapeyrou.     St^t- 
note  A. 

t  See  note  B. 
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considering  the  relation  of  the  coefficients  which  occur  in  these  two  cases; 
while  others  have  treated  of  the  general  problem  of  a  solid  body  exposed  to 
any  forces. 

The  investigations  of  Leibnitz,  Bernoulli,  Euler,  Varignon,  Young,  La  Hire, 
and  Lagrange,  are  confined  to  the  equilibrium  of  bent  rods;  but  those  of 
Navier,  Poisson,  Lam^  and  Clapeyron,  Cauchy,  Stokes,  and  Wertheim,  are 

principally  directed  to  the  formation  and  application  of  the  general  equations. 

The  investigations  of  Navier  are  contained  in  the  seventh  volume  of  the 

Memoirs  of  the  Institute,  page  373;  and  in  the  AnnoUes  de  Chimie  et  de 

Physique,  2^  Sdrie,  xv.  264,  and  xxxviii.  435 ;  L'AppUcati(m  de  la  Micanique, Tom.  I. 

Those  of  Poisson  in  Mem.  de  I'lnstitut,  vm.  429 ;  Annales  de  Chimie,  2" 
S^rie,  XXXVI,  334 ;  xxxvii.  337 ;  xxxvtil  338 ;  xlu.  Journal  de  VEcole 

Polytechnique,  cahier  xx.,  with  an  abstract  in  Annales  de   Chimie  for  1829. 

The  memoir  of  MM.  Lam^  and  Clapeyron  is  contained  in  Crelle's  Mathe- 
matical Journal,  Vol.  vii. ;  and  some  observations  on  elasticity  are  to  be  found 

in  Lamp's   Cours  de  Physique, 

M.  Cauchy's  investigations  are  contained  in  his  Exercices  d! Analyse,  Vol.  in. 
p.    180,  published  in  1828. 

Instead  of  supposing  each  pressure  proportional  to  the  linear  compression 

which  it  produces,  he  supposes  it  to  consist  of  two  parts,  one  of  which  is  pro- 
portional to  the  linear  compression  in  the  direction  of  the  pressure,  while  the 

other  is  proportional  to  the  diminution  of  volume.  As  this  hypothesis  admits 
two  coefficients,  it  differs  from  that  of  this  paper  only  in  the  values  of  the 

coefficients  selected.     They  are   denoted   by  K  and  h,   and   K^fi  —  ̂ m,  k  =  m. 

The  theory  of  Professor  Stokes  is  contained  in  Vol.  vin.  Part  3,  of  the 

Cambridge   Philosophical   Transactions,   and   was   read   April    14,    1845. 

He  states  his  general  principles  thus : — "  The  capability  which  solids  possess 
of  being  put  into  a  state  of  isochronous  vibration,  shews  that  the  pressures 
called  into  action  by  small  displacements  depend  on  homogeneous  functions  of 

those  displacements  of  one  dimension.  I  shall  suppose,  moreover,  according  to 
the  general  principle  of  the  superposition  of  small  quantities,  that  the  pressures 

due  to  different  displacements  are  superimposed,  and,  consequently,  that  the 

pressures  are   linear  functions  of  the   displacements." 
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Having  assumed  the  proportionality  of  pressure  to  compression,  he  proceeds 

to  define  his  coefficients.— "Let  -^8  be  the  pressures  corresponding  to  a  uniform 

linear  dilatation  8  when  the  solid  is  in  equilibrium,  and  suppose  that  it  becomes 

mA8,  in  consequence  of  the  heat  developed  when  the  solid  is  in  a  state  of  rapid 

vibration.  Suppose,  also,  that  a  displacement  of  shifting  parallel  to  the  plane 

xy,  for  which  8x  =  kx,  Sy=  -  hj,  and  hz  =  0,  calls  into  action  a  pressure  -  Bk 

on  a  plane  perpendicular  to  the  axis  of  x,  and  a  pressure  Bk  on  a  plane 

perpendicular  to  the  axis  of  y;  the  pressure  on  these  planes  being  equal  and 

of  contrary  signs;  that  on  a  plane  perpendicular  to  z  being  zero,  and  the  tan- 

gential   forces    on    those    planes   being   zero."      The   coefficients   A    and   B,   thus 

defined,  when  expressed  as  in  this  paper,  are  ̂   =  3/x,,  B  =  -. 

Professor  Stokes  does  not  enter  into  the  solution  of  his  equations,  but  gives 

their  results  in  some  particular  cases. 

1.  A  body  exposed  to  a  uniform  pressure  on  its  whole  surface. 

2.  A  rod  extended  in  the  direction  of  its  length. 

3.  A  cylinder  twisted  by  a  statical  couple. 

He  then  points  out  the  method  of  finding  A  and  B  from  the  last  two  cases. 

While  explaining  why  the  equations  of  motion  of  the  luminiferous  ether  are 

the  same  as  those  of  incompressible  elastic  solids,  he  has  mentioned  the  property 

of  jylasticity  or  the  tendency  which  a  constrained  body  has  to  relieve  itself 

from  a  state  of  constraint,  by  its  molecules  assuming  new  positions  of  equi- 

librium. This  property  is  opposed  to  Hnear  elasticity  ;  and  these  two  properties 
exist  in  all  bodies,  but  in  variable  ratio. 

M.  Wertheim,  in  Annales  de  Chimie,  3«  Sdrie,  xxiii.,  has  given  the  resul
ts 

of  some  experiments  on  caoutchouc,  from  which  he  finds  that  K=k,  or  fi  =  ̂ m; 

and  concludes  that  k  =  K  in  all  substances.  In  his  equations,  fi  is  therefore 

made  equal  to  f  m. 

The  accounts  of  experimental  researches  on  the  values  of  the  coefficients 

are  so  numerous  that  I  can  mention  only  a  few. 

Canton,  Perkins,  (Ersted.  Aime,  CoUadon  and  Sturm,  and  Regnault,  have 

determined  the  cubical  compressibilities  of  substances;  Coulomb,  Duleau,  and 

Giulio,  have  calculated  the  linear  elasticity  from  the  torsion  of  wires;  and  a 

great  many  observations  have  been  made  on  the  elongation  and  bending  of  beams. 

VOL.  I.  ^ 
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I  have  found  no  account  of  any  experiments  on  the  relation  between  the 

doubly  refracting  power  communicated  to  glass  and  other  elastic  solids  by  com- 

pression, and  the  pressure  which  produces  it^^" ;  but  the  phenomena  of  bent  glass 
seem  to  prove,  that,  in  homogeneous  singly-refracting  substances  exposed  to 
pressures,  the  principal  axes  of  pressure  coincide  with  the  principal  axes  of 
double  refraction ;  and  that  the  diflference  of  pressures  in  any  two  axes  is 

proportional  to  the  difference  of  the  velocities  of  the  oppositely  polarised  rays 
whose  directions  are  parallel  to  the  third  axis.  On  this  principle  I  have 

calculated  the  phenomena  seen  by  polarised  light  in  the  cases  where  the  solid 

is  bounded  by  parallel  planes. 

In  the  following  pages  I  have  endeavoured  to  apply  a  theory  identical 
with  that  of  Stokes  to  the  solution  of  problems  which  have  been  selected  on 

account  of  the  possibility  of  fulfilling  the  conditions.  I  have  not  attempted  to 

extend  the  theory  to  the  case  of  imperfectly  elastic  bodies,  or  to  the  laws  of 

permanent  bending  and  breaking.  The  solids  here  considered  are  supposed  not 

to  be  compressed  beyond  the  limits  of  perfect  elasticity. 

The  equations  employed  in  the  transformation  of  co-ordinates  may  be  found 

in  Gregory's  Solid  Geometry. 
I  have  denoted  the  displacements  by  Zx,  By,  Bz.  They  are  generally  denoted 

by  a,  /8,  y ;  but  as  I  had  employed  these  letters  to  denote  the  principal  axes 

at  any  point,  and  as  this  had  been  done  throughout  the  paper,  I  did  not  alter 
a  notation  which  to  me  appears  natural  and  intelligible. 

The  laws  of  elasticity  express  the  relation  between  the  changes  of  the 
dimensions  of  a  body  and  the  forces  which  produce  them. 

These  forces  are  called  Pressures,  and  their  effects  Compressions.  Pressures 

are  estimated  in  pounds  on  the  square  inch,  and  compressions  in  fractions  of  the 
dimensions  compressed. 

Let  the  position  of  material  points  in  space  be  expressed  by  their  co-ordinates 
X,  y,  and  z,  then  any  change  in  a  system  of  such  points  is  expressed  by  giving 

to   these   co-ordinates  the  variations  Bx,  By,  Bz,  these  variations  being  functions  of 

X,  y,  2. 

*  See  note  C. 
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The  quantities  Sx,  Sy,  8z,  represent  the  absolute  motion  of  each  point  in 

the  directions  of  the  three  co-ordinates ;  but  as  compression  depends  not  on 

absolute,  but  on  relative  displacement,  we  have  to  consider  only  the  nine 

quantities — 
dSx dSx dhx 

dx  ' 

dy'
 

dz' 

dSy 

dx  
' 

dhy 

dy' 

dSij 

dz  ' 

dSz 

dx' 

dhz 

dy-
 

dBz 

dz  ' 

Since  the  number  of  these  quantities  is  nine,  if  nine  other  independent 

quantities  of  the  same  kind  can  be  found,  the  one  set  may  be  found  in  terms 

of  the  other.     The  quantities  which  we  shall  assume  for  this  purpose  are— 

1.  Three   compressions,    — ,   —■ ,   — ,    in    the    directions   of   three   principal a       Id       y 

axes  a,  yS,  y. 

2.  The  nine  direction-codnes  of  these  axes,  with  the  six  connecting  equa- 

tions, leaving  three  independent  quantities.     (See  Gregory's  Solid  Geometry.) 
3.  The  small  angles  of  rotation  of  this  system  of  axes  about  the  axes  of 

x,  y,  z. 

The  cosines  of  the  angles  which  the  axes  of  x,  y,  z  make  with  those  of 

a,  ̂ ,  y  are 

cos(aOa-)=aj,  cos  {^Ox)  =  \,  co%(yQ)x)  =  c,, 

cos  (aOy)  =  tto,  _cos  {fiOy)  =  h„,  cos  (yO^/)  =  c., 

cos  (aOz)  =a3,    cos  (/SOz)  =63,    cos  {yOz)  =  c,. 

These  direction-cosines  are  connected  by  the  six  equations, 

a^  +  h{  +  Ci'  =  1 ,  «i«s  +  ̂h  +  CjC,  =  0, 

a./  -I-  h^  +  c,'  =  1 ,  a^a^  +  h.h^  +  cx^  =  0, 

a;  +  63'  +  Gj'  =  1 ,  a/t,  +  bj),  +  c^c,  =  0. 

The  rotation  of  the  system  of  axes  a,  13,  y,  round  the  axis  of 

x,  from  y  to  z,    =B0^, 

y,  from  z  to  x,  =S^j, 

z,  from  x  to  y,  =^0/, 
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By    resolving    the    displacements    8a,   h/S,  By,  B6„  B9.„  Z6„   in   the  directions 

of  the  axes  x,  y,  z,  the  displacements  in  these  axes  are  found  to  be 

hx  =  a,8a  +  h,Bp  +  c3y  -Be^  +  Bd,y, 

By  =  aM  +  h,Bl3  -f  c,By  -  Bd,x  +  Bd.z, 

Bz  =  a,Ba  +  hM  +  CsBy  -  BO^  +  Bd,x. 
Sa      .^     ̂ Si8 

But 
B^^rf,    and  8y  =  y^, 

and  Q.  =  a^x  +  a^  +  a.^,    /3  =  b,x  +  h^  +  h.^,    and    y  =  c,x  +  c,y -h  c^z. 

Substituting  these  values  of  Sa,  Sy8,  and  By  in  the  expressions  for  Bx,  By, 

Bz,  and  differentiating  with  respect  to  x,  y,  and  z,  in  each  equation,  we  obtain 

the  equations 
dBx     Ba,    ,.  8/8,2  ,  ̂y 

dy      a  ^  y 

dBz  _  Ba 

dz 
a  p  y 

(1)- 
dBx      Ba  B^  T  J       By         ,5s/, 

dy       a     '        ̂   y 
a 

dBx      Ba 

dz        a 

Ba 

BI3 
J'
 

8^ 

dz        a  p  y 

dBy     Ba  BB  T  ̂      By 
dx       a  p  y 

Be, 

c.f^  +  Bdi 

Be, 

-J—  =  —  ctjCti  +  -^  6361  +  -^  C3C1  +  8^2 
dZz 
dx 

dBz 

8^ 

a 

Sa 

8^ 

S/8 

r 

Be, 

Equations  of 
compression. 

{2). 

Equations  of  the  equilibnum  of  an  element  of  the  solid. 

The  forces  which  may  act  on  a  particle  of  the  solid  are : — 

1.  Three  attractions  in  the  direction  of  the  axes,  represented  by  X,   Y,  Z. 

2.  Six  pressures  on  the  six  faces. 
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3.     Two  tangential  actions  on  each  face. 

Let  the  six  faces   of  the  small  parallelopiped  be  denoted  by  x^,  3/,,  z„  x^  y„ 

and  z,,  then  the  forces  acting  on  x^  are : — 

1.  A  normal  pressure  jp,  acting  in  the  direction  of  x  on  the  area  dydz, 

2.  A   tangential   force   g,  acting  in  the  direction  of  y  on  the  same  area. 

3.  A   tangential  force   q^  acting  in   the   direction   of   z   on   the   same   area, 
and  so  on  for  the  other  five  faces,  thus : — 

Forces  which  act  in  the  direction  of  the  axes  of 

a;  2/  z 

On  the  face    a:, —  'p^dydz -  q^dydz -q.'dydz 

        ^. 
{P^'r  J^dx)dydz (^3 + 7^  ̂̂ )  c?yc?x (q.'+-^^dx)dydz 

        2/1 —  q^dzdx —p^dzdx —  q.dzdx 

      y-x 

{q\  +  ̂dy)dzdx 
{p.+^dy)dzdx (q,  +  ̂dy)dzdx             Zi 

—  q^dxdy 
—  q^dxdy —p^dxdy 

                ^2 fe+  -4^dz)dxdy 
(q^+^dz)dxdy (p.  +  ̂dz)dxdy 

Attractions, 
pXdxdydz p  Ydxdydz 

pZdxdydz 

Taking  the  moments  of  these  forces  round  the  axes  of  the  particle,  we  find 

?i'  =  ?i,    q^=q.^   qz=qz', 

and   then  equating  the  forces  in  the   directions   of  the  three   axes,   and  dividing 
by  dx,  dy,  dz,  we  find  the  equations  of  pressures, 

dy      dz      dx     ̂  

dz      dx      dy      '^ 

Equations  of  Pressures. 

(3). 
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The  resistance  which  the  sohd  opposes  to  these  pressures  is  called  Elasticity, 

and  is  of  two  kinds,  for  it  opposes  either  change  of  volume  or  change  of  Jigure. 
These  two  kinds  of  elasticity  have  no  necessary  connection,  for  they  are  possessed 

in  very  different  ratios  by  different  substances.  Thus  jelly  has  a  cubical  elas- 
ticity little  different  from  that  of  water,  and  a  linear  elasticity  as  small  as  we 

please ;  while  cork,  whose  cubical  elasticity  is  very  small,  has  a  much  greater 
Imear  elasticity  than  jelly. 

Hooke  discovered  that  the  elastic  forces  are  proportional  to  the  changes 

that  excite  them,  or  as  he  expressed  it,  "  Ut  tensio  sic  vLs." 

To  fix  our  ideas,  let  us  suppose  the  compressed  body  to  be  a  parallelepiped, 

and  let  pressures  Pi,  Pj,  P3  act  on  its  faces  in  the  direction  of  the  axes 

a>   A  y,   which  will   become    the    principal   axes   of    compression,    and   the    com- 

pressions will  be 
So.      8^     Sy 
a'    ̂ '     y 

The  fundamental  assumption  from  which  the  following  equations  are  deduced 

is  an  extension  of  Hooke's  law,  and  consists  of  two  parts. 

I.  The  sum  of  the  compressions  is  proportional  to  the  sum  of  the  pressures. 

II.  The   difference   of  the   compressions   is   proportional   to  the   difference   of 
the  pressures. 

These  laws  are  expressed  by  the  following  equations 

I.    (P.  +  P,  +  P.)  =  3,(^  +  f +  ̂  

(4). 

II. 

(P,-P,)  =  m 

(P._p.)  =  „,g_^ 

(P.-P,)  =  m 

rv        ̂ rts  T    Equations  of  Elasticity. 

h 
7 

By      Ba 

(5). 

The  quantity   fj.   is  the   coefiicient  of  cubical  elasticity,  and  m  that  of  linear 
elasticity. 
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By   solving  these   equations,   the   values  of  the  pressures  P„  P,,  P„  and  the 
8a      8^     Sy  ,      r       J 

compressions  — '    ~S '  ^^7  ̂ ^  found. 

a       \9/x      3m/  ̂   ^      m 

!  =  (!_    M(p.  +  P,  +  p.)  +  lp, j3       \9/x      3  m/  ̂    *  ^      ?7i     ' 

?r  =  (_L_  i\(P_+P_+P_)  +  ip_ y       \9/z      3m/  ̂   ^      m 

(6). 

(7). 

From  these   values   of  the  pressures   in   the   axes   a,  )8,  y,  may   be   obtained.. 

the  equations  for  the  axes  x,  y,  z,  by  resolutions  of  pressures  and  compressions*. 

For 

and q  =  aaP^  +  hhP,  +  ccP, ; 

,       .    .  IdZx  ,  d%y  ,  d8z\  .      d8x' 

,       .    V  IdZx  .  d8y  ,  d8z\        dBy 

,       ,    ,  fdSx  ,  d8y  ,  rfSj\  ,      dSz 

m  /c?Sz      c?Sx 

(8)- 

2  Vo?a;      c?2 

.(9). 

See  the  Memoir  of  Lame  and  Clapeyron,  and  note  A. 
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d$X       /I  1  \  ,       ,         ,       N   ,     1 

(10). 

dy         *     ax        '    m^ 

dz  dy  m  ̂ 

d^ 

dx 
dz  m^ 

(11). 

By   substituting  in  Equations  (3)  the   values   of  the   forces  given  in   Equa- 
tions (8)  and  (9),  they  become 

(12). 

These   are  the   general   equations   of  elasticity,    and   are   identical  with  those 

of  M.    Cauchy,   in   his   Exercices  d' Analyse,  Vol.  ni.,  p.   180,   published   in    1828, 

where  h  stands  for  m,   and   K  for  ft  -  o"  >  and  those  of  Mr  Stokes,  given  in  the 

Cambridge   Philosophical    Transactions,    Vol.    viii.,   part   3,   and  numbered   (30); 

in  his  equations  ̂   =  3/x,  B  =  —  . 

If   the    temperature   is    variable  from   one  part   to  another    of    the    elastic 

soHd,  the  compressions  -y- ,    -r^,   -J^ ,    at   any   point   will   be  diminished  by  a 

quantity   proportional  to  the  temperature  at  that  point.     This  prmciple  is  applied 
in  Cases  X.  and  XI.     Equations  (10)  then  become 
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dy 

^  =  fe  -  3mj  (P^-^P^+P^)  +  '^^^^P^ 

(13). 

CfV  being  the  linear  expansion  for  the  temperature  v. 

Having  found  the  general  equations  of  the  equilibrium  of  elastic  solids,  I 

proceed  to  work  some  examples  of  their  application,  which  afford  the  means  of 

determining  the  coefficients  /t,  m,  and  o),  and  of  calculating  the  stiffness  of 
solid  figures.  I  begin  with  those  cases  in  which  the  elastic  soHd  is  a  hollow 

cylinder  exposed  to  given  forces  on  the  two  concentric  cylindric  surfaces,  and 
the  two  parallel  terminating  planes. 

In  these   cases   the   co-ordinates   x,  y,   z  are   replaced   by   the   co-ordinates 

x  =  x,  measured  along  the  axis  of  the  cylinder. 

2/  =  r,  the  radius  of  any  point,  or  the  distance  from  the  axis. 

z  —  rd,  the  arc  of  a  circle  measured  from  a  fixed   plane   passing 
through  the  axis. 

Px  =  o,  are  the  compression  and  pressure  in  the  direction   of  the 

axis  at  any  point. 

-^  =  -J— ,  Pi  =p,  are  the  compression  and  pressure  in  the  direction  of  the 
radius. 

dBz      dhrd      Br  .  .  _  .      ,      ,.       .         -    1 

~dz~'db¥~l^'  JP8  =  ?,  are  the  compression  and  pressure  m  the  direction  of  the 
tangent. 

Equations  (9)  become,  when  expressed  in  terms  of  these  co-ordinates — 
m    doO 

dZx 
dx 

dSx 
dx 

m    dB0 

m    dSx 

dr 

*=2 

.(14). 

The  length  of  the  cylinder  is  h,  and  the  two  radii  a,  and  a,  in  every 
VOL.  I.  G 
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Case  I. 

The  first  equation  is  applicable  to  the  case  of  a  hollow  cylinder,  of  which 
the  outer  surface  is  fixed,  while  the  inner  surface  is  made  to  turn  through 

a  small  angle  Bd,  by  a  couple  whose  moment  is  M. 

The  twisting  force  M  is  resisted  only  by  the  elasticity  of  the  solid,  and 
therefore  the  whole  resistance,  in  every  concentric  cylindric  surface,  must  be  equal 
to  M. 

The  resistance  at  any  point,  multiplied  into  the  radius  at  which  it  acts,  is 
expressed  by 

m   „  dhd 

Therefore  for  the  whole  cylindric  surface 

ar 

Whence  8,=_^^  (1,_1.) , 

^^  "'  =  2^&-i)   ('«>■ 

The  optical  effect  of  the  pressure  of  any  point  is  expressed  by 

I=<oq,b  =  <o.^^   (15). 

Therefore,  if  the  solid  be  viewed  by  polarized  light  (transmitted  parallel  to 

the  axis),  the  difference  of  retardation  of  the  oppositely  polarized  rays  at  any 

point  in  the  solid  will  be  inversely  proportional  to  the  square  of  the  distance  fi-om 
the  axis  of  the  cylinder,  and  the  planes  of  polarization  of  these  lays  will  be 

inclined  45"  to  the  radius  at  that  point. 

The  general  appearance  is  therefore  a  system  of  coloured  rings  arranged 

oppositely  to  the  rings  in  uniaxal  crystals,  the  tints  ascending  in  the  scale  as 

they  approach  the  centre,  and  the  distance  between  the  rings  decreasing  towards 

the  centre.  The  whole  system  is  crossed  by  two  dark  bands  inclined  45*  to  the 
plane  of  primitive  polarization,  when  the  plane  of  the  analysing  plate  is  perpen- 

dicular to  that  of  the  first  polarizing  plate. 
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A  jelly  of  isinglass  poured  when  hot  between  two  concentric  cylinders  forms, 

when  cold,  a  convenient  solid  for  this  experiment ;  and  the  diameters  of  the  rings 

may  be  varied  at  pleasure  by  changing  the  force  of  torsion  appUed  to  the  interior 

cylinder. 

By  continuing  the  force  of  torsion  while  the  jeUy  is  allowed  to  dry,  a  hard 

plate  of  isinglass  is  obtained,  which  still  acts  in  the  same  way  on  polarized  light, 
even  when  the  force  of  torsion  is  removed. 

It  seems  that  this  action  cannot  be  accounted  for  by  supposing  the  interior 

parts  kept  in  a  state  of  constraint  by  the  exterior  parts,  as  in,  unannealed  and 

heated  gla^s ;  for  the  optical  properties  of  the  plate  of  isinglass  are  such  as 

would  indicate  a  strain  preserving  in  every  part  of  the  plate  the  direction  of 

the  original  strain,  so  that  the  strain  on  one  part  of  the  plate  cannot  be  main- 
tained by  an  opposite  strain  on  another  part. 

Two  other  uncrystallised  substances  have  the  power  of  retaining  the  polariz- 

ing structure  developed  by  compression.  The  first  is  a  mixture  of  wax  and  resin 

pressed  into  a  thin  plate  between  two  plates  of  glass,  as  described  by  Sir  David 

Brewster,  in  the  Philosophical  TransoLctions  for  1815  and  1830. 

When  a  compressed  plate  of  this  substance  is  examined  with  polarized  light, 

it  is  observed  to  have  no  action  on  light  at  a  perpendicular  incidence ;  but  when 

inclined,  it  shews  the  segments  of  coloured  rings.  This  property  does  not  belong 

to  the  plate  as  a  whole,  but  is  possessed  by  every  part  of  it.  It  is  therefore 

similar  to  a  plate  cut  from  a  uniaxal  crystal  perpendicular  to  the  axis. 

I  find  that  its  action  on  light  is  like  that  of  a  jpositive  crystal,  while  that 

of  a  plate  of  isinglass  similarly  treated  would  be  negative. 

The  other  substance  which  possesses  similar  properties  is  gutta  percha.  This 

substance  in  its  ordinary  state,  when  cold,  is  not  transparent  even  in  thin  films; 

but  if  a  thin  film  be  drawn  out  gradually,  it  may  be  extended  to  more  than 

double  its  length.  It  then  possesses  a  powerful  double  refraction,  which  it 

retains  so  strongly  that  it  has  been  used  for  polarizing  light""'.  As  one  of  its 
refractive  indices  is  nearly  the  same  as  that  of  Canada  balsam,  while  the  other 

is  very  different,  the  common  surface  of  the  gutta  percha  and  Canada  balsam 

will  transmit  one  set  of  rays  much  more  readdy  than  the  other,  so  that  a  film 

of  extended  gutta  percha  placed  between  two  layers   of  Canada   balsam  acts  like 

*  By  Dr  Wright,  I  believe. 
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a  plate  of  nitre  treated  in  the  same  way.  That  these  films  are  in  a  state  of 

constraint  may  be  proved  by  heating  them  slightly,  when  they  recover  their 
original  dimensions. 

As  all  these  permanently  compressed  substances  have  passed  their  limit  of 
perfect  elasticity,  they  do  not  belong  to  the  class  of  elastic  solids  treated  of  in 

this  paper ;  and  as  I  cannot  explain  the  method  by  which  an  imcrystallised  body 

maintains  itself  in  a  state  of  constraint,  I  go  on  to  the  next  case  of  twisting, 

which  has  more  practical  importance  than  any  other.  This  is  the  case  of  a 

cylinder  fixed  at  one  end,  and  twisted  at  the  other  by  a  couple  whose  moment 
is  M. 

Case  II. 

In  this  case  let  hB  be  the  angle  of  torsion  at  any  point,  then  the  resistance 

to  torsion  in  any  circular  section  of  the  cylinder  is  equal  to  the  twisting  force  M, 

The  resistance  at  any  point  in  the  circular  section  is  given  by  the  second 
Equation  of  (14). 

?2  =  1^^ 

dx  '
 

This  force  acts  at  the  distance  r  from  the  axis ;  therefore  its  resistance  to  torsion 

will  be  q.r,  and  the  resistance  in  a  circular  annulus  will  be 

q^r^Ttrdr  =  mirr'  -r-  dr 

and  the  whole  resistance  for  the  hollow  cylinder  will  be  expressed  by 

„,    mn  dS6 ,    ̂        ,.  /,^v 

720  M ^(-1-]   (17). 

In  this  equation,  m  is  the  coefl&cient  of  linear  elasticity;  a^  and  a^  are  the 
radii  of  the  exterior  and  interior  surfaces  of  the  hollow  cyUnder  in  inches ;  M  is 

the  moment  of  torsion  produced  by  a  weight  acting  on  a  lever,  and  is  expressed 
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bj  the  product  of  the  number  of  pounds  in  the  weight  into  the  number  of  inches 
in  the  lever;  b  is  the  distance  of  two  points  on  the  cylinder  whose  angular 

motion  is  measured  by  means  of  indices,  or  more  accurately  by  small  mirrors 

attached  to  the  cylinder ;  n  is  the  difference  of  the  angle  of  rotation  of  the  two 
indices  in  degrees. 

This  is  the  most  accurate  method  for  the  determination  of  m  independently 

of  /x,  and  it  seems  to  answer  best  with  thick  cylinders  which  cannot  be  used 
with  the  balance  of  torsion,  as  the  oscillations  are  too  short,  and  produce  a 

vibration  of  the  whole  apparatus. 

Case  III. 

A  hollow  cylinder  exposed  to  normal  pressures  only.  When  the  pressures 

parallel  to  the  axis,  radius,  and  tangent  are  substituted  for  p^,  p^,  and  pt, 
Equations  (10)  become 

S  =  (i-34)(^+^-^^)  +  ̂   (^«)- 

^^t^(±-±]io+p  +  q)  +  :^q   (20). 

By  multiplying  Equation   (20)  by  r,   differentiating  with  respect  to  r,  and 

comparing  this  value  of  —j—  with  that  of  Equation  (19), 

p-q  _(J__  _1\  /^  .  ̂  .  ̂\  _  i  ̂  
rm  "  \9/x     3m/  \dr     dr     drj     m  dr ' 

The  equation  of  the  equilibrium  of  an  element  of  the  solid  is  obtained  by 
considering  the  forces  which  act  on  it  in  the  direction  of  the  radius.  By 

equating  the  forces  which  press  it  outwards  with  those  pressing  it  rnwarde,  we 
find  the  equation  of  the  equiHbrium  of  the  element, 

ir£  =  4   (21). 
r         dr 
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By  comparing  this  equation  witli  the  last,  we  find 

\9fi     Zmj  dr     \9/i  ̂  3m/  \dr  ̂   drj 
Integrating, 

Since  o,  the  longitudinal  pressure,  is  supposed   constant,  we  may  assume 

c  -(^-^]o 
'      \9u,      3m/        .     ,    . 

c.  =   12  =(^  +  g)- 

9/x,      3  m 

Therefore  q—p  =  c^  —  2p,  therefore  by  (21), 

a  linear  equation,  which  gives 
1  ̂ c, 

^  =  ̂ 3^  +  2- 

The  coefficients  Cj  and  Cj  must  be  found  from  the  conditions  of  the  surface 

of  the  soHd.  If  the  pressure  on  the  exterior  cylindric  surface  whose  radius  is  a, 

be  denoted  by  A,,  and  that  on  the  interior  surface  whose  radius  is  a^  by  A,, 

then  p  =  h^  when  r  =  ai 

and  p  =  h.j  when  r  =  a^ 

and  the  general  value  of  p  is 

_a^h^  —  a^\     a^a^  h^  —  h^  /22\ 

^"     a,' -a,'  ̂   oT^^    ^     ̂' 

2-i'=2i^  ̂ 73^-  ''y  (21). 

*=  «.'-«.'  +^^57::^'   (^^^■ 

/=5<.(^-2)=-26<.^"A^.   (24). 
This  last  equation  gives  the  optical  eflfect  of  the  pressure  at  any  point.     The 

law  of  the  magnitude  of  this  quantity  is  the  inverse  square  of  the  radius,  as  in 
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Case  I.  ;  but  the  direction  of  the  principal  axes  ia  different,  as  in  this  case  they 

are  parallel  and  perpendicular  to  the  radius.  The  dark  bands  seen  by  polarized 

Ught  wiU  therefore  be  parallel  and  perpendicular  to  the  plane  of  polarisation,  in- 

stead of  being  inclined  at  an  angle  of  45",  as  in  Case  I. 

By  substituting  in  Equations  (18)  and  (20),  the  values  of  p  and  q  given   in 

(22)  and  (23),  we  find  that  when  r  =  a,. 

hx      (l\(      ̂ aX-ct'h-X  .     2   /      a,%-a,%\   ] 
X       \9/x 

=  o(^  +  ~]  +  2{Ka,^-Ka,^) 
1/1         1 .(25). 

,9/x      3m/  '     ̂   '  '       '  'Ui,'-a,'\9fj,     3mJ 

r       9/x  \  a/  —  a/  /      3? When   r  =  a.,   -  ̂   ̂   fo4-2  ̂ 4-^)  +  ̂ ^^  (  -        ̂ ._^.      '   '-o 

(26). 
~     VSft      3my  "^   '  a;  -  a,'  \  9/x  ̂      3m     /      ̂  cv  -  a,'  1,9/x  "^  3m/  J 

From  these  equations  it  appears  that  the  longitudinal  compression  of  cylin- 

dric  tubes  is  proportional  to  the  longitudinal  pressure  referred  to  unit  of  surface 

when  the  lateral  pressures  are  constant,  so  that  for  a  given  pressure  the  com- 
pression is  inversely  as  the  sectional  area  of  the  tube. 

These  equations  may  be  simplified  in  the  following  cases  : — 

1.  When  the  external  and  internal  pressures  are  equal,  or  h^  =  h^. 

2.  When  the  external  pressure  is  to  the  internal  pressure  as  the  square  of 

tlie  interior  diameter  is  to  that  of  the  exterior  diameter,   or  when  a^-h^  =  a^-h^. 

3.  When  the  cylinder  is  soHd,   or  when  a.  =  0. 

4.  When  the  solid  becomes  an  indefinitely  extended  plate  with  a  cylindric 

hole  in  it,   or  when  a^  becomes  infinite. 

5.  When  pressure  is  applied  only  at  the  plane  surfaces  of  the  solid  cylinder, 

and   the   cylindric   surface   is   prevented   from    expanding   by   being    inclosed   in   a 

strong  case,  or  when    —  =  0. 

6.  When  pressure  is  applied  to  the  cylindric  surface,  and  the  ends  are 

retained  at  an  invariable  distance,  or  when   —  =  0. X 



48 THE    EQUILIBRIUM    OF    ELASTIC    SOLIDS. 

1.     When  ̂ ji  =  A„  the  equations  of  compression  become 

\9fi'*"3mj"'"^  '\9ij.     3m 

(27). 
7  =  i('>+2^)  +  3i(^-<') 

When  hi  =  hi  =  o,  then 
Zx  _hr  _  \ 

X  ~  r  "  Sfi' 
The  compression  of  a  cylindrical  vessel  exposed  on  all  sides  to  the  same 

hydrostatic  pressure  is  therefore  independent  of  m,  and  it  may  be  shewn  that 

the  same  is  true  for  a  vessel  of  any  shape. 

2.     When  a,%  =  a^% 

^  \9yx  "^  3m/ 
Bx 
X 

7  =  |w  +  3l(3^--»)^ (28). 

In  this  case,  when  o  =  0,  the  compressions  are  independent  of  /x. 

3.     In  a  solid  cylinder,  aj  =  0, 

The  expressions  for  —  and  —  are  the  same  as  those  in  the  first  case,  when 

h^  —  hf 

When  the  lon^tudinal  pressure  o  vanishes, 

Bx 
X 

r       '  \9/x     3m/  ' 
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When  the  cylinder  ia  pressed  on  the  plane  sides  only, 

8x 

r         \9fi      dmj 

4.     When  the  solid  is  infinite,  or  when  a,  is  infinite, 

p  =  K--._a-(\-K) 

I=<o{p-q)=-^a.;{h,-h,) 

r       9/x  ̂   '      3m  ̂   ' 

(29). 

5.     When  8r  =  0  in  a  solid  cylinder, 

Zx  Zo 

6.    When 

X      2m  +  3/A 

So;  _       hr  _      2>h 
x~   *    r  ~  m  +  6iM 

.(30). 

Since  the  expression  for  the  efiect  of  a  longitudinal  strain  is 

Bx 

if  we  make 

VOL.  I. 

-=o(—  +  —) 

X         \9/i,      3m/ ' 

r,      9mu,       ̂ ,         8x        1 
E  =   ^  ,   then    —  =  o  ̂ ^ 

m  +  6/x  cc         E 

(31). 
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The  quantity  E  may  be  deduced  from  experiment  on  the  extension  of  wires 
or  rods  of  the  substance,  and  /x  is  given  in  terms  of  m  and  E  by  the  equation, 

„  =  _^!!L_   (32), 

^^^  ^  =  S   (^^)' 

P  being  the  extending  force,  h  the  length  of  the  rod,  s  the  sectional  area, 

and  Bx  the  elongation,  which  may  be  determined  by  the  deflection  of  a  wire, 

as  in  the  apparatus  of  S'  Gravesande,  or  by  direct  measurement. 

Case  IV. 

The  only  known  direct  method  of  finding  the  compressibihty  of  liquids  is 
that  employed  by  Canton,  (Ersted,  Perkins,  Aime,  &c. 

The  liquid  is  confined  in  a  vessel  with  a  narrow  neck,  then  pressure  is 

applied,  and  the  descent  of  the  liquid  in  the  tube  is  observed,  so  that  the 

difference  between  the  change  of  volume  of  liquid  and  the  change  of  internal 

capacity  of  the  vessel  may  be  determined. 

Now,  since  the  substance  of  which  the  vessel  is  formed  is  compressible,  a 

change  of  the  internal  capacity  is  possible.  If  the  pressure  be  applied  only  to 
the  contained  liquid,  it  is  evident  that  the  vessel  will  be  distended,  and  the 

compressibihty  of  the  liquid  will  appear  too  great.  The  pressure,  therefore,  is 

commonly  applied  externally  and  internally  at  the  same  time,  by  means  of  a 
hydrostatic  pressure  produced  by  water  compressed  either  in  a  strong  vessel  or 
in  the  depths  of  the  sea. 

As  it  does  not  necessarily  follow,  from  the  equality  of  the  external  and 

internal  pressures,  that  the  capacity  does  not  change,  the  equilibrium  of  the 
vessel  must  be  determined  theoretically.  (Ersted,  therefore,  obtained  from  Poisson 

his  solution  of  the  problem,  and  applied  it  to  the  case  of  a  vessel  of  lead. 
To  find  the  cubical  elasticity  of  lead,  he  appUed  the  theory  of  Poisson  to  the 

numerical  results  of  Tredgold.  As  the  compressibility  of  lead  thus  found  was 

greater  than  that  of  water,  (Ersted  expected  that  the  apparent  compressibility 
of  water  in  a  lead  vessel  would  be  negative.  On  making  the  experiment  the 

apparent   compressibihty   was  greater   in  lead  than  in  glass.     The  quantity  found 
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by   Tredgold   from    the  extension   of  rods  was  that  denoted  by  E,  and  the  value 
of  ft   deduced  from  E  alone   by   the  formulae  of   Poisson   cannot   be    true,  unless 

—  =  |-;   and   as   —    for  lead    is    probably   more   than   3,   the   calculated   compressi- 

bility is  much  too  great. 

A  similar  experiment  was  made  by  Professor  Forbes,  who  used  a  vessel  of 

caoutchouc.  As  in  this  case  the  apparent  compressibility  vanishes,  it  appears 
that  the  cubical  compressibihty  of  caoutchouc  is  equal  to  that  of  water. 

Some  who  reject  the  mathematical  theories  as  unsatisfactory,  have  conjec- 
tured that  if  the  sides  of  the  vessel  be  sufficiently  thin,  the  pressure  on  both 

sides  being  equal,  the  compressibility  of  the  vessel  will  not  affect  the  result. 

The  following  calculations  shew  that  the  apparent  compressibility  of  the  liquid 
depends  on  the  compressibility  of  the  vessel,  and  is  independent  of  the  thickness 
when  the  pressures  are  equal. 

A  hollow  sphere,  whose  external  and  internal  radii  are  a^  and  a,,  is  acted 

on  by  external  and  internal  normal  pressures  h^  and  K,  it  is  required  to  deter- 
mine the  equilibrium  of  the  elastic  solid. 

The  pressures  at  any  point  in  the  solid  are : — 

1.  A  pressure  p  in  the  direction  of  the  radius. 

2.  A  pressure  q  in  the  perpendicular  plane. 

These  pressures  depend  on  the  distance  from  the  centre,  which  is  denoted 
by  r. 

The  compressions  at  any  point  are  -.—  in  the  radial  direction,  and  —  in 

the  tangent  plane,  the  values  of  these  compressions  are  : — 

fr=[h-^^P^''i)*h^   ('")• 

T  =  fe-3fJ(^  +  2,)  +  l5   (35). 
Multiplying  the  last  equation  by  r,  differentiating  with  respect  to  r,  and 

equating  the  result  with  that  of  the  first  equation,  we  find 
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Since  the  forces  whicli   act   on   the   particle   in  the   direction   of  the   radius 

must  balance  one  another,  or 

2qdrde  +p  (rdey  =(^p  +  ̂d7^(r  +  dry  6, 

_r  dp 
therefore  ^""-^  =  2  37   ^^^^' 

Substituting  this  value  of  q  -p  in  the  preceding  equation,  and  reducing, 

therefore 
^  +  2^  =  0. 
dr        dr 

Integrating, 

But 

and  the  equation  becomes 

therefore 

p-\-2q  =  c,. 
r  dp  , 
dp 

dr 
+  3^-^-i  =  0, 

1      c. 

Since    p  =  h,    when    r  =  a.,,   and  p  =  K   when   r  =  a,,   the   value   of  p   at   any 
distance  is  found  to  be 

^~     a^-af         r'    a^-a,' 

9-    a,'-ai    "^^    7^    <-a/ 

(37). 
.(38). 

When  r  =  a„  -y  =  -^r:^^  -  +  t  ̂^  ̂ ^737^3  ̂  

~  a,'  -  a/  U       2»i/      a/  -  «/  \jx      2wi/  _ 

When  the  external  and  internal  pressures  are  equal 

.(39). 

h^  =  h.,=p  =  q,  and  -y- 

SV     K .(40), 
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the   change   of  internal  capacity  depends  entirely  on  the  cubical  elasticity  of  the 
vessel,  and  not  on  its  thickness  or  linear  elasticity. 

When   the   external   and  internal  pressures  are  inversely  as  the   cubes  of  the 
radii  of  the  surfaces  on  which  they  act, 

aX  =  a,%,  p  =  ̂   K  q=  -i^K 

when  r  =  r-  —      ̂      ' 

(41). 

V  2   ̂ ^ 

In   this  case  the  change  of  capacity  depends  on  the  linear  elasticity  alone. 

M.  Regnault,  in  his  researches  on  the  theory  of  the  steam  engine,  has 

given  an  account  of  the  experiments  which  he  made  in  order  to  determine 

with  accuracy  the  compressibility  of  mercury. 

He  considers  the  mathematical  formulae  very  uncertain,  because  the  theories 
of  molecular  forces  from  which  they  are  deduced  are  probably  far  from  the 

truth ;  and  even  were  the  equations  free  from  error,  there  would  be  much 

uncertainty  in  the  ordinary  method  by  measuring  the  elongation  of  a  rod  of 
the  substance,  for  it  is  diflScult  to  ensure  that  the  material  of  the  rod  is  the 

same  as  that  of  the  hollow  sphere. 

He  has,  .therefore,  availed  himself  of  the  results  of  M.  Lam6  for  a  hollow 

sphere  in  three  different  cases,  in  the  first  of  which  the  pressure  acts  on  the 
interior  and  exterior  surface  at  the  same  time,  while  in  the  other  two  cases 

the  pressure  is  applied  to  the  exterior  or  interior  surface  alone.  Equation  (39) 
becomes  in  these  cases, — 

1.  When  ̂ 1  = /ij, -^  =  —  and  the  compressibility  of  the  enclosed  liquid  being 

/x,,  and  the  apparent  diminution  of  volume  S'F, 

v-.£-;)   «■ 
2.  When  /i,  =  0, 
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3.     When  h,^0, 

8V_      h       K  ,  9^\ 

V      a^-a^  \ii      ̂   m     ̂   '         V2  J 

M.  Lamp's  equations  differ  from  these  only  in  assuming  that  fi,  =  |-m.  If 
this  assumption  be  correct,  then  the  coefficients  /u,,  m,  and  jMj,  may  be  found 

from  two  of  these  equations ;  but  since  one  of  these  equations  may  be  derived 
from  the  other  two,  the  three  coefficients  cannot  be  found  when  /u,  is  supposed 

independent  of  m.  In  Equations  (39),  the  quantities  which  may  be  varied  at 

pleasure  are  \  and  h^,  and  the  quantities  which  may  be  deduced  from  the 
apparent  compressions  are, 

'■=G+4)^°<^S-i)=^" 

therefore  some  independent  equation  between  these  quantities  must  be  found, 
and  this  cannot  be  done  by  means  of  the  sphere  alone;  some  other  experiment 

must  be  made  on  the  liquid,  or  on  another  portion  of  the  substance  of  which 
the  vessel  is  made. 

The  value  of  /x^,  the  elasticity  of  the  liquid,   may  be  previously  known. 

The  linear  elasticity  m  of  the  vessel  may  be  found  by  twisting  a  rod  of 
the  material  of  which  it  is  made ; 

Or,    the   value   of  E  may   be  found   by   the   elongation   or   bending   of    the 

We  have  here  five  quantities,  which  may  be  determined  by  experiment. 

on  sphere. 

,  audi: -i^ 2 
3m 

We  have  here fiv 

(43) 
1. 

(42) 2. 

(31) 3. 

(17) 4. 

5. 

+  —  )   by   external  pressure 

Cj  =  (   j    equal   pressures. 

m  by  twisting  the  rod. 

/Xj  the  elasticity  of  the  liquid. 
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When    the    elastic    sphere     is    solid,    the    internal    radius    a,    vanishes,    and 

fh=p  =  q,  and  -y  =  ̂ - 

When   the   case  becomes  that   of  a   spherical   cavity  in  an  infinite  solid,  the 

external  radius  a^  becomes  infinite,  and 

P=K-f{K-K) 

r- 

=  K+i 

^i'h-h,) 
r =  ̂̂ >i+^^(^>-^^) 

1 
m 

v  = 

■'-! 
(44). 

The  effect  of  pressure  on  the  surface  of  a  spherical  cavity  on  any  other  part 

of  an  elastic  solid  is  therefore  inversely  proportional  to  the  cube  of  its  distance 

from  the  centre  of  the  cavity. 

When  one  of  the  surfaces  of  an  elastic  hollow  sphere  has  its  radius  rendered 

invariable  by  the  support  of  an  incompressible  sphere,  whose  radius  is  Oj,   then 

—  =  0,    when  r  =  a^, 

therefore 2771 

q=h 

2a^m  +  3«//x 3a,V 

2a>i  +  3a//x 

r*    2a^m  +  3a//x 

IK 

W hen  r  =  a,,    j-y  —  lu  r-—.   ~—  ,- 
"    V       -2a>2  +  3a.//i, 

K^ 1 

r*    2a/m  +  3a//i (45). 

Case  V. 

On    the    equilibrium    of    an    elastic    beam    of    rectangular   section    uniformly 
bent. 

By   supposing   the   bent   beam   to   be  produced  till  it  returns  into  itself,  we 

may  treat  it  as  a  hollow  cylinder. 
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Let  a  rectangular  elastic  beam,  whose  length  is  2irc,  be  bent  into  a  circular 

form,  so  as  to  be  a  section  of  a  hollow  cylinder,  those  parts  of  the  beam  which 

lie  towards  the  centre  of  the  circle  will  be  longitudinally  compressed,  while  the 

opposite  parts  will  be  extended. 

The  expression   for  the  tangential  compression  is  therefore 

Br  _  r  —  c 
r  ~     c    ' 

r 
Sr 

Comparing  this  value  of  —  with  that  of  Equation  (20), 

V=(^-4)<''+-p+«)+^''' 
dr 

,,.       ,  /I         2\     ., 

ion 

and  by  (21),  q=p  +  r 

By   substituting  for  q  its  value,  and  dividing  by  r  (q-  +  ̂ )  •  the  equat: 
becomes 

dp     2m  +  3/x  j9  _  9?n/i.  —  {m  —  3/x)  o         9m/x     c 

dr       m  +  6fx  r~        (m  +  6fi)  r  (m  +  6/x)  r'  * 
a  linear  differential  equation,  which  gives 

^        ̂   m  —  3fir  2m  +  3/x 

Ci   may  be  found   by   assumiQg  that   when   r^a^,  p  =  \,   and   q  may   be   found 

from  p  by  equation   (21). 

As  the  expressions  thus  found  are  long  and  cumbrous,  it  is  better  to  use 

the  following  approximations  : — 

_/_9m^\  y   (     ) 

l^\llcl^  \   (48). 

In  these  expressions  a  is  half  the  depth  of  the  beam,  and  y  is  the  distance 

of  any  part  of  the  beam  from  the  neutral  surface,  which  in  this  case  is  a  cylin- 
dric  surface,  whose  radius  is  c. 

These  expressions  suppose  c  to  be  large  compared  with  a,  since  most  sub- 

stances break   when  -  exceeds  a  certain  small  quantity. 
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Let   b  be   the   breadth  of  the   beam,   then   the   force   with  which   the  beam 

resists  flexure  =  M 

M=lhyq  =  ̂^^-^  =  Ef   (49), 
which  is  the  ordinary  expression  for  the  stiffness  of  a  rectangular  beam. 

The'  stiffness  of  a  beam  of  any  section,  the  form  of  which  is  expressed  by 
an  equation  between  x  and  y,  the  axis  of  x  being  perpendicular  to  the  plane  of 

flexure,  or  the  osculating  plane  of  the  axis  of  the  beam  at  any  point,  is  ex- 
pressed by 

Mc  =  E{ifdx   (50), 

M  being  the  moment   of  the   force   which   bends  the  beam,  and  c  the  radius  of 
the  circle  into  which  it  is  bent. 

Case  YI. 

At  the  meeting  of  the  British  Association  in  1839,  Mr  James  Nasmyth 

described  his  method  of  making  concave  specula  of  silvered  glass  by  bending. 

A  circular  piece  of  silvered  plate-glass  was  cemented  to  the  opening  of  an 
iron  vessel,  from  which  the  air  was  afterwards  exhausted.  The  mirror  then 

became  concave,  and  the  focal  distance  depended  on  the  pressure  of  the  air. 

Buffon  proposed  to  make  burning- mirrors  in  this  way,  and  to  produce  the 
partial  vacuum  by  the  combustion  of  the  air  in  the  vessel,  which  was  to  be 

effected  by  igniting  sulphur  in  the  interior  of  the  vessel  by  means  of  a  burn- 

ing-glass. Although  sulphur  evidently  would  not  answer  for  this  purpose,  phos- 
phorus might;  but  the  simplest  way  of  removing  the  air  is  by  means  of  the 

air-pump.  The  mirrors  which  were  actually  made  by  Buffon,  were  bent  by 
means  of  a  screw  acting  on  the  centre  of  the  glass. 

To  find  an  expression  for  the  curvature  produced  in  a  flat,  circular,  elastic 

plate,  by  the  difference  of  the  hydrostatic  pressures  which  act  on  each  side 
of  it,— 

Let  t  be  the  thickness  of  the  plate,  which  must  be  small  compared  with 
its  diameter. 

Let  the  form  of  the  middle  surface  of  the  plate,  after  the  curvature  is 

produced,  be  expressed  by  an  equation  between  r,  the  distance  of  any  point 
from  the  axis,  or  normal  to  the  centre  of  the  plate,  and  x  the  distance  of 

the  point  from  the  plane  in  which  the  middle  of  the  plate  originally  was,  and  let 

ds=-^{dxY  +  {dr)\ 
VOL    I.  8 
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Let  A,  be  the  pressure  on  one  side  of  the  plate,  and  h^  that  on  the  other. 

Let  p  and  q  be  the  pressures  in  the  plane  of  the  plate  at  any  point,  p 

acting  in  the  direction  of  a  tangent  to  the  section  of  the  plate  by  a  plane 
passing  through  the  axis,  and  q  acting  in  the  direction  perpendicular  to  that 

plane. 
By  equating  the  forces  which  act  on  any  particle  in  a  direction  parallel  to 

the  axis,  we  find 

^    drdx  ,  ̂   dpdx  ,  ̂      d^x  ̂      ,,       j^dr 

By  making  p  =  0  when  r  =  0  in  this  equation,  when  integrated, 

p-l^l^^--'^-)   ("^- 
The  forces  perpendicular  to  the  axis  are 

[drV     .   dpdr  ,  ̂     d^r     .^      i\dx       ̂      . 

Substituting  for  p  its  value,  the  equation  gives 

_      (^1  -  h^      idr  dr     dx\      (h^  -  h^      /dr  ds^d^^ds  ̂ r\       ,     . 

^"  t        ''[d'sdi'^d^)'^      2t      "^^[didxd^      dxd^)""^     ̂ ' 
The  equations  of  elasticity  become 

dSs     (\         1  \  /    ̂       h,  +  h\^p 

Differentiating  -j-  =  -^  (""''')'  ̂ ^^  ̂   ̂ ^  *^^^® 

dhr  dr     dr  dSs 

dr  ~       ds     ds  ds  ' 

By  a  comparison  of  these  values  of  -t—  , ds dr\ 

ds)  \9iJ, 

,      t^rwl         1\/     ,      ,K  +  h\,qdrp^     (I         l\fdp,dq\ 

w  dr      as 
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To  obtain   an   expression  for  the  curvature   of  the  plate  at  the  vertex,  let  a 
be   the   radius   of  curvature,    then,   as   an   approximation   to   the   equation   of  the 
plate,  let 

r» 

x  —  — 
 

. 2a
 

By  substituting  the  value   of  a:   in  the  values   of  p  and  q,  and  in  the  equa- 
tion of  elasticity,  the  approximate  value  of  a  is  found  to  be 

a  = 

18m/x,  \-\-h^    m-  3/x 
.    1     c  1        "T"  '  T  7~  ~T~z   ; — TT" 

.(53). 

^i-A,  lOm  +  51/x       A,-^2  lOw  +  51/t   ' 

Since  the  focal  distance   of  the   mirror,  or  -,   depends   on   the   difference   of 

pressures,   a  telescope  on   Mr  Nasmyth's   principle  would  act  as  an  aneroid  baro- 
meter, the  focal  distance  varying  inversely  as  the  pressure  of  the  atmosphere. 

Case  VIL 

To  find  the  conditions  of  torsion  of  a  cylinder  composed  of  a  great  number 
of  parallel  wires  bound  together  without  adhering  to  one  another. 

Let  X  be  the  length  of  the  cylinder,  a  its  radius,  r  the  radius  at  any  point, 
hS  the  angle  of  torsion,  M  the  force  producing  torsion,  hx  the  change  of  length, 
and  P  the  longitudinal  force.  Each  of  the  wires  becomes  a  helix  whose  radius 

is  r,  its  angular  rotation  Zd,  and  its  length  along  the  axis  x-Zx. 

Its  length  is  therefore  {rZey 

— IJ 

and  the  tension  is  =  jE;  1 1  -    /[  1  -  - ] V r^  (-]']  . 

This  force,  resolved  parallel  to  the  axis,  is 
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and  since  —  and  r —  are  small,  we  may  assume XX 

-"-{-l-n?)'}   <">■ 
The  force,  when  resolved  in  the  tangential  direction,  is  approximately 

"-■^m'i-m   '"> 

By  eliminating  —  between  (54)  and  (55)  we  have X 

M:     ̂
^' 

^ip.E.^m   (56). X  24  \  a?/ 

When  P  =  0,  M  depends  on  the  sixth  power  of  the  radius  and  the  cube 

of  the  angle  of  torsion,  when  the  cylinder  is  composed  of  separate  filaments. 

Since  the  force  of  torsion  for  a  homogeneous  cylinder  depends  on  the 

fourth  power  of  the  radius  and  the  first  power  of  the  angle  of  torsion,  the 

torsion  of  a  wire  having  a  fibrous  texture  will  depend  on  both  these  laws. 

The  parts  of  the  force  of  torsion  which  depend  on  these  two  laws  may  be 

found  by  experiment,  and  thus  the  difference  of  the  elasticities  in  the  direction 

of  the  axis  and  in  the  perpendicular  directions  may  be  determined. 

A  calculation  of  the  force  of  torsion,  on  this  supposition,  may  be  found  in 

Young's  Mathematical  Principles  of  Natural  Philosophy;  and  it  \s  introduced 
here  to  account  for  the  variations  from  the  law  of  Case  II.,  which  may  be 
observed  in  a  twisted  rod. 

Case  VIII. 

It  is  well  known  that  grindstones  and  fly-wheels  are  often  broken  by  the 

centrifugal  force  produced  by  their  rapid  rotation.  I  have  therefore  calculated 

the  strains  and  pressure  acting  on  an  elastic  cylinder  revolving  round  its  axis, 
and  acted  on  by  the  centrifugal  force  alone. 
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61 The  equation  of  the  equilibrium   of  a  particle   [see  Equation  (21)],   becomes 

dp      Air'k    , 

where  q  and  p  are  the  tangential  and  radial  pressures,  k  is  the  weight  in 
pounds  of  a  cubic  inch  of  the  substance,  g  is  twice  the  height  in  inches  that 
a  body  falls  in  a  second,   t  is  the  time  of  revolution  of  the  cylinder  in  seconds. 

By   substituting  the  value  of  q  and  ̂   in  Equations  (19),  (20),  and  neglect- 
ing 0, 

-(i-3^)(«|-?-g)-M^S-f-^.^) 
which  gives 1  TT^k 

2gt^\ 

1      ,    Tj'k 

2+^K  +  ̂« 

(-"?) 

TT'k 2gf ^=-V  +  2^»(-2  +  f)^  +  c. 
(57). 

If  the   radii   of  the   surfaces  of  the   hollow  cylinder  be  a,   and  cu„    and  the 
pressures   actmg  on  them   h^  and   h^,  then  the  values  of  c^  and  c,  are 

(58). 

-f^'-(«--.')S(^-S.   When  o,  =  0,  as  in  the  case  of  a  solid  cylinder,  c,  =  0,  and 

«  =  *'+0  {2('^  +  «.')  +  |(3'^-«,')}   (59). 
When  A,  =  0,  and  r^a^, 

^  =  ̂ U-2)   (60). 
When  q  exceeds  the  tenacity  of  the  substance  in  pounds  per  square  inch, 

the  cylinder  will  give  way;  and  by  making  q  equal  to  the  number  of  pounds 
which  a  square  inch  of  the  substance  will  support,  the  velocity  may  be  found 
at  which  the  bursting  of  the  cylinder  will  take  place. 
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Since  I=ho>(q-p)  =  '^  (^-2\br',   a  transparent  revolving  cylinder,  when 

polarized  light  is  transmitted  parallel  to  the  axis,  will  exhibit  rings  whose 

diameters  are  as  the  square  roots  of  an  arithmetical  progression,  and  brushes 

parallel  and  perpendicular  to  the  plane  of  polarization. 

Case  IX. 

A  hollow  cylinder  or  tube  is  surrounded  by  a  medium  of  a  constant 

temperature  while  a  liquid  of  a  different  temperature  is  made  to  flow  through 

it.  The  exterior  and  interior  surfaces  are  thus  kept  each  at  a  constant  tem- 

perature till  the  transference  of  heat  through  the  cylinder  becomes  uniform. 

Let   V   be   the   temperature    at    any   point,    then    when    this    quantity    has 
reached  its  limit, 

rdv  _ 

v  =  Ci\ogr  +  Ci   (61). 

Let   the  temperatures  at  the   surfaces  be   0^  and   0^,   and  the   radii   of   the 

surfaces  a,  and  a^,  then 

^        0^-0^  loga,0^-logaA 
^'""logaj-loga/     '~    loga^-loga^ 

Let    the   coeflBcient  of   linear    dilatation   of   the    substance    be  c,,    then  the 

proportional  dilatation  at  any  point  will  be  expressed  by  c,v,  and  the  equations 

of  elasticity  (18),  (19),  (20),  become 

r      \,9/x     3m/  ̂      ̂     ̂ '    m 

The  equation  of  equHibrivuu  is 

2-P+r'^   (21), 

and  since  the  tube  is  supposed  to  be  of  a  considerable  length 

-J— =c^  a  constant  quantity. 
CL2C 
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From  these  equations  we  find  ttat 

9/x      3m 

and  hence  v  =  c^\ogr  +  Cz,  p  may  be  found  in  terms  of  r. 

Hence  ?  =  (|l  +  4)  "  ^.«' •«§ '- ^.  ̂  +  <'•  +  (|l  +  ̂) ''.^- 

Since  I—hco  (q  —p)  =  ho)i—  +  - — )     CjCg  —  260)05  -^ , 

the   rings   seen   in  this   case   will  differ  from   those   described   in   Case   III.    only 

by  the  addition  of  a  constant  quantity. 

When  no   pressures   act  on  the   exterior   and   interior   surfaces   of   the    tube 
^j  =  ̂„  =  0,  and 

/2    .  J_V^.^  Aoo-r  I  ̂i'^/log^i-log«2  ,  a/logct,-a/logaA 

/^       1_\-       I  a^a^  log  g,  -  log  ct,     a^  log  a,  -  a/  log  a         \ 
^-1,9,.  + 3m/    ̂^^3^^^S^       r^  a'-a^      +  <-a,^  +V' 

\9/x      3m/      '  '    \  r"         a{-a^      J 

...(62). 

There   will,   therefore,   be   no   action   on    polarized   light   for    the   ring   whose 
radius  is  r  when 

r"  =  2  „  log  -  . 

Case   X. 

Sir  David  Brewster  has  observed  {Edinburgh  Transacticms,  Vol.  viii.),  that 

when  a  solid  cylinder  of  glass  is  suddenly  heated  at  the  cylindric  siuface  a 

polarizing  force  is  developed,  which  is  at  any  point  proportional  to  the  square 
of    the   distance   from   the   axis   of    the    cylinder ;    that   is   to   say,    that   the   dif- 
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ference   of   retardation  of   the   oppositely  polari^ied  rays  of   %ht  is   proportional 
to  the  square  of  the  radius  r,  or 

/=  bCj^cor'  =  h(o  {q  —p)  =  hayr  -^  , 

Since  if  a  be  the  radius  of  the  cylinder,  ̂   =  0  when  r^a, 

Hence  ?=J(3r'-o"). 2 

By   substituting  these   values  of  p  and  q  in   equations   (19)   and   (20),   and 
,  .        d    h'       dhr    T  ̂    , 

^=|(4  +  li)'-'  +  »"    (««)• 
c^  being  the   temperature   of  the  axis   of  the   cylinder,   and  c,  the   coefficient  of 
linear  expansion  for  glass. 

Case  XI. 

Heat  is  passing  uniformly  through  the  sides  of  a  spherical  vessel,  such  as 
the  ball  of  a  thermometer,  it  is  required  to  determine  the  mechanical  state  of 

the  sphere.  As  the  methods  are  nearly  the  same  as  in  Case  IX.,  it  will  be 

sufficient  to  give  the  results,  using  the  same  notation. 
,  dv  c, 

dr      ̂ '  *     r 

Ci  =  aM,—   ?,    c-  =  -5-2   —, 
o,  —  o,  o,  —  a, 

1      /2    .1  \-^       1  . 

When  h,  =  h,  =  0  the  expression  for  p  becomes 

p  =  /2        ly-  r_aXLl      _^A.l^  a.'-a»         |   ^      \9/t*     3m/     '^  '      ''[a/-a/7^      a,-o^r  {0,-0,)  (o^-o^)]  ^     ' 
From  this  value  of  p  the  other  quantities  may  be  found,  as  in  Case  IX., 

from  the  equations  of  Case  IV. 
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Case  XII. 

When  a  long  beam  is  bent  into  the  form  of  a  closed  circular  ring  (as  in 

Case  v.),  all  the  pressures  act  either  parallel  or  perpendicular  to  the  direction 

of  the  length  of  the  beam,  so  that  if  the  beam  were  divided  into  planks,  there 
would  be  no  tendency  of  the  planks  to  slide  on  one  another. 

But  when  the  beam  does  not  form  a  closed  circle,  the  planks  into  which  it 

may  be  supposed  to  be  divided  will  have  a  tendency  to  slide  on  one  another, 

and  the  amount  of  sliding  is  determined  by  the  linear  elasticity  of  the  sub- 

stance. The  deflection  of  the  beam  thus  arises  partly  from  the  bending  of  the 
whole  beam,  and  partly  from  the  sHding  of  the  planks ;  and  since  each  of  these 
deflections  is  small  compared  with  the  length  of  the  beam,  the  total  deflection 

will  be  the  sum  of  the  deflections  due  to  bending  and  sliding. 

Let 
A=Mc  =  E\xi/'dy   (65). 

A  is  the  stiffiiess  of  the  beam  as  found  in  Case  Y.,  the  equation  of  the 

transverse  section  being  expressed  in  terms  of  x  and  y,  y  being  measured  from 
the  neutral  surface. 

Let  a  horizontal  beam,  whose  length  is  2l,  and  whose  weight  is  2w,  be 

supported  at  the   extremities  and  loaded  at  the  middle  with  a  weight   W. 

Let  the  deflection  at  any  point  be  expressed  by  h^,  and  let  this  quantity 
be   small   compared   with  the  length  of  the  beam. 

At  the  middle  of  the  beam,  8,y  is  found  by  the  usual  methods  to  be 

%  =  ̂  {-h^w  +  ̂^l'W)    (66). 

Let 
B  =  —  \xdy  =  —  (sectional  area)   (jo7). 

B   is    the    resistance    of    the   beam   to   the   sliding   of  the   planks.      The   de- 
flection of  the  beam  arising  from  this  cause  is 

%  =  2]b(^'+^^   (68). 
VOL.  I.  9 
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This   quantity  is  small  compared   with  S^y,  when  the   depth   of  the   beam  is 

small  compared  with  its  length. 

The  whole  deflection  ̂ y  =  B^  +  S^ 

A3/  =  -  (^.Z-^iS  +  ̂  {U  +^l)   (^^)- 

Case  XIII. 

When  the  values  of  the  compressions  at  any  point  have  been  found,  when 

two  difierent  sets  of  forces  act  on  a  solid  separately,  the  compressions,  when 

the  forces  act  at  the  same  time,  may  be  found  by  the  composition  of  com- 
pressions, because  the  small  compressions  are  independent  of  one  another. 

It  appears  from  Case  I.,  that  if  a  cylinder  be  twisted  as  there  described, 

the  compressions  will  be  inversely  proportional  to  the  square  of  the  distance 
from  the  centre. 

If  two  cylindric  surfaces,  whose  axes  are  perpendicular  to  the  plane  of  an 
indefinite  elastic  plate,  be  equally  twisted  in  the  same  direction,  the  resultant 

compression  in  any  direction  may  be  found  by  adding  the  compression  due  to 
each  resolved  in  that  direction. 

The  result  of  this  operation  may  be  thus  stated  geometrically.  Let  A^  and 

A^  (Fig.  1)  be  the  centres  of  the  twisted  cylinders.  Join  ̂ 1^25  and  bisect  A^A, 
in  0.     Draw  OBC  at  right  angles,  and  cut  off  OB^^  and  OB^  each  equal  to  OA^. 

Then  the  difference  of  the  retardation  of  oppositely  polarized  rays  of  light 

passing  perpendicularly  through  any  point  of  the  plane  varies  directly  as  the 
product  of  its  distances  from  B^  and  B^,  and  inversely  as  the  square  of  the 

product  of  its  distances  from  A^  and  A^. 

The  isochromatic  lines  are  represented  in  the  figure. 

The  retardation  is  infinite  at  the  points  ̂ 1  and  A^;  it  vanishes  at  B^^ 

and  jBj  ;  and  if  the  retardation  at  0  be  taken  for  unity,  the  isochromatic  curves 
2,  4,  surround  Aj^  and  A^;  that  in  which  the  retardation  is  unity  has  two 

loops,  and  passes  through  0;  the  curves  ̂ ,  ̂   are  continuous,  and  have  points 

of    contrary    flexure ;    the    curve   ̂    has    multiple    points    at    Cj   and    C,,    where 
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.4,(7,  =  -4,^,,  and  two  loops  surrounding  B^  and  B^',  the  other  curves,  for  which 
/=l4-»  -gS-j  ̂ c-»  consist  each  of  two  ovals  surrounding  B^  and  jB,,  and  an 
exterior  portion  surrounding  all  the  former  curves. 

Fig.  1. 

I  have  produced  these  curves  in  the  jelly  of  isinglass  described  in  Case  I. 

They  are  best  seen  by  using  circularly  polarised  light,  as  the  curves  are  then 
seen  without  interruption,  and  their  resemblance  to  the  calculated  curves  is 

more  apparent.  To  avoid  crowding  the  curves  toward  the  centre  of  the  figure, 
I  have  taken  the  values  of  /  for  the  different  curves,  not  in  an  arithmetical, 

but  in  a  geometrical  progression,  ascending  by  powers  of  2. 
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Case  XIV. 

On  the  determination  of  the  pressures  which  act  in  the  interior  of  trans- 

parent solids,  from  observations  of  the  action  of  the  solid  on  polarized  light. 

Sir  David  Brewster  has  pointed  out  the  method  by  which  polarized  light 
might  be  made  to  indicate  the  strains  in  elastic  solids ;  and  his  experiments  on 
bent  glass  confirm  the  theories  of  the  bending  of  beams. 

The  phenomena  of  heated  and  unannealed  glass  are  of  a  much  more  complex 

nature,  and  they  cannot  be  predicted  and  explained  without  a  knowledge  of  the 

laws  of  cooling  and  solidification,  combined  with  those  of  elastic  equilibrium. 

In  Case  X.  I  have  given  an  example  of  the  inverse  problem,  in  the  case 

of  a  cylinder  in  which  the  action  on  light  followed  a  simple  law ;  and  I  now 
go  on  to  describe  the  method  of  determuiing  the  pressures  in  a  general  case, 

applying  it  to  the  case  of  a  triangle  of  unannealed  plate-glass. 

D  D 

Fig.  3. 

The  lines  of  equal  intensity  of  the  action  on  Hght  are  seen  without 

interruption,  by  using  circularly  polarized  light.  They  are  represented  in  Fig.  2, 

where  A,  BBB,  DDD  are  the  neutral  points,  or  points  of  no  action  on  light, 

and   CCC,  EEE  are  the  points  where  that  action  is  greatest ;   and  the  intensity 
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of  the  action  at  any  other  point  is  determined  by  its  position  with  respect  to 
the  isochromatic  curves. 

The  direction  of  the  principal  axes  of  pressure  at  any  point  is  found  by 

transmitting  plane  polarized  light,  and  analysing  it  in  the  plane  perpendicular 
to  that  of  polarization.  The  light  is  then  restored  in  every  part  of  the  triangle, 

except  in  those  points  at  which  one  of  the  principal  axes  is  parallel  to  the 

plane  of  polarization.  A  dark  band  formed  of  all  these  points  is  seen,  which 

shifts  its  position  as  the  triangle  is  turned  round  in  its  own  plane.  Fig.  3 

represents  these  curves  for  every  fifteenth  degree  of  inclination.  They  correspond 
to  the  lines  of  equal  variation  of  the  needle  in  a  magnetic  chart. 

From  these  curves  others  may  be  found  which  shall  indicate,  by  their  own 

direction,  the  direction  of  the  principal  axes  at  any  point.  These  curves  of 

direction  of  compression  and  dilatation  are  represented  in  Fig.  4 ;  the  curves 
whose  direction  corresponds  to  that  of  compression  are  concave  toward  the 

centre  of  the  triangle,  and  intersect  at  right  angles  the  curves  of  dilatation. 

Let   the   isochromatic  lines  in  Fig.  2  be  determined  by  the  equation 

<^,{x,y)  =  I-  =  (o{q-p)-, 

where  /  is  the  difference  of  retardation  of  the  oppositely  polarized  rays,  and 

q  and  p  the  pressures  in  the  principal  axes  at  any  point,  z  being  the  thick- 
ness of  the  plate. 

Let  the  lines  of  equal  inclination  be  determined  by  the  equation 

<^2  (^.  y)  =  tan  6, 

6  being  the  angle  of  inclination  of  the  principal  axes ;  then  the  differential 
equation  of  the  curves  of  direction  of  compression  and  dilatation  (Fig.  4)  is 

By  considering  any  particle  of  the  plate  as  a  portion  of  a  cylinder  whose 
axis  passes  through  the  centre  of  curvature  of  the  curve  of  compression,  we  find 

?-?>=^^   (21). 
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Let  R  denote  the  radius  of  curvature  of  the  curve  of  compression  at  any 

point,  and  let  S  denote  the  length  of  the  curve  of  dilatation  at  the  same 

point, 

and  since  {q  -p),  R  and  S  are  known,  and  since  at  the  surface,  where  (^^  {x,  y)  =  0, 

j9  =  0,  all  the  data  are  given  for  determining  the  absolute  value  of  p  by  inte- 

gration. 

Though  this  is  the  best  method  of  finding  p  and  q  by  graphic  construc- 

tion, it  is  much  better,  when  the  equations  of  the  curves  have  been  found,  that 

is,  when  ̂ i  and  <j>^  are  known,  to  resolve  the  pressures  in  the  direction  of  the 
axes. 

The  new  quantities  are  p^,  p„  and  ̂ 3 ;  and  the  equations  are 

tan^=-^,    {p-qY  =  q.'  +  (p.-p.y,    Pi+P.=P  +  q- Pi    Pi 

It  is  therefore  possible  to  find  the  pressures  from  the  curves  of  equal  tint 

and  equal  inclination,  in  any  case  in  which  it  may  be  required.  In  the  mean- 

time the  curves  of  Figs.  2,  3,  4  shew  the  correctness  of  Sir  John  Herschell's 
ingenious  explanation  of  the  phenomena  of  heated  and  unannealed  glass. 

Note  A. 

As  the  mathematical  laws  of  compressions  and  pressures  have  been  very  thoroughly 

investigated,  and  as  they  are  demonstrated  with  great  elegance  in  the  very  complete  and 

elaborate  memoir  of  MM.  Lamd  and  Clapeyron,  I  shall  state  as  briefly  as  possible  their  results. 

Let  a  solid  be  subjected  to  compressions  or  pressures  of  any  kind,  then,  if  through  any 

point  in  the  solid  lines  be  drawn  whose  lengths,  measured  from  the  given  point,  are  pro- 
portional to  the  compression  or  pressure  at  the  point  resolved  in  the  directions  in  which  the 

lines  are  drawn,  the  extremities  of  such  lines  will  be  in  the  surface  of  an  ellipsoid,  whose 
centre  is  the  given  point. 

The  properties  of  the  system  of  compressions  or  pressures  may  be  deduced  from  those 
of  the  ellipsoid. 
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There  are  three  diameters  having  perpendicular  ordinates,  which  are  called  the  principal 
axes  of  the  ellipsoid. 

Similarly,  there  are  always  three  directions  in  the  compressed  particle  in  which  there 
is  no  tangential  action,  or  tendency  of  the  parts  to  slide  on  one  another.  These  directions 

are  called  the  principal  axes  of  compression  or  of  pressure,  and  in  homogeneous  solids  they 
always  coincide  with  each  other. 

The  compression  or  pressure  in  any  other  direction  is  equal  to  the  sum  of  the  products 
of  the  compressions  or  pressures  in  the  principal  axes  multiplied  into  the  squares  of  the 
cosines  of  the  angles  which  they  respectively  make  with  that  direction. 

Note  B. 

The  fundamental  equations  of  this  paper  differ  from  those  of  Navier,  Poisson,  &c.,  only 
in  not  assuming  an  invariable  ratio  between  the  linear  and  the  cubical  elasticity;  but  since 
I  have  not  attempted  to  deduce  them  from  the  laws  of  molecular  action,  some  other  reasons 
must  be  given  for  adopting  them. 

The  experiments  from  which  the  laws  are  deduced  are — 

1st.  Elastic  solids  put  into  motion  vibrate  isochronously,  so  that  the  sound  does  not 
vary  with  the  amplitude  of  the  vibrations. 

2nd.  Regnault's  experiments  on  hollow  spheres  shew  that  both  linear  and  cubic  com- 
pressions are  proportional  to  the  pressures. 

3rd.  Experiments  on  the  elongation  of  rods  and  tubes  immersed  in  water,  prove  that 
the  elongation,  the  decrease  of  diameter,  and  the  increase  of  volume,  are  proportional  to  the 
tension. 

4th.  In  Coulomb's  balance  of  torsion,  the  angles  of  torsion  are  proportional  to  the 
twisting  forces. 

It  would  appear  from  these  experiments,  that  compressions  are  always  proportional  to 
pressures. 

Professor  Stokes  has  expressed  this  by  making  one  of  his  coefficients  depend  on  the 
cubical  elasticity,  Avhile  the  other  is  deduced  from  the  displacement  of  shifting  produced  by 
a  given  tangential  force. 

M.  Cauchy  makes  one  coefficient  depend  on  the  linear  compression  produced  by  a  force 

acting  in  one  direction,  and  the  other  on  the  change  of  volume  produced  by  the  same  force. 

Both  of  these  methods  lead  to  a  correct  result ;  but  the  coefficients  of  Stokes  seem  to 

have  more  of  a  real  signification  than  those  of  Cauchy ;  I  have  therefore  adopted  tiiose  of 
Stokes,  using  the  symbols  m  and  fi,  and  the  fundamental  equations  (4)  and  (5),  which  define 
them. 
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Note  C. 

As  the  coefficient  <w,  which  determines  the  optical  effect  of  pressure  on  a  substance, 

varies  from  one  substance  to  another,  and  is  probably  a  function  of  the  linear  elasticity,  a 
determination  of  its  value  in  different  substances  might  lead  to  some  explanation  of  the 
action  of  media  on  light. 

This  paper  commenced  by  pointing  out  the  insufficiency  of  all  theories  of  elastic  solids, 

in  which  the  equations  do  not  contain  two  independent  constants  deduced  from  experiments. 
One  of  these  constants  is  common  to  liquids  and  solids,  and  is  called  the  modulus  of  cubical 

elasticity.  The  other  is  peculiar  to  solids,  and  is  here  called  the  modulus  of  linear  elasticity. 
The  equations  of  Navier,  Poisson,  and  Lam^  and  Clapeyron,  contain  only  one  coefficient; 
and  Professor  G.  G.  Stokes  of  Cambridge,  seems  to  have  formed  the  first  theory  of  elastic 
solids  which  recognised  the  independence  of  cubical  and  linear  elasticity,  although  M.  Cauchy 
seems  to  have  suggested  a  modification  of  the  old  theories,  which  made  the  ratio  of  linear 
to  cubical  elasticity  the  same  for  all  substances.  Professor  Stokes  has  deduced  the  theory 
of  elastic  solids  from  that  of  the  motion  of  fluids,  and  his  equations  are  identical  with  those 
of  this  paper,  which  are  deduced  from  the  two  following  assumptions. 

In  an  element  of  an  elastic  solid,  acted  on  by  three  pressures  at  right  angles  to  one 
another,  as  long  as  the  compressions  do  not  pass  the  limits  of  perfect  elasticity — 

1st.  The  sum  of  the  pressures,  in  three  rectangular  axes,  is  proportional  to  the  sum 
of  the  compressions  in  those  axes. 

2nd.  The  difference  of  the  pressures  in  two  axes  at  right  angles  to  one  another,  is 
proportional  to  the  difference  of  the  compressions  in  those  axes. 

Or,  in  symbols: 

(P.  +  P..i'J  =  3.(^%|4). 
(^.-^.)=-(l 
(P, 

p,)=r,j'y. (P,-P^  =  m 

fZz     Bx 

fi  being  the  modulus  of  auhical,  and  m  that  of  linear  elasticity. 

These   equations  are   found   to   be   very    convenient   for   the    solution   of   problems,   some 
of  which  were  given  in  the  latter  part  of  the  paper. 
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These  particular  cases  were — 

That  of  an  elastic  hollow  cylinder,  the  exterior  surface  of  which  was  fixed,  while  the 
interior  was  turned  through  a  small  angle.  The  action  of  a  transparent  solid  thus  twisted 
on  polarized  light,  was  calculated,  and  the  calculation  confirmed  by  experiment. 

The   second   case   related   to   the   torsion  of  cylindric   rods,   and   a  method   was   given   by 

which   m  may   be   found.     The   quantity   E=    ^  was  found   by  elongating,  or  by  bending 

the  rod  used  to  determine  m,  and  fi  is  found  by  the  equation, 

_      Em 
^~dm-6E' 

The  effect  of  pressure  on  the  surfaces  of  a  hollow  sphere  or  cylinder  was  calculated, 
and  the  result  applied  to  the  determination  of  the  cubical  compressibility  of  liquids  and 
solids. 

An  expression  was  found  for  the  curvature  of  an  elastic  plate  exposed  to  pressure  on 
one  side ;  and  the  state  of  cylinders  acted  on  by  centrifugal  force  and  by  heat  was 
determined. 

The  principle  of  the  superposition  of  compressions  and  pressures  was  applied  to  the  case  of 
a  bent  beam,  and  a  formula  was  given  to  determine  E  from  the  deflection  of  a  beam 
supported  at  both  ends  and  loaded  at  the  middle. 

The  paper  concluded  with  a  conjecture,  that  as  the  quantity  a  (which  expresses  the 

relation  of  the  inequality  of  pressure  in  a  solid  to  the  doubly-refracting  force  produced)  is 
probably  a  function  of  m,  the  determination  of  these  quantities  for  different  substances 
might  lead  to  a  more  complete  theory  of  double  refraction,  and  extend  our  knowledge  of  the 
laws  of  optics. 

VOL.  I.  10 
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Solutions  of  Problems. 

1.  If  from  a  point  in  the  circumference  of  a  vertical  circle  two  heavy  particles  be  suc- 
cessively projected  along  the  curve,  their  initial  velocities  being  equal  and  either  in  the  same 

or  in  opposite  directions,  the  subsequent  motion  will  be  such  that  a  straight  line  joining 
the  particles  at  any  instant  will  touch  a  circle. 

Note.    The  particles  are  supposed  not  to  interfere  with  each  other's  motion. 

The  direct  analytical  proof  would  involve  the  properties  of  elliptic  integrals, 

but  it  may  be  made  to  depend  upon  the  following  geometrical  theorems. 

(1)  If  from  a  point  in  one  of  two  circles  a  right  line  be  drawn  cutting 

the  other,  the  rectangle  contained  by  the  segments  so  formed  is  double  of  the 

rectangle  contained  by  a  line  drawn  from  the  point  perpendicular  to  the  radical 

axis  of  the  two  circles,  and  the  line  joining  their  centres. 

The  radical  axis  is  the  line  joining  the  points  of  intersection  of  the  two 

circles.  It  is  always  a  real  hne,  whether  the  points  of  intersection  of  the  circles 

be  real  or  imaginary,  and  it  has  the  geometrical  property — that  if  from  any  point 

on  the  radical  axis,  straight  lines  be  drawn  cutting  the  circles,  the  rectangle  con- 

tained by  the  segments  formed  by  one  of  the  circles  is  equal  to  the  rectangle 

contained  by  the  segments  formed  by  the  other. 

The  analytical  proof  of  these  propositions  is  very  simple,  and  may  be  resorted 

to  if  a  geometrical  proof  does  not  suggest  itself  as  soon  as  the  requisite  figure 
is  constructed. 

If  ̂ ,  B  be  the  centres  of  the  circles,  P  the  given  point  in  the  circle  whose 

centre   is   ̂ ,    a   line  drawn   from   P   cuts   the   first   circle  in  p,  the  second  in  Q 
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and  q,  and  the  radical  axis  in  R.     If  PH  be  drawn  perpendicular  to  the  radical 
axis,  then 

PQ.Pq  =  2AB.HP. 

CoR.  If  the  line  be  drawn  from  P  to  touch  the  circle  in  T,  instead  of 

cutting  it  in  Q  and  q,  then  the  square  of  the  tangent  PT  is  equal  to  the 
rectangle  2AB .  HP. 

Similarly,  if  ph  be  drawn  from  p  perpendicular  to  the  radical  axis 

p'P  =  2AB.hp. 

Hence,  if  a  line  be  drawn  touching  one  circle  in  T,  and  cutting  the  other 
in  P  and  p,  then 

(PTY  :  {pT)'  ::  HP  :  hp. 

(2)  If  two  straight  lines  touching  one  circle  and  cutting  another  be  made 

to  approach  each  other  indefinitely,  the  small  arcs  intercepted  by  their  inter- 
sections with  the  second  circle  wiU  be  ultimately  proportional  to  their  distances 

from  the  point  of  contact. 

This  result  may  easily  be  deduced  from  the  properties  of  the  similar 
triangles  FTP  and  ppT. 

Cor.  If  particles  P,  p  be  constrained  to  move  in  the  circle  A,  while 

the  line  Pp  joining  them  continually  touches  the  circle  B,  then  the  velocity 
of  P  at  any  instant  is  to  that  of  p  as  PT  to  pT ;  and  conversely,  if  the 
velocity  of  P  at  any  instant  be  to  that  of  P  as  PT  to  pT,  then  the  line 

Pp  will  continue  to  be  a  tangent  to  the  circle  B. 

Now  let  the  plane  of  the  circles  be  vertical  and  the  radical  axis  horizontal, 

and  let  gravity  act  on  the  particles  P,  p.  The  particles  were  projected  from 

the  same  point  with  the  same  velocity.  Let  this  velocity  be  that  due  to  the 

depth  of  the  point  of  projection  below  the  radical  axis.  Then  the  square  of 

the  velocity  at  any  other  point  will  be  proportional  to  the  perpendicular  from 

that  point  on  the  radical  axis  ;  or,  by  the  corollary  to  (l),  if  P  and  p  be  at 

any  time  at  the  extremities  of  the  line  PTp,  the  square  of  the  velocity  of  P 

will  be  to  the  square  of  the  velocity  of  p  as  PH  to  ph,  that  is,  as  (PTf  to 
(pTf.  Hence,  the  velocities  of  P  and  p  are  in  the  proportion  of  PT  to  pT, 

and  therefore,  by  the  corollary  to  (2),  the  line  joining  them  will  continue  a 

tangent  to  the  circle  B  during  each  instant,  and  will  therefore  remain  a  tangent 
during  the  motion. 
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The  cb'cle  A,  the  radical  axis,  and  one  position  of  the  line  Pp,  are  given 
by  the  circumstances  of  projection  of  P  and  p.  From  these  data  it  is  easy  to 

determine  the  circle  jB  by  a  geometrical  construction. 

It  is  evident  that  the  character  of  the  motion  will  determine  the  position 

of  the  circle  B.  If  the  motion  is  oscillatory,  B  will  intersect  A.  If  P  and  p 

make  complete  revolutions  in  the  same  direction,  B  will  lie  entirely  within  A, 

but  if  they  move  in  opposite  directions,  B  will  lie  entirely  above  the  radical  axis. 

If  any  number  of  such  particles  be  projected  from  the  same  point  at  equal 

intervals  of  time  with  the  same  direction  and  velocity,  the  lines  joining  successive 

particles  at  any  instant  will  be  tangents  to  the  same  circle ;  and  if  the  time 

of  a  complete  revolution,  or  oscillation,  contain  n  of  these  intervals,  then  these 

lines  will  form  a  polygon  of  ?i  sides,  and  as  this  is  true  at  any  instant,  any 

number  of  such  polygons  may  be  formed. 

Hence,  the  following  geometrical  theorem  is  true : 

"If  two  circles  be  such  that  n  lines  can  be  drawn  touching  one  of  them 

and  having  their  successive  intersections,  including  that  of  the  last  and  first, 

on  the  circiunference  of  the  other,  the  construction  of  such  a  system  of  lines 

wiU  be  possible,  at  whatever  point  of  the  first  circle  we  draw  the  first  tangent." 

2.  A  transparent  medium  is  such  that  the  path  of  a  ray  of  light  within  it  is  a  given 
circle,  the  index  of  refraction  being  a  function  of  the  distance  from  a  given  point  in  the 
plane  of  the  circle. 

Find  the  form  of  this  function  and  shew  that  for  light  of  the  same  refrangibility — 

(1)  The  path  of  every  ray  witJdn  the  medium  is  a  circle, 

(2)  All  the  rays  proceeding  from  any  point  in  the  medium  will  meet  accurately  in 
another  point. 

(3)  If  rays  diverge  from  a  point  without  the  medium  and  enter  it  through  a  spherical 

surface  having  that  point  for  its  centre,  they  will  be  made  to  converge  accurately  to  a  point 
within  the  medium. 

Lemma  I.  Let  a  transparent  medium  be  so  constituted,  that  the  refractive 

index  is  the  same  at  the  same  distance  from  a  fixed  point,  then  the  path  of 

any    ray    of    light    within   the    medium    will  be   in   one   plane,    and  the  perpen- 
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dicular    from    the    fixed   point   on   the    tangent   to   the   path   of  the   ray   at   any 

point  will  vary  inversely  as  the  refractive  index  of  the  medium  at  that  point. 

We  may  easily  prove  that  when  a  ray  of  light  passes  through  a  spherical 

surface,  separating  a  medium  whose  refractive  index  is  /x,  from  another  where 

it  is  /Aj,  the  plane  of  incidence  and  refraction  passes  through  the  centre  of 

the  sphere,  and  the  perpendiculars  on  the  direction  of  the  ray  before  and  after 

refraction  are  ir  the  ratio  of  /i,  to  fi^.  Since  this  is  true  of  any  number  of 

spherical  shells  of  different  refractive  powers,  it  is  also  true  when  the  index  of 

refraction  varies  continuously  from  one  shell  to  another,  and  therefore  the 

proposition  is  true. 

Lemma  II.  If  from  any  fixed  point  in  the  plane  of  a  circle,  a  perpen- 
dicular be  drawn  to  the  tangent  at  any  point  of  the  circumference,  the  rectangle 

contained  by  this  perpendicular  and  the  diameter  of  the  circle  is  equal  to  the 

square  of  the  line  joining  the  point  of  contact  with  the  fixed  point,  together 

with  the  rectangle  contained  by  the  segments  of  any  chord  through  the  fixed 

point. 

Let  APB  be  the  circle,  0  the  fixed  point;  then 

OY.FE=OP'  +  AO.OB, 

Produce  PO  to  Q,  and  join  QR,   then  the  triangles  OYP,  PQR  are  similar; 
therefore 

OY.PR=OP.PQ 
=  OP'  +  OP.OQ; 

.:   OY.PR=OP'  +  AO.OB. 

If  we  put  in  this  expression  AO .  OB  =  a^, 
PO  =  r,     OY=p,    PR  =  2p, 

it  becomes  2pp  =  ?'*+■  a*, 
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To  find  the  law  of  the  index  of  refraction  of  the  medium,  so  that  a  ray 

from  A  may  describe  the  circle  APB,  /x  must  be  made  to  vary  inversely  as  p 

by  Lemma  I. 

Let   AO  =  r^,  and  let  the  refractive  index  at  A=fii;  then  generally 

h' 

_c 

p 

_  2C7p  . 

a'  +  r'' 

/^1  = 

.   2Cp 

a'  +  r:' 

a'  +  r,' 

but  at  A 

therefore 

The   value  of  /n   at   any   point   is  therefore  independent   of  p,  the   radius  of 

the   given  circle;   so   that  the  same  law  of  refractive  index  will  cause  any  other 

ray    to    describe    another    circle,   for  which   the   value   of    a'  is  the  same.      The 
a^  .       .  . 

value   of  OB   is   — ,   which   is   also   independent   of  p ;   so   that  every  ray  which 

proceeds  from  A  must  pass  through  B. 

Again,  if  we  assume  /x^  as  the  value  of  /x  when  r  =  0, 

ar  +  r,' 

therefore  h'  —  H-o 

d'  +  r'^-' 
a  result  independent  of  r^.  This  shews  that  any  point  A'  may  be  taken  as 
the  origin  of  the  ray  instead  of  A,  and  that  the  path  of  the  ray  will  still  be 

circular,  and  will  pass  through  another  point  B'  on  the  other  side  of  0,  such  that 

Next,  let  CP   be   a  ray   from   C,  a  point  without  the  medium,  falling  at  P 
on  a  spherical  surface  whose  centre  is  C. 

Let   0  be  the  fixed  point  in  the  medium  as  before.     Join  PO,  and  produce 

to    Q   till    OQ  =  jyp.     Through    Q   draw  a  circle  touching   CP  in  P,  and  cutting 

CO  in  A  and  B ;  then   PBQ  is  the  path  of  the  ray  within  the  medium. 
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Since  CP  touches  the  circle,  we  have 

CP'^CA.  CB, 

=  {CO-OA){CO-\-OB); 

but  0A=  -^; 

therefore  CF'  =  CQ  +  CO  (oB  -  ̂^ 

an    equation    whence     OB    may    be    found,    B   being   the   point   in   the   medium 

through  which  all  rays  from  C  pass. 

Note.  The  possibility  of  the  existence  of  a  medium  of  this  kind  possessing 

remarkable  optical  properties,  was  suggested  by  the  contemplation  of  the  structure 
of  the  crystalline  lens  in  fish;  and  the  method  of  searching  for  these  properties 

was  deduced  by  analogy  from  Newton's  Principia,  Lib.  L  Prop.  vii. 
It  would  require  a  more  accurate  investigation  into  the  law  of  the  refractive 

index  of  the  different  coats  of  the  lens  to  test  its  agreement  with  the  supposed 

medium,  which  is  an  optical  instrument  theoretically  perfect  for  homogeneous 

light,  and  might  be  made  achromatic  by  proper  adaptation  of  the  dispersive 

power  of  each  coat. 

On  the  other  hand,  we  find  that  the  law  of  the  index  of  refraction  which 

would  give  a  minimum  of  aberration  for  a  sphere  of  this  kind  placed  in  water, 

gives  results  not  discordant  with  facts,  so  far  as  they  can  be  readily  ascertained. 



[From  the  Transactions  of  the  Cambridge  Philosophical  Society,  Vol.  ix.  Part  iv.] 

IV.      On    the    Transformation    of  Surfaces    by    Bending. 

Euclid  has  given  two  definitions  of  a  surface,  which  may  be  taken  as 

examples  of  the  two  methods  of  investigating  their  properties. 

That  in  the  first  book  of  the  Elements  is — 

"A  superficies  is  that  which  has  only  length  and  breadth." 

The  superficies  difiers  from  a  line  in  having  breadth  as  well  as  length, 

and  the  conception  of  a  third  dimension  is  excluded  without  being  expHcitly 
introduced. 

In   the   eleventh  book,   where    the    definition    of    a    soHd    is    first    formally 

given,  the  definition  of  the  superficies  is  made  to  depend  on  that  of  the  solid — 

"  That  which  bounds  a  soHd  is  a  superficies." 

Here  the  conception  of  three  dimensions  in  space  is  employed  in  forming 

a  definition  more  perfect  than  that  belonging  to  plane  Geometry. 

In  our  analytical  treatises  on  geometry  a  surface  is  defined  by  a  function 

of  three  independent  variables  equated  to  zero.  The  surface  is  therefore  the 

boundary  between  the  portion  of  space  in  which  the  value  of  the  function  is 

positive,  and  that  in  which  it  is  negative;  so  that  we  may  now  define  a 

surface  to  be  the  boundary  of  any  assigned  portion   of  space. 

Surfaces  are  thus  considered  rather  with  reference  to  the  figures  which  they 
limit  than  as  having  any  properties  belonging  to  themselves. 

But  the  conception  of  a  surface  which  we  most  readily  form  is  that  of 
a   portion   of  matter,    extended   in   length   and   breadth,    but  of  which  the  thick- 
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ness   may    be    neglected.       By   excluding   the   thickness   altogether,    we   arrive   at 

Euclid's  first  definition,  which  we  may  state  thus — 

"  A  surface  is  a  lamina  of  which  the  thickness  is  diminished  so  as  to  become 

evanescent." 

We  are  thus  enabled  to  consider  a  surface  by  itself,  without  reference  to 

the  portion  of  space  of  which  it  is  a  boundary.  By  drawing  figures  on  the 

surface,  and  investigating  their  properties,  we  might  construct  a  system  of 

theorems,  which  would  be  true  independently  of  the  position  of  the  surface  in 

space,  and  which  might  remain  the  same  even  when  the  form  of  the  solid  of 

which  it  is  the  boundary  is  changed. 

When  the  properties  of  a  surface  with  respect  to  space  are  changed,  while 

the  relations  of  lines  and  figures  in  the  surface  itself  are  unaltered,  the  surface 

may  be  said  to  preserve  its  identity,  so  that  we  may  consider  it,  after  the 

change  has  taken  place,  as  the  same  surface. 

When  a  thin  material  lamina  is  made  to  assume  a  new  form  it  is  said 

to  be  hent.  In  certain  cases  this  process  of  bending  is  called  development,  and 
when  one  surface  is  bent  so  as  to  coincide  with  another  it  is  said  to  be 

applied  to  it. 

By  considering  the  lamina  as  deprived  of  rigidity,  elasticity,  and  other 

mechanical  properties,  and  neglecting  the  thickness,  we  arrive  at  a  mathemati- 
cal definition  of  this  kind  of  transformation. 

"  The  operation  of  bending  is  a  continuous  change  of  the  form  of  a  surface, 

without  extension  or  contraction  of  any  part  of  it." 

The  following  investigations  were  undertaken  with  the  hope  of  obtaining 

more  definite  conceptions  of  the  nature  of  such  transformations  by  the  aid  of 

those  geometrical  methods  which  appear  most  suitable  to  each  particular  case. 

The  order  of  arrangement  is  that  in  which  the  different  parts  of  the  subject 

presented  themselves  at  first  for  examination,  and  the  methods  employed  form 

parts  of  the  original  plan,  but  much  assistance  in  other  matters  has  been 

derived  from  the  works  of  Gauss*,  Liouvillef,  Bertrand^,  Puiseux§,  &c.,  references 
to  which  will  be  given  in  the  course  of  the  investigation. 

*  Disquisitiones   generalea   circa  superficies  curvas.     Presented    to   the    Royal   Society  of    Gottingen, 
8th  October,   1827.     Commentationes  Recentiores,  Tom.  vi. 

t  Liouville's  Journal,  xii.  X  ̂̂ '^-   ̂ ^'^'  §  ̂̂ "^■ 
VOL,  I.  11 
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On  the  Bending  of  Surfaces  generated  hy  the  motion  of  a  straight  line  in  space. 

If  a  straight  line  can  be  drawn  in  any  surface,  we  may  suppose  that 

part  of  the  surface  which  is  on  one  side  of  the  straight  line  to  be  fixed, 

while   the    other   part    is   turned   about    the    straight    line    as    an   axis. 

In  this  way  the  surface  may  be  bent  about  any  number  of  generating  lines 

as   axes  successively,  till  the  form  of  every  part  of  the  surface  is  altered. 

The  mathematical  conditions  of  this  kind  of  bending  may  be  obtained  in 

the  following  manner. 

Let  the  equations  of  the  generating  line  be  expressed  so  that  the  constants 

involved  in  them  are  functions  of  one  independent  variable  u,  by  the  variation  of 

which  we  pass  from  one  position  of  the  line  to  another. 

If  in  the  equations  of  the  generating  line  Aa,  u  =  u^,  then  in  the  equations 

of  the  line  Bh  we  may  put  u  =  U2,  and  from  the  equations  of  these  lines  we 
may  find  by  the  common  methods  the  equations  of  the  shortest  line  PQ  between 

Aa  and  Bb,  and  its  length,  which  we  may  call  S^.  We  may  also  find  the 

angle  between  the  directions  of  ̂ a  and  Bb,  and  let  this  angle  be  SO. 

In  the  same  way  from  the  equations  of 

Cc,  in  which  u  =  u^,  we  may  deduce  the  equa- 
tions of  RS,  the  shortest  line  between  Bb  and 

Cc,  its  length  8^5  and  the  angle  hd^  between 

the  directions  of  Bb  and  Cc.  We  may  also 

find  the  value  of  QR,  the  distance  between 

the  points  at  which  PQ  and  RS  cut  Bb. 

Let  QR  =  h(T,  and  let  the  angle  between  the 

directions  of  PQ  and  RS  be  S^. 

Now  suppose  the  part  of  tlie  surface  between  the  lines  Aa  and  Bb  to  be 

fixed,  while  the  part  between  Bb  and  Cc  is  turned  round  Bb  as  an  axis.  The 

line  RS  wiU  then  revolve  round  the  point  R,  remaining  perpendicular  to  Bhy 

and  Cc  will  still  be  at  the  same  distance  from  Bb,  and  wiU  make  the  same 

angle  with  it.  Hence  of  the  four  quantities  S4j  S^2>  ̂ cr  and  8</>,  8^  alone  will 

be  changed  by  the  process  of  bending.  8<^,  however,  may  be  varied  in  a 

perfectly  arbitrary  manner,  and  may   even  be   made   to   vanish. 

,•?_.. 
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For,  PQ  and  RS  being  both  perpendicular  to  Bh,  RS  may  be  turned 

about  Bh  till  it  is  parallel  to  PQ,  in  which  case  8^  becomes  =  0. 

By  repeating  this  process,  we  may  make  all  the  "  shortest  lines"  parallel  to 
one  another,  and  then  all  the  generating  lines  will  be  parallel  to  the  same 

plane. 

We  have  hitherto  considered  generating  lines  situated  at  finite  distances  from 

one  another ;  but  what  we  have  proved  will  be  equally  true  when  their  distances 

are  indefinitely  diminished.     Then  in  the  limit 

du 

B0 dO 
u,-u, 

"         du 

Str 

da- 

"         du 
8(f> 

d(f> 

Uj  —  Wi         '*        du  ' 

All  these  quantities  being  functions  of  u,  ̂ ,  0,  a-  and  (f),  are  functions  of  u 
and  of  each  other;  and  if  the  forms  of  these  functions  be  known,  the  positions 

of  all  the  generating  lines  may  be  successively  determined,  and  the  equation 

to  the  surface  may  be  found  by  integrating  the  equations  containing  the  values 

of  ̂ ,   0,    a-  and  <j). 

When  the  surface  is  bent  in  any  manner  about  the  generating  lines,  C>  ̂, 

and   a-  remain  unaltered,  but  cf)  is  changed  at  every  point. 
The  form  of  <^  as  a  function  of  u  will  depend  on  the  nature  of  the 

bending  ;  but  since  this  is  perfectly  arbitrary,  <^  may  be  any  arbitrary  function 

of  u.  In  this  way  we  may  find  the  form  of  any  surface  produced  by  bending 

the  given  surface  along  its  generating  lines. 

By  making  <f)  =  0,  we  make  all  the  generating  lines  parallel  to  the  same 

plane.  Let  this  plane  be  that  of  xy,  and  let  the  first  generating  line  coincide 

with  the  axis  of  x,  then  C  will  be  the  height  of  any  other  generating  line 
above  the  plane  of  xy,  and  0  the  angle  which  its  projection  on  that  plane 

makes  with  the  axis  of  x.  The  ultimate  intersections  of  the  projections  of  the 

generating  lines  on  the  plane  of  xy  will  form  a  curve,  whose  length,  measured 

from  the  axis  of  x,  will  be  o-. 
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Since  ia  this  case  the  quantities  C>  ̂ ,  and  cr  are  represented  bj  distinct 

geometrical  quantities,  we  may  simplify  the  consideration  of  all  surfaces  generated 

by  straight  lines  by  reducing  them  by  bending  to  the  case  in  which  those  lines 

are  parallel  to  a  given  plane. 

In   the   class   of  surfaces   in   which  the  generating  lines  ultimately  intersect, 

-T-  =  0,  and   ̂   constant.     If  these   surfaces   be   bent   so   that   <j>  =  0,  the   whole   of 

the  generating  lines  will  lie  in  one  plane,  and  their  ultimate  intersections  will 

form  a  plane  curve.  The  surface  is  thus  reduced  to  one  plane,  and  therefore 

belongs  to  the  class  usually  described  as  "developable  surfaces."  The  form  of  a 
developable  surface  may  be  defined  by  means  of  the  three  quantities  0,  a-  and 
(f>.  The  generating  lines  form  by  their  ultimate  intersections  a  curve  of  double 

curvature  to  which  they  are  all  tangents.  This  curve  has  been  called  the 

cuspidal    edge.       The    length    of    this    curve   is   represented   by   a,    its    absolute 

curvature  at  any  point  by  -j-  ,  and  its  torsion  at  the  same  point  by  ■—  . 

When  the  surface  is  developed,  the  cuspidal  edge  becomes  a  plane  curve, 
and  every  part  of  the  surface  coincides  with  the  plane.  But  it  does  not  follow 

that  every  part  of  the  plane  is  capable  of  being  bent  into  the  original  form 

of  the  surface.  This  may  be  easily  seen  by  considering  the  surface  when  the 

position  of  the  cuspidal  edge  nearly  coincides  with  the  plane  curve  but  is  not 
confounded  with  it.  It  is  evident  that  if  from  any  point  in  space  a  tangent 

can  be  drawn  to  the  cuspidal  edge,  a  sheet  of  the  surface  passes  through  that 

point.  Hence  the  number  of  sheets  which  pass  through  one  point  is  the  same 

as  the  number  of  tangents  to  the  cuspidal  edge  which  pass  through  that 
point ;  and  since  the  same  is  true  in  the  limit,  the  number  of  sheets  which 

coincide  at  any  point  of  the  plane  is  the  same  as  the  number  of  tangents 

which  can  be  drawn  from  that  point  to  the  plane  curve.  In  constructing  a 
developable  surface  of  paper,  we  must  remove  those  parts  of  the  sheet  from 

which  no  real  tangents  can  be  drawn,  and  provide  additional  sheets  where  more 
than  one  tangent  can  be  drawn. 

In  the  case  of  developable  surfaces  we  see  the  importance  of  attending  to 

the  position  of  the  lines  of  bending;  for  though  all  developable  surfaces  may 
be  produced  from  the  same  plane  surface,  their  distinguishing  properties  depend 
on  the  form  of  the  plane   curve  which  determines  the  lines  of  bending. 
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II. 

On  the  Bending  of  Surfaces  of  Revolution. 

In  the  cases  previously  considered,  the  bending  in  one  part  of  the  surface 

may  take  place  independently  of  that  in  any  other  part.  In  the  case  now 
before  us  the  bending  must  be  simultaneous  over  the  whole  surface,  and  its 

nature  must  be  investigated  by  a  different  method. 

The  position  of  any  point  P  on  a  surface  of  revolution  may  be  deter- 
mined by  the  distance  FV  from  the  vertex,  measured 

along  a  generating  line,  and  the  angle  AVO  which 

the  plane  of  the  generating  line  makes  with  a  fixed 

plane  through  the  axis.  Let  FV=s  and  AVO  =  6. 
Let  r  be  the  distance  {Pp)  of  P  from  the  axis ;  r 

will  be  a  function  of  s  depending  on  the  form  of  the 
generating  curve. 

Now  consider  the  small  rectangular  element  of  the  surface  at  P.  Its  length 
PR  =  Ss,  and  its  breadth  PQ  =  rhd,  where  r  is  a  function  of  s. 

If  in  another  surface  of  revolution  r  is  some  other  function  of  s,  then  the 

length  and  breadth  of  the  new  element  will  be  hs  and  rB$',  and  if 

r  =  /xr,     and    0'  =  -0, 
rze'=rze, 

and  the  dimensions  of  the  two  elements  will  be  the  same. 

Hence  the  one  element  may  be  applied  to  the  other,  and  the  one  surface 

may  be  applied  to  the  other  surface,  element  to  element,  by  bending  it.  To 
effect  this,  the  surface  must  be  divided  by  cutting  it  along  one  of  the  generating 

lines,  and  the  parts  opened  out,  or  made  to  overlap,  according  as  /x  is  greater 
or  less  than  unity. 

To  find  the  effect  of  this  transformation  on  the  form  of  the  surface  we 

must  find  the  equation  to  the  original  form  of  the  generating  line  in  terms  of 

6"  and  r,  then  putting  /  =  /ir,  the  equation  between  s  and  r  will  give  the  form 
of  the  generating  line  after  bending. 
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When   /x  is  greater  than  1  it  may  happen   that  for   some   values  of  5,  y-  is 

greater  than  -.     In  this  case 

-j-  =  fi-j-  is  greater  than  1  ; 

a   result   which    indicates    that    the   curve   becomes    impossible   for  such  values  of 

s  and  ft. 

The  transformation  is  therefore  impossible  for  the  corresponding  part  of 

the  surface.  If,  however,  that  portion  of  the  original  surface  be  removed,  the 

remainder  may  be  subjected  to  the  required  transformation. 

The  theory  of  bending  when  apphed  to  the  case  of  surfaces  of  revolution 

presents  no  geometrical  difficulty,  and  little  variety;  but  when  we  pass  to 

the  consideration  of  surfaces  of  a  more  general  kind,  we  discover  the  insufficiency 

of  the  methods  hitherto  employed,  by  the  vagueness  of  our  ideas  with  respect 

to  the  nature  of  bending  in  such  cases.  In  the  former  case  the  bending  is 

of  one  kind  only,  and  depends  on  the  variation  of  one  variable ;  but  the 

surfaces  we  have  now  to  .consider  may  be  bent  in  an  infinite  variety  of  ways, 

depending  on  the  variation  of  three  variables,  of  which  we  do  not  yet  know  the 

nature  or  interdependence. 

We  have  therefore  to  discover  some  method  sufficiently  general  to  be  appli- 

cable to  every  possible  case,  and  yet  so  definite  as  to  limit  each  particular  case 

to  one  kind  of  bending  easily  imderstood. 

The  method  adopted  in  the  following  investigations  is  deduced  from  the 

consideration  of  the  surface  as  the  limit  of  the  inscribed  polyhedron,  when  the 

size  of  the  sides  is  indefinitely  diminished,  and  their  number  indefinitely  increased. 

A  method  is  then  described  by  which  such  a  polyhedron  may  be  inscribed 

in  any  surface  so  that  all  the  sides  shall  be  triangles,  and  aU  the  solid  angles 

composed  of  six  plane  angles. 

The  problem  of  the  bending  of  such  a  polyhedron  is  a  question  of  trigo- 

nometry, and  equations  might  be  found  connecting  the  angles  of  the  different 

edges  which  meet  in  each  soHd  angle  of  the  polyhedron.     It  will  be  shewn  that 
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the  conditions  thus  obtained  would  be  equivalent  to  three  equations  between 

the  six  angles  of  the  edges  belonging  to  each  solid  angle.  Hence  three  addi- 
tional conditions  would  be  necessary  to  determine  the  value  of  every  such  angle, 

and  the  problem  would  remain  as  indefinite  as  before.  But  if  by  any  means 

we  can  reduce  the  number  of  edges  meeting  in  a  point  to  four,  only  one  con- 

dition would  be  necessary  to  determine  them  all,  and  the  problem  would  be 

reduced  to  the  consideration  of  one  kind  of  bending  only. 

This  may  be  done  by  drawing  the  polyhedron  in  such  a  manner  that  the 

planes  of  adjacent  triangles  coincide  two  and  two,  and  form  quadrilateral  facets, 

four  of  which  meet  in  every  solid  angle.  The  bending  of  such  a  polyhedron 

can  take  place  only  in  one  way,  by  the  increase  of  the  angles  of  two  of  the 

edges  which  meet  in  a  point,  and  the  diminution  of  the  angles  of  the  other  two. 

The  condition  of  such  a,  polyhedron  being  inscribed  in  any  surface  is  then 

found,  and  it  is  shewn  that  when  two  forms  of  the  same  surface  are  given, 

a  perfectly  definite  rule  may  be  given  by  which  two  corresponding  polyhedrons 

of  this  kind  may  be  inscribed,  one  in  each  surface. 

Since  the  kind  of  bending  completely  defines  the  nature  of  the  quadrilateral 

polyhedron  which  must  be  described,  the  lines  formed  by  the  edges  of  the 

quadrilateral  may  be  taken  as  an  indication  of  the  kind  of  bending  performed 
on  the  surface. 

These  lines  are  therefore  defined  as  "  Lines  of  Bending." 
When  the  lines  of  bending  are  given,  the  forms  of  the  quadrilateral  facets 

are  completely  determined  ;  and  if  we  know  the  angle  which  any  two  adjacent 

facets  make  with  one  another,  we  may  determine  the  angles  of  the  three  edges 

which  meet  it  at  one  of  its  extremities.  From  each  of  these  we  may  find  the 

angles  of  three  other  edges,  and  so  on,  so  that  the  form  of  the  polyhedron 

after  bending  will  be  completely  determined  when  the  angle  of  one  edge  is  given. 

The  bending  is  thus  made  to  depend  on  the  change  of  one  variable  only. 

In  this  way  the  angle  of  any  edge  may  be  calculated  from  that  of  any 

given  edge ;  but  since  this  may  be  done  in  two  different  ways,  by  passing 

along  two  different  sets  of  edges,  we  must  have  the  condition  that  these  results 

may  be  consistent  with  each  other.  This  condition  is  satisfied  by  the  method 

of  inscribing  the  polyhedron.  Another  condition  will  be  necessary  that  tlie 

change  of  the  angle  of  any  edge  due  to  a  small  change  of  the  given  angle, 

produced  by  bending,  may  be  the  same  by  both  calculations.  This  is  the  con- 

dition   of   "  Instantaneous  Lines  of   Bending."     That    tliis    condition    mav    ccntinue 
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to  be  satisfied  during  the  whole  process  we  must  have  another,  which  is  the 

condition  for  "  Permanent  Lines  of  Bending." 
The  use  of  these  lines  of  bending  in  simplifying  the  theory  of  surfaces  is 

the  only  part  of  the  present  method  which  is  new,  although  the  investigations 
connected  with  them  naturally  led  to  the  employment  of  other  methods  which 

had  been  used  by  those  who  have  already  treated  of  this  subject.  A  state- 
ment of  the  principal  methods  and  results  of  these  mathematicians  will  save 

repetition,  and  will  indicate  the  different  points  of  view  under  which  the 
subject  may  present  itself. 

The  first  and  most  complete  memoir  on  the  subject  is  that  of  M.  Gauss, 
already  referred  to. 

The  method  which  he  employs  consists  in  referring  every  point  of  the 
surface  to  a  corresponding  point  of  a  sphere  whose  radius  is  unity.  Normals 
are  drawn  at  the  several  points  of  the  surface  toward  the  same  side  of  it, 

then  lines  drawn  through  the  centre  of  the  sphere  in  the  direction  of  each  of 

these  normals  intersect  the  surface  of  the  sphere  in  points  corresponding  to 
those  points  of  the  original  surface  at  which  the  normals  were  drawn. 

If  any  line  be  drawn  on  the  surface,  each  of  its  points  will  have  a 

corresponding  point  on  the  sphere,  so  that  there  will  be  a  corresponding  Hne 
on  the  sphere. 

If  the  line  on  the  surface  return  into  itself,  so  as  to  enclose  a  finite  area 

of  the  surface,  the  corresponding  curve  on  the  sphere  will  enclose  an  area  on 
the  sphere,  the  extent  of  which  will  depend  on  the  form  of  the  surface. 

This  area  on  the  sphere  has  been  defined  by  M.  Gauss  as  the  measure  of 

the  "entire  curvature"  of  the  area  on  the  surface.  This  mathematical  quantity 
is  of  great  use  in  the  theory  of  surfaces,  for  it  is  the  only  quantity  connected 
with  curvature  which  is  capable  of  being  expressed  as  the  sum  of  all  its  parts. 

The  sum  of  the  entire  curvatures  of  any  number  of  areas  is  the  entire 
curvature  of  their  sum,  and  the  entire  curvature  of  any  area  depends  on  the 
form  of  its  boundary  only,  and  is  not  altered  by  any  change  in  the  form  of 
the  surface  within  the  boundary  line. 

The  curvature  of  the  surface  may  even  be  discontinuous,  so  that  we  may 

speak  of  the  entire  curvature  of  a  portion  of  a  polyhedron,  and  calculate  its 
amount. 

If  the  dimensions  of  the  closed  curve  be  diminished  so  that  it  may  be 
treated  as  an  element  of  the  surface,  the  ultimate  ratio  of  the  entire  curvature 
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to    the    area    of    the    element    on    the    surface  is   taken   as   the    measure    of  the 

"  specific  curvature  "  at  that  point  of  the  surface. 

The  terms  "entire"  and  "specific"  curvature  when  used  in  this  paper  are 
adopted  from  M.  Gauss,  although  the  use  of  the  sphere  and  the  areas  on  its 
surface  formed  an  essential  part  of  the  original  design.  The  use  of  these  terms 
will  save  much  explanation,  and  supersede  several  very  cumbrous  expressions. 

M.  Gauss  then  proceeds  to  find  several  analytical  expressions  for  the  measure 
of  specific  curvature  at  any  point  of  a  surface,  by  the  consideration  of  three 
points  very  near  each  other. 

The  co-ordinates  adopted  are  first  rectangular,  x  and  y,  or  x,  y  and  z,  being 
regarded  as  independent  variables. 

Then  the  points  on  the  surface  are  referred  to  two  systems  of  curves  drawn 
on  the  surface,  and  their  position  is  defined  by  the  values  of  two  independent 
variables  p  and  q,  such  that  by  varying  p  while  q  remains  constant,  we  obtain 
the  different  points  of  a  line  of  the  first  system,  while  p  constant  and  q 
variable  defines  a  line  of  the  second  system. 

By  means  of  these  variables,  points  on  the  surface  may  be  referred  to  lines 
on  the  surface  itself  instead  of  arbitrary  co-ordinates,  and  the  measure  of  cur- 

vature may  be  found  in  terms  of  p  and  q  when  the  surface  is  known. 
In  this  way  it  is  shewn  that  the  specific  curvature  at  any  point  is  the 

reciprocal  of  the  product  of  the  principal  radii  of  curvature  at  that  point,  a 
result  of  great  interest. 

From  the  condition  of  bending,  that  the  length  of  any  element  of  the 
curve  must  not  be  altered,  it  is  shewn  that  the  specific  curvature  at  any  point 
is  not  altered  by  bending. 

The   rest   of   the   memoir   is    occupied    with    the   consideration   of   particular 
modes  of  describing  the   two  systems   of  lines.     One   case   is   when   the   lines   of. 

the  first  system  are  geodesic,  or  "shortest"   lines  having  their  origin  in  a  point, 
and  the  second  system  is  drawn  so  as  to   cut   off  equal   lengths   from   the  curv^es 
of  the  first  system. 

The  angle  which  the  tangent  at  the  origin  of  a  line  of  the  first  system 
makes  with  a  fixed  line  is  taken  as  one  of  the  co-ordinates,  and  the  distance 
of  the  point  measured  along  that  line  as  the  other. 

It  is  shewn  that  the  two  systems  intersect  at  right  angles,  and  a  simple 
expression  is  found  for  the  specific  curvature  at  any  point. 

M.    Liouville  (Journal,   Tom.  xii.)    has   adopted  a   different   mode   of  simpli- 
VOL.  I.  22 
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tying  the  problem.  He  has  shewn  that  on  every  surface  it  is  possible  to  find 

two  systems  of  curves  intersecting  at  right  angles,  such  that  the  length  and 

breadth  of  every  element  into  which  the  surface  is  thus  divided  shall  be  equal, 

and  that  an  infinite  number  of  such  systems  may  be  found.  By  means  of  these 

curves  he  has  found  a  much  simpler  expression  for  the  specific  curvature  than 

that  given  by  M.  Gauss. 

He  has  also  given,  in  a  note  to  his  edition  of  Monge,  a  method  of  testing 

two  given  surfaces  in  order  to  determine  whether  they  are  applicable  to  one 

another.  He  first  draws  on  both  surfaces  lines  of  equal  specific  curvature,  and 

determines  the  distance  between  two  corresponding  consecutive  lines  of  curvature 
in  both  surfaces. 

If  by  assuming  the  origin  properly  these  distances  can  be  made  equal  for 

every  part  of  the  surface,  the  two  surfaces  can  be  applied  to  each  other.  He 

has  developed  the  theorem  analytically,  of  which  this  is  only  the  geometrical 

interpretation. 

When  the  lines  of  equal  specific  curvature  are  equidistant  throughout  their 

whole  length,  as  in  the  case  of  surfaces  of  revolution,  the  surfaces  may  be 

applied  to  one  another  in  an  infinite  variety  of  ways. 

When  the  specific  curvature  at  every  point  of  the  surface  is  positive  and 

equal  to  a^,  the  surface  may  be  applied  to  a  sphere  of  radius  a,  and  when  the 

specific  curvature  is  negative  =  —a"  it  may  be  applied  to  the  surface  of  revo- 
lution which  cuts  at  right  angles  all  the  spheres  of  radius  a,  and  whose  centres 

are  in  a  straight  line. 

M.  Bertrand  has  given  in  the  Xlllth  Vol.  of  Liouville's  Journal  a  very 
simple  and  elegant  proof  of  the  theorem  of  M.  Gauss  about  the  product  of 
the  radii  of  curvature. 

He  supposes  one  extremity  of  an  inextensible  thread  to  be  fixed  at  a  point 

in  a  surface,  and  a  closed  curve  to  be  described  on  the  surface  by  the  other 

extremity,  the  thread  being  stretched  all  the  while.  It  is  evident  that  the 

length  of  such  a  curve  cannot  be  altered  by  bending  the  surface.  He  then 

calculates  the  length  of  this  curve,  considering  the  length  of  the  thread  small, 

and  finds  that  it  depends  on  the  product  of  the  principal  radii  of  curvature 

of  the  surface  at  the  fixed  point.  His  memoir  is  followed  by  a  note  of 

M.  Diguet,  who  deduces  the  same  result  from  a  consideration  of  the  area  of 

the  same  curve  ;  and  by  an  independent  memoir  of  M.  Puiseux,  who  seems  to 

give  the  same  proof  at  somewhat  greater  length. 
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Note.  Since  this  paper  was  written,  I  have  seen  the  Rev.  Professor  Jellett's  Memoir,  On 
the  Properties  of  Inextensible  Surfaces.  It  is  to  be  found  in  the  Transactions  of  the  Royal  Irish 
Academy,  Vol.  XXII.  Science,  &c.,  and  was  read  May  23,  18.53. 

Professor  Jellett  has  obtained  a  system  of  three  partial  differential  equations  which  express 

the  conditions  to  which  the  displacements  of  a  continuous  inextensible  membrane  are  subject. 
From  these  he  has  deduced  the  two  theorems  of  Gauss,  relating  to  the  invariability  of  the  product 

of  the  radii  of  curvature  at  any  point,  and  of  the  "  entire  curvature"  of  a  finite  portion  of  the surface. 

He  has  then  applied  his  method  to  the  consideration  of  cases  in  which  the  flexibihty  of  the 

surface  is  limited  by  certain  conditions,  and  he  has  obtained  the  following  results  : — 

If  the  displacements  of  an  inextensible  surface  he  all  parallel  to  the  same  plane,  the  mrface 
moves  as  a  rigid  body. 

Or,  more  generally, 

If  the  movement  of  an  inextensible  surface,  parallel  to  any  one  line,  be  that  of  a  rigid  body,  the 
entire  movement  is  that  of  a  rigid  body. 

The  following  theorems  relate  to  the  case  in  which  a  curve  traced  on  the  surface  is  rendered 

rigid  :— 

//  any  curve  be  traced  upon  an  inextensible  surface  whose  principal  radii  of  curvature  are  finite 

and  of  the  same  sign,  and  if  this  curve  he  rendered  immoveable,  the  entire  surface  will  become 
immoveable  also. 

In  a  developable  surface  composed  of  an  inextensible  membrane,  any  one  of  its  rectilinear 
sections  may  be  fixed  without  destroying  the  fiexibility  of  the  membrane. 

In  convexo-concave  surfaces,  there  are  two  directions  passing  through  every  point  of  the 
surface,  such  that  the  curvature  of  a  normal  section  taken  in  these  directions  vanishes.  We 

may  therefore  conceive  the  entire  surface  to  be  crossed  by  two  series  of  curves,  such  that 

a  tangent  drawn  to  either  of  them  at  any  point  shall  coincide  with  one  of  these  direc- 

tions. These  curves  Professor  Jellett  has  denominated  Curves  of  Flexure,  from  the  following 
properties : — 

Any  curve  of  fiexure  may  he  fi^ed  without  destroying  the  fiexibility  of  the  surface. 

If  an  arc  of  a  curve  traced  upon  an  inextensible  surface  be  rendered  fixed  or  rigid,  the  entire  of 
the  quadrilateral,  formed  by  drauring  the  two  curves  of  fiexure  through  each  extremity  of  the  curve, 
become  fixed  or  rigid  also. 

Professor  Jellett  has  also  investigated  the  properties  of  partially  inextensible  surfaces,  and 
of  thin  material  laminae  whose  extensibility  is  small,  and  in  a  note  he  has  demonstrated  the 
following  theorem : — 

If  a  closed  oval  surface  he  perfectly  inextensible,  it  is  also  perfectly  rigid. 

A  demonstration  of  one  of  Professor  Jellett's  theorems  will  be  found  at  the  end  of  this  paper. 
J.  C.  M. 

Aug.  30,   1851 
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On  the  properties  of  a  Surface  considered  as  the  limit  of  the  inscribed 
Polyhedron. 

1.  To  inscribe  a  polyhedron  in  a  given  surface,  aU  whose  sides  shall  he 

triangles,  and  all  whose  solid  angles  shall  he  hexahedral. 

On  the  given  surface  describe  a  series  of  curves 

according  to  any  assumed  law.  Describe  a.  second  series 

intersecting  these  in  any  manner,  so  as  to  divide  the 
whole  surface  into  quadrilaterals.  Lastly,  describe  a 

third  series  (the  dotted  lines  in  the  figure),  so  as  to 

pass  through  all  the  intersections  of  the  first  and  second 

series,  forming  the  diagonals  of  the  quadrilaterals. 

The  surface  is  now  covered  with  a  network  of  curvilinear  triangles.  The 

plane  triangles  which  have  the  same  angular  points  will  form  a  polyhedron 

fulfilling  the  required  conditions.  By  increasing  the  number  of  the  curves  in 

each  series,  and  diminishing  their  distance,  we  may  make  the  polyhedron 

approximate  to  the  surface  without  limit.  At  the  same  time  the  polygons 

formed  by  the  edges  of  the  polyhedron  will  approximate  to  the  three  systems 

of  intersecting  curves. 

2.  To  find  the  measure  of  the  ''entire  curvature"  of  a  solid  angle  of  the 
'polyhedron,  and  of  a  finite  portion  of  its  surface. 

From  the  centre  of  a  sphere  whose  radius  is  unity  draw  perpendiculars  to 

the  planes  of  the  six  sides  forming  the  solid  angle.  These  lines  will  meet  the 

surface  in  six  points  on  the  same  side  of  the  centre,  which  being  joined  by 

arcs  of  great  circles  will  form  a  hexagon  on  the  surface  of  the  sphere. 

The  area  of  this  hexagon  represents  the  entire  curvature  of  the  solid  angle. 

It  is  plain  by  spherical  geometry  that  the  angles  of  this  hexagon  are  the 

supplements  of  the  six  plane  angles  which  form  the  solid  angle,  and  that  the 

arcs  forming  the  sides  are  the  supplements  of  those  subtended  by  the  angles 

of  the  six  edges  formed  by  adjacent  sides. 

The  area  of  the  hexagon  is  equal  to  the  excess  of  the  sum  of  its  angles 

above  eight  right  angles,  or  to  the  defect  of  the  sum  of  the  six  plane  angles 

from    four    right    angles,     which    is    the    same    thing.      Since   these   angles  are 
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invariable,  the  bending  of  the  polyhedron  cannot  alter  the  measure  of  curvature 

of  each  of  its  solid  angles. 

If  perpendiculars  be  drawn  to  the  sides  of  the  polyhedron  which  contain 

other  solid  angles,  additional  points  on  the  sphere  will  be  found,  and  if  these 

be  joined  by  arcs  of  great  circles,  a  network  of  hexagons  will  be  formed  on 

the  sphere,  each  of  which  corresponds  to  a  solid  angle  of  the  polyhedron  and 

represents  its  "  entire  curvature." 
The  entire  curvature  of  any  assigned  portion  of  the  polyhedron  is  the  sum 

of  the  entire  curvatures  of  the  solid  angles  it  contains.  It  is  therefore  repre- 
sented by  a  polygon  on  the  sphere,  which  is  composed  of  all  the  hexagons 

corresponding  to  its  solid  angles. 

If  a  polygon  composed  of  the  edges  of  the  polyhedron  be  taken  as  the 

boundary  of  the  assigned  portion,  the  sum  of  its  exterior  angles  will  be  the 

same  as  the  sum  of  the  exterior  angles  of  the  polygon  on  the  sphere ;  but 
the  area  of  a  spherical  polygon  is  equal  to  the  defect  of  the  sum  of  its 

exterior  angles  from  four  right  angles,  and  this  is  the  measure  of  entire  curva- 
ture. 

Therefore  the  entire  curvature  of  the  portion  of  the  polyhedron  enclosed 

by  the  polygon  is  equal  to  the  defect  of  the  sum  of  its  exterior  angles  from 
four  right  angles. 

Since  the  entire  curvature  of  each  solid  angle  is  unaltered  by  bending, 
that   of  a  finite  portion  of  the  surface  must  be  also  invariable. 

3.  On  the  "  Conic  of  Contact,"  and  its  use  in  determining  the  curvature 
of  normal  sections  of  a  surface. 

Suppose  the  plane  of  one  of  the  triangular  facets  of  the  polyhedron  to 
be  produced  till  it  cuts  the  surface.  The  form  of  the  curve  of  intersection 

\7ill  depend  on  the  nature  of  the  surface,  and  when  the  size  of  the  triangle 
is  indefinitely  diminished,  it  will  approximate,  to  the  form  of  a  conic  section. 

For  we  may  suppose  a  surface  of  the  second  order  constructed  so  as  to 

have  a  contact  of  the  second  order  with  the  given  surface  at  a  point  within 
the  angular  points  of  the  triangle.  The  curve  of  intersection  with  this  surface 

will  be  the  conic  section  to  which  the  other  curve  of  intersection  approaches. 

This  curve  will  be  henceforth  called  the  "  Conic  of  Contact,"  for  want  of  a  better 
name. 
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To  Jind  tJie  radius  of  curvature  of  a  normal  section 

of  the  surface. 

Let  ARa  be  the  conic  of  contact,  C  its  centre,  and 

CP  perpendicular  to  its  plane.  rPR  a  normal  section,  and 

0  its  centre  of  curvature,   then 

=  1.^   in   the  limit,  when  CR  and  PR  coincide, 
^  CP 

-s  CP' 

or  calling  CP  the  "sa,gitta,"  we  
have  this  theorem: 

"The  radius  of  curvature  of  a  normal  section  is  equal  to  the  square  of 

the  corresponding  diameter  of  the  conic  of  contact  divided  by  eight  times  the 

sagitta." 

4.  To  insciihe  a  polyhedron  in  a  given  surface,  all  ivhose  sides  shcdl  he 

plane  quadrilaterals,  and  all  whose  solid  angles  shall   he  tetraliedral. 

Suppose  the  three  systems  of  curves  drawn  as  described  in  sect.  (1),  then 

each  of  the  quadrilaterals  formed  by  the  intersection  of  the  first  and  second 

systems  is  divided  into  two  triangles  by  the  third  system.  If  the  planes  of 

these  two  triangles  coincide,  they  form  a  plane  quadrilateral,  and  if  every  such 

pair  of  triangles  coincide,  the  polyhedron  will  satisfy  the  required  condition. 

Let  ahc  be  one  of  these  triangles,  and  acd  the 

other,  which  is  to  be  in  the  same  plane  with  ahc. 

Then  if  the  plane  of  ahc  be  produced  to  meet  the 

surface  in  the  conic  of  contact,  the  curve  will  pass 

through  ahc  and  d.  Hence  ahcd  must  be  a  quad- 
rilateral inscribed  in  the  conic  of  contact. 

But  since  ah  and  dc  belong  to  the  same  system  of  curves,  they  will  be 

ultimately  parallel  when  the  size  of  the  facets  is  diminished,  and  for  a  similar 

reason,  ad  and  ho  will  be  ultimately  parallel.  Hence  ahcd  will  become  a  paral- 

lelogram, but  the  sides  of  a  parallelogram  inscribed  in  a  conic  are  parallel  to 

conjugate  diameters. 
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Therefore  the  directions  of  two  curves  of  the  first  and  second  system  at 

their  point  of  intersection  must  be  parallel  to  two  conjugate  diameters  of  the 
conic  of  contact  at  that  point  in  order  that  such  a  polyhedron  may  be  inscribed. 

Systems  of  curves  intersecting  in  this  manner  will  be  referred  to  as  "conju- 

gate systems." 

5.  On  the  elementary  conditions  of  the  applicahilitij  of  two  surfaces. 

It  is  evident,  that  if  one  surface  is  capable  of  being  appUed  to  another  by 

bending,  every  point,  line,  or  angle  in  the  first  has  its  corresponding  point,  line, 
or  angle  in  the  second. 

If  the  transformation  of  the  surface  be  eflfected  without  the  extension  or 

contraction  of  any  part,  no  line  drawn  on  the  surface  can  experience  any  change 

in  its  length,  and  if  this  condition  be  fulfilled,  there  can  be  no  extension  or 
contraction. 

Therefore  the  condition  of  bending  is,  that  if  any  line  whatever  be  drawn 

on  the  first  surface,  the  corresponding  curve  on  the  second  surface  is  equal  to  it 

in  length.     All  other  conditions  of  bending  may  be  deduced  from  this. 

6.  If  two  curves  on  the  first  surface  intersect,  the  corresponcling  curves  on  the 
second  surface  intersect  at  the  same  angle. 

On  the  first  surface  draw  any  curve,  so  as  to  form  a  triangle  with  the 

curves  already  drawn,  and  let  the  sides  of  this  triangle  be  indefinitely  dimin- 
ished, by  making  the  new  curve  approach  to  the  intersection  of  the  former 

curves.  Let  the  same  thing  be  done  on  the  second  surface.  We  shall  then 

have  two  corresponding  triangles  whose  sides  are  equal  each  to  each,  by  (5), 
and  since  their  sides  are  indefinitely  small,  we  may  regard  them  as  straight 

lines.  Therefore  by  Euclid  i.  8,  the  angle  of  the  first  triangle  formed  by  the 

intersection  of  the  two  curves  is  equal  to  the  corresponding  angle  of  the  second. 

7.  At  any  given  point  of  the  first  surface,  two  directions  can  he  found,  which 
are  conjugate  to  each  other  with  respect  to  the  conic  of  contact  at  that  point,  and 

continue  to  he  conjugate  to  each  other  when  tJie  first  surface  is  transformed  into  the 
second. 

For  let  the  first  surface  be  transferred,  without  changing  its  form,  to  a 

position  such  that  the  given  point  coincides  with  the  corresponding  point  of  the 
second  surface,  and  the   normal   to   the   first   surface   coincides   with   that    of   the 
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second  at  the  same  point.  Then  let  the  first  surface  be  turned  about  the  normal 

as  an  axis  till  the  tangent  of  any  line  through  the  point  coincides  with  the 
tangent  of  the  corresponding  line  in  the  second  surface. 

Then  by  (6)  any  pair  of  corresponding  lines  passing  through  the  point  will 
have  a  common  tangent,  and  will  therefore  coincide  in  direction  at  that  point. 

If  we  now  draw  the  conies  of  contact  belonging  to  each  surface  we  shall 

have  two  conies  with  the  same  centre,  and  the  problem  is  to  determine  a  pair 
of  conjugate  diameters  of  the  first  which  coincide  with  a  pair  of  conjugate 
diameters  of  the  second.  The  analytical  solution  gives  two  directions,  real, 
coincident,  or  impossible,  for  the  diameters  required. 

In  our  investigations  we  can  be  concerned  only  with  the  case  in  which  these 
directions  are  real. 

When  the  conies  intersect  in  four  points,  P,  Q,  R,  S,  FQES  is  a  parallelo- 
gram   inscribed   in    both    conies,    and  the   axes    CA,    CB, 

parallel  to  the  sides,  are  conjugate  in  both  conies. 

If  the  conies  do  not  intersect,  describe,  through  any 
point  P  of  the  second  conic,  a  conic  similar  to  and  con- 

centric with  the  first.  If  the  conies  intersect  in  four 

points,  we  must  proceed  as  before;  if  they  touch  in  two 

points,  the  diameter  through  those  points  and  its  conju- 
gate must  be  taken.  If  they  intersect  in  two  points  only, 

then  the  problem  is  impossible ;  and  if  they  coincide 

altogether,  the  conies  are  similar  and  similarly  situated, 
and  the  problem  is  indeterminate. 

8.  Two  surfaces  being  given  as  before,  one  pair  of  conjugate  systems  of 
curves  may  be  drawn  on  the  first  surface,  which  shall  correspond  to  a  pair  of 
conjugate  systems  on  the  second  surface. 

By  article  (7)  we  may  find  at  every  point  of  the  first  surface  two 
directions  conjugate  to  one  another,  corresponding  to  two  conjugate  directions  on 
the  second  surface.  These  directions  indicate  the  directions  of  the  two  systems 
of  curves  which  pass  through  that  point. 

Knowing  the  direction  which  every  curve  of  each  system  must  have  at  every 
point  of  its  course,  the  systems  of  curves  may  be  either  drawn  by  some  direct 
geometrical  method,  or  constructed  from  their  equations,  which  may  be  found  by 
solving  their  difierential  equations. 
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Two  systems  of  curves  being  drawn  on  the  first  surface,  the  corresponding 

systems  may  be  drawn  on  the  second  surface.  These  systems  being  conjugate 

to  each  other,  fulfil  the  condition  of  Art.  (4),  and  may  therefore  be  made  the 

means  of  constructing  a  polyhedron  with  quadrilateral  facets,  by  the  bending  of 

which  the  transformation  may  be  effected. 

These  systems  of  curves  will  be  referred  to  as  the  "first  and  second  systems 

of  Lines  of  Bending." 

9.     General  considerations  applicable  to  Lines  of  Bending. 

It  has  been  shewn  that  when  two  forms  of  a  surface  are  given,  one  of 

which  may  be  transformed  into  the  other  by  bending,  the  nature  of  the  Hnes 

of  bending  is  completely  determined.  Supposing  the  problem  reduced  to  its 

analyticid  expression,  the  equations  of  these  curves  would  appear  under  the 

form  of  double  solutions  of  differential  equations  of  the  first  order  and  second 

degree,  each  of  which  would  involve  one  arbitrary  quantity,  by  the  variation  of 

which  we  should  pass  from  one  curve  to  another  of  the  same  system. 

Hence  the  position  of  any  curve  of  either  system  depends  on  the  value 

assumed  for  the  arbitrary  constant ;  to  distinguish  the  systems,  let  us  call  one 

the  first  system,  and  the  other  the  second,  and  let  all  quantities  relating  to 

the  second  system  be  denoted  by  accented  letters. 

Let  the  arbitrary  constants  introduced  by  integration  be  u  for  the  first 

system,  and  u    for  the  second. 

Then  the  value  of  lo  will  determine  the  position  of  a  curve  of  the  first 

system,  and  that  of  u  a  curve  of  the  second  system,  and  therefore  u  and  u  will 

suffice  to  determine  the  point  of  intersection  of  these  two  curves. 

Hence  we  may  conceive  the  position  of  any  point  on  the  surface  to  be 

determined  by  the  values  of  u  and  u  for  the  curves  of  the  two  systems  which 

intersect  at  that  point. 

By  taking  into  account  the  equation  to  the  surface,  we  may  suppose  x,  y, 

and  2  the  co-ordinates  of  any  point,  to  be  determined  as  functions  of  the  two 

variables  u  and  u.  This  being  done,  we  shall  have  materials  for  calculating 

everything  connected  with  the  surface,  and  its  lines  of  bending.  But  before 

entering  on  such  calculations  let  us  examine  the  principal  properties  of  these  lines 
which  we  must  take  into  account. 

Suppose  a  series  of  values  to  be  given  to  u  and  u,  and  the  corresponding 
curves  to  be  drawn  on  the  surface. 

VOL,  I.  13 
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The  surface  will  then  be  covered  with  a  system  of  quadrilaterals,  the  size 

of  which  may  be  diminished  indefinitely  by  interpolating  values  of  u  and  u 

between  those  already  assumed;  and  in  the  limit  each  quadrilateral  may  be 

regarded  as  a  parallelogram  coinciding  with  a  facet  of  the  inscribed  polyhedron. 
The  length,  the  breadth,  and  the  angle  of  these  parallelograms  will  vary  at 

different  parts  of  the  surface,  and  will  therefore  depend  on  the  values  of  u 
and  It. 

The  curvature  of  a  line  drawn  on  a  surface  may  be  investigated  by  consider- 
ing the  curvature  of  two  other  lines  depending  on  it. 
The  first  is  the  projection  of  the  line  on  a  tangent  plane  to  the  surface  at 

a  given  point  in  the  line.  The  curvature  of  the  projection  at  the  point  of 
contact  may  be  called  the  tangential  cwvature  of  the  line  on  the  surface.  It 
has  also  been  called  the  geodesic  curvature,  because  it  is  the  measure  of  its 
deviation  from  a  geodesic  or  shortest  line  on  the  surface. 

The  other  projection  necessary  to  define  the  curvature  of  a  line  on  the 
surface  is  on  a  plane  passing  through  the  tangent  to  the  curve  and  the  normal 
to  the  surface  at  the  point  of  contact.  The  curvature  of  this  projection  at  that 
point  may  be   called   the   normal  cw^ature   of  the   line   on   the   surface. 

It  is  easy  to  shew  that  this  normal  curvature  is  the  same  as  the  curvature 

of  a  normal  section  of  the  surface  passing  through  a  tangent  to  the  curve  at 
the  same  point. 

10.     General  considerations  applicable  to  the  inscribed  polyhedron. 

When  two  series  of  lines  of  bending  belonging  to  the  first  and  second  systems 

have  been  described  on  the  surface,  we  may  proceed,  as  in  Art.  (l),  to  describe 
a  third  series  of  curves  so  as  to  pass  through  all  their  intersections  and  form 

the  diagonals  of  the  quadrilaterals  foi-med  by  the  first  pair  of  systems. 
Plane  triangles  may  then  be  constituted  within  the  surface,  having  these 

points  of  intersection  for  angles,  and  the  size  of  the  facets  of  this  polyhedron  may 
be  diminished  indefinitely  by  increasing  the  number  of  curves  in  each  series. 

But  by  Art.  (8)  the  first  and  second  systems  of  lines  of  bending  are  conju- 
gate to  each  other,  and  therefore  by  Art.  (4)  the  polygon  just  constructed  will 

have  every  pair   of  triangular   facets   in   the   same   plane,    and  may   therefore   be 
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considered  as  a  polyhedron  with  plane  quadrilateral  facets  all  whose  solid  angles 

are  formed  by  four  of  these  facets  meeting  in  a  point. 

When  the  number  of  curves  in  each  system  is  increased  and  their  distance 

diminished  indefinitely,  the  plane  facets  of  the  polyhedron  will  ultimately  coincide 

with  the  curved  surface,  and  the  polygons  formed  by  the  successive  edges  between 

the  facets,  will  coincide  with  the  lines  of  bending. 

These  quadrilaterals  may  then  be  considered  as  parallelograms,  the  length 

of  which  is  determined  by  the  portion  of  a  curve  of  the  second  system  inter- 
cepted between  two  curves  of  the  first,  while  the  breadth  is  the  distance  of 

two  curves  of  the  second  system  measured  along  a  curve  of  the  first.  The 

expressions  for  these  quantities  will  be  given  when  we  come  to  the  calculation  of 

our  results  along  with  the  other  particulars  which  we  only  specify  at  present. 

The  angle  of  the  sides  of  these  parallelograms  will  be  ultimately  the  same 

as  the  angle  of  intersection  of  the  first  and  second  systems,  which  we  may 

call  <f> ;  but  if  we  suppose  the  dimensions  of  the  facets  to  be  small  quantities 

of  the  first  order,  the  angles  of  the  four  facets  which  meet  in  a  point  will  difier 

from  the  angle  of  intersection  of  the  curves  at  that  point  by  small  angles  of 

the  first  order  depending  on  the  tangential  curvature  of  the  lines  of  bending. 

The  sum  of  these  four  angles  will  differ  from  four  right  angles  by  a  small 

angle  of  the  second  order,  the  circular  measure  of  which  expresses  the  entire 

curvature  of  the  solid  angle  as  in  Art.  (2). 

The  angle  of  inclination  of  two  adjacent  facets  will  depend  on  the  normal 

curvature  of  the  lines  of  bending,  and  will  be  that  of  the  projection  of  two  con- 

secutive sides  of  the  polygon  of  one  system  on  a  plane  perpendicular  to  a  side 

of  the  other  system. 

11.     Explanation  of  the  Notation   to   be   employed  in  calculation. 

Suppose  each  system  of  lines  of  bend- 

ing to  be  determined  by  an  equation  con- 

taining one  arbitrary  parameter. 

Let  this  parameter  be  u  for  the  first 

system,  and  u'  for  the  second. 
Let  two  curves,  one  from  each  system, 

be  selected  as  curves  of  reference,  and  let 

their  parameters  be  u^  and  u\. 
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Let  ON  and  OM  in  the  figure  represent  these  two  curves. 

Let  PM  be  any  curve  of  the  first  system  whose  parameter  is  u,  and  PN 

any  curve  of  the  second  whose  parameter  is  u,  then  their  intersection  P  may 

be  defined  as  the  point  (w,  u'),  and  all  quantities  referring  to  the  point  P  may 

be  expressed  as  functions  of  u  and  u. 

Let  PN,  the  length  of  a  curve  of  the  second  system  (u),  from  N  (wj  to  P 

(u),  be  expressed  by  s,  and  PM  the  length  of  the  curve  {u)  from  {u\)  to  (u),  by 

s\  then  s  and  s   will  be  functions  of  u  and  u. 

Let  (w  +  Sm)  be  the  parameter  of  the  curve  QF  of  the  first  system  consecu- 

tive to  PM.  Then  the  length  of  PQ,  the  part  of  the  curve  of  the  second  system 

intercepted  between  the  curves  (u)  and  (w  +  Sw),  will  be 

ds  ̂  

du 

Similarly  PR  may  be  expressed  by 
ds\  , 

These  values  of  PQ  and  PR  will  be  the  ultimate  values  of  the  length  and 

breadth  of  a  quadrilateral  facet. 

The  angle  between  these  lines  will  be  ultimately  equal  to  ̂ ,  the  angle  of 

intersection  of  the  system ;  but  when  the  values  of  8w  and  hu  are  considered  as 

finite  though  small,  the  angles  a,  6,  c,  d  of  the  facets  which  form  a  soHd  angle 

will  depend  on  the  tangential  curvature  of  the  two  systems  of  lines. 

Let  T  be  the  tangential  curvature  of  a  curve  of  the  first  system  at  the 

given  point  measured  in  the  direction  in  which  u  increases,  and  let  r\  that  of  the 

second  system,  be  measured  in  the  direction  in  which  xC  increases. 

Then  we  shall  have  for  the  values  of  the  four  plane  angles  which  meet  at  P, 

,      \  ds  ̂   ,      1   ds^ 

1  _,  1  c?/  ̂   .      1    ds  ̂  
~^  It  du  It  du      ' 

,       \  ds  rs  ,      \    ds  ̂ 

J      .  I  ds'      ,      1    ds  ̂ 
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These  values  are  correct  as  far  as  the  first  order  of  small  quantities.  Those 

corrections  which  depend  on  the  curvature  of  the  surface  are  of  the  second  order. 
Let  p  be  the  normal  curvature  of  a  curve  of  the  first  system,  and  p  that 

of  a  curve  of  the  second,  then  the  inclination  I  of  the  plane  facets  a  and  6, 

separated  by  a  curve  of  the  second  system,  will  be 

p  sin  ̂   du 
as  far  as  the  first  order  of  small  angles,  and  the  inclination  V  of  h  and  c  will  be 

7/  1  0^  ̂ 
/  =  -7—. — 7  -J-  ou 

p  Bin.<f>  du 
to  the  same  order  of  exactness. 

12.     On  the  corresponding  polygon  on  the  surface  of  the  sphere  of  reference. 

By  the  method  described  in  Art.  (2)  we  may 

find  a  point  on  the  sphere  corresponding  to  each 

facet  of  the  polyhedron. 

In  the  annexed  figure,  let  a,  b,  c,  d  be  the 

points  on  the  sphere  corresponding  to  the  four  facets 

which  meet  at  the  solid  angle  P.  Then  the  area 

of  the  spherical  quadrilateral  a,  h,  c,  d  will  be  the 
measure  of  the  entire  curvature  of  the  solid  angle  P. 

This  area  is  measured  by  the  defect  of  the  sum  of  the  exterior  angles 

from  four  right  angles  ;  but  these  exterior  angles  are  equal  to  the  four  angles 
a,  h,  c,  d,  which  form  the  solid  angle  P,  therefore  the  entire  curvature  is 

measured  by 
k  =  2'rr-{a  +  h  +  c-{-d). 

Since  a,  h,  c,  d  are  invariable,  it  is  evident,  as  in  Art.  (2),  that  the  entire 

curvature  at  P  is  not  altered  by  bending. 

By  the  last  article  it  appears  that  when  the  facets  are  small  the  angles  b 

and  d  are  approximately  equal  to  <j),  and  a  and  c  to  (tt  — ^),  and  since  the  sides 
of  the  quadrilateral  on  the  sphere  are  small,  we  may  regard  it  as  approximately 

a  plane  parallelogram  whose  angle  bad  =  <f). 

The  sides  of  this  parallelogram  will  be  I  and  I',  the  supplements  of  the 
angles  of  the  edges  of  the  polyhedron,  and  we  may  therefore  express  its  area 

as  a  plane  parallelogram 
k  =  IV  sin  <f>. 
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By  the  expression  for  I  and  V  in  the  last  article,  we  find 
,  1         ds  ds\    ̂   , 
k  =  — r-. — 7  J-  J-/  ou  du 

pp  sm<^  du  du 
for  the  entire  curvature  of  one  solid  angle. 

Since  the  whole  number  of  solid  angles  is  equal  to  the  whole  number  of 

facets,  we  may  suppose  a  quarter  of  each  of  the  facets  of  which  it  is  composed 

to  be  assigned  to   each  solid  angle.     The  area  of  these  will  be  the  same  as  that 
of  one  whole  facet,  namely, 

,  ds  ds'  o    ̂   , 
sm  9  -J-  T->  ou  ou  ; 

therefore  dividing  the   expression  for  k  by   this  quantity,  we  find  for  the  value 

of  the  specific  curvature  at  P 
1 

■^     pp  sm'<^ 

which    gives    the    specific    curvature   in   terms   of  the    normal   curvatures   of  the 

lines  of  bending  and  their  angle  of  intersection. 

13.  Further  reduction  of  this  expression  by  rmans  of  the  "  Conic  of  Con- 

tact" as  defined  in  Art.  (3). 

Let  a  and  b  be  the  semiaxes  of  the  conic  of  contact,  and  h  the  sagitta 

or  perpendicular  to  its  plane  from  the  centre  to  the  surface. 

Let  CP,  CQ  be  semidiameters  parallel  to  the 

lines  of  bending  of  the  first  and  second  systems,  and 
therefore  conjugate  to  each  other. 

By  (Art.  3), 

,  CP" 

p=^-hr 

and    p=i-j^; 

and  the  expression  for  p  in  Art.  (12),  becomes 

^~{CP.CQsm(t>)'' 
But    CP  .CQbukJ)  is   the   area   of    the    parallelogram    CPRQ,   which   is   one 

quarter    of    the    circumscribed    parallelogram,    and     therefore     by    a    well-known 
theorem 

CP  .CQsm4>  =  ah, 
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and  the  expression  for  p  becomes 

or  if  the  area  of  the  circumscribing  parallelogram  be  called  A, 

The  principal  radii  of  curvature  of  the  surface  are  parallel  to  the  axes  of 
the  conic  of  contact.     Let  H  and  i^  denote  these  radii,  then 

and  therefore  substituting  in  the  expression  for  p, 
1 

or  the  specific  curvature   is   the   reciprocal   of  the   product   of  the   principal   radii 
of  curvature. 

This  remarkable  expression  was  introduced  by  Gauss  in  the  memoir  referred 

to  in  a  former  part  of  this  paper.  His  method  of  investigation,  though  not 

80  elementary,  is  more  direct  than  that  here  given,  and  wUl  shew  how  this 
result  can  be  obtained  without  reference  to  the  geometrical  methods  necessary 

to  a  more  extended  inquiry  into  the  modes  of  bending. 

14.  0)1  the  variation  of  normal  curvature  of  the  lines  of  bending  as  we  pa^s 
from  one  point  of  the  surface  to  another. 

We  have  determined  the  relation  between  the  normal  curvatures  of  the 

lines  of  bending  of  the  two  systems  at  their  points  of  intersection;  we  have 
now  to  find  the  variation  of  normal  curvature  when  we  pass  from  one  hne  of 
the  first  system  to  another,  along  a  line  of  the  second. 

In  analytical  language  we  have  to  find  the  value  of 
du  \pj 

Referring  to  the  figure  in  Art.  (11),  we  shall  see  that  this  may  be  done 
if  we  can  determine  the  difierence  between  the  angle  of  inclination  of  the 

facets  a  and  h,  and  that  of  c  and  d  :  for  the  angle  I  between  a  and  b  is 

J         1        ds    5.  , 

psiJKp  du 
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and  therefore  the  difference  between  the  angle  of  a  and  b  and  that  of  c  and  d  is 

~  du      ~  du  \psm<f>  du'j 

whence  the  differential  of  p  with  respect  to  u  may  be  found 

We  must  therefore  find  U,  and  this  is  done  by  means  of  the  quadrilateral 

on  the  sphere  described  in  Art.  (12). 

15.     To  find  the  values  of  hi  and  U\ 

In  the  annexed  figure  let  ahcd  repre- 

sent the  small  quadrilateral  on  the  surface 

of  the  sphere.  The  exterior  angles  a,  h, 

c,  d  are  equal  to  those  of  the  four  facets 

which  meet  at  the  point  P  of  the  surface, 

and  the  sides  represent  the  angles  which 

the  planes  of  those  facets  make  with  each 
other ;   so  that 

ah  =  l,     lc  =  l\    cd  =  l  +  U,    da  =  l'  +  Br, 

and  the  problem  is  to  determine  Bl  and  hi"  in  terms  of  the  sides  I  and  V  and 
the  angles  a,  h,  c,  d. 

On  the  sides  ha,  he  complete  the  parallelogram  ahcd. 

Produce     ad  to  p,  so  that  ap  =  aS.     Join  Bp. 

Make      eq  =  cd  and  join  dq. 

then        Bl  =  cd-  ah, 

=  cq  —  ch, 

=  -(qo  +  oB), 

Now       qo  =  qd  tan  qdo 

=  cd  sin  qcd  cot  qod, 

but  cd  =  I  nearly,  sin  qcd  =  qcd==(e  +  h-7r)  and  qod  =  <f>; 

.'.  qo^l  (c +  h- it)  cot  <f>. 
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Also     oS  =  -—-^ — 
Sin  bop 

=  aB  (Bap)  — — 7 ^    ̂ '  8m<f> 

=  l'(a+h-7T)J-r. 

Substituting  the  values  of  a,  h,  c,  d  from  Art.  (11), 

Sl=  —  (qo  +  08) 

=  —I  —,  ̂ -  cot  <i>Su  —  V  — T—,  - — r  Bu. 
r   du        ̂   r  du   sm0 

Finally,  substituting  the  values  of  I,  V,  and  Bl  from  Art.  (14), 

d   (      \       ds"\  sj    5  ,  cot  (/)    cZs'   1    (i5  5.    ̂   ,  1         ds   I   ds'       ̂   , 
du  \p  sin  <p  du  /  p  sm  <f>  du  r    du  p  sm  <j>  du  r  du 

which  may  be  put  under  the  more  convenient  form 

—  n        ̂   =  —  1      /    1      ̂^'\      1   ds         ,      p  I   ds      1 
du^    °'^'~du     ̂   \sin <j>  du)      r   du        ̂      p'  r  du  sin  <^  ' 

and  from  the  value  of  Bl'  we  may  similarly  obtain 

d    ,,        '\  _  _^  1       /    1       ̂ \  ,i^     +^j_^i^      ̂  

du  ̂    ̂  ̂  '     du'     °  \sin  <f>  du)     r  du'        ̂      p  r   du   sin  (ft ' 

We  may  simplify  these  equations  by  putting  p   for  the  specific  curvature  of 

the  surface,  and  q  for  the  ratio     , ,  which  is  the  only  quantity  altered  by  bending. 

We  have  then 

p  =  — /   .  ,  .,      and  q  =  —,, 
^     pp  sm=<^'  ^     p 

whence     p'  =  q — ^^-r  ,  p'^  =   t-tj  y ^      ̂   p  sin  <f)  9.  P  s^  Y 
and  the  equations  become 

d  ,.        \      d  ,       (     ̂Tl'X      1    ds      ,  ,      2  ds      1 

In    this    way    we    may    reduce    the   problem   of    bending   a   surface   to   the 

consideration  of  one  variable  q,  by  means  of  the  lines  of  bending. 
VOL.  I.  14 

d_ 

du'
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16.     To   obtain  the  conditio  of  Instantaneous  lines  of  bending. 

We   have  now   obtained  tlie   values   of  the  differential  coefficients  of  q  with 

respect  to  each  of  the  variables  u,  u. 

From  the  equation 

we  might  find  an  equation  which  would  give  certain  conditions  of  lines  of 

bending.  These  conditions  however  would  be  equivalent  to  those  which  we  have 

already  assumed  when  we  drew  the  systems  of  lines  so  as  to  be  conjugate  to 
each  other. 

To  find  the  true  conditions  of  bending  we  must  suppose  the  form  of  the 

surface  to  vary  continuously,  so  as  to  depend  on  some  variable  t  which  we 

may  call  the  time. 

Of  the  difierent  quantities  which  enter  into  our  equations,  none  are  changed 

by  the  operation  of  bending  except  q,  so  that  in  differentiating  with  respect 

to  t  all  the  rest  may  be  considered  constant,  q  being  the  only  variable. 

Differentiating  the  equations  of  last  article  with  respect  to  t,  we  obtain 

d"     ,,        .      2  ds      1        d  ,,        . 

Whence 

c?"     ,,       .      2  ds'     1     I  d  ,.       . 

A^t'^^'^^^  = 

{.4 1- 1  si^)-'^  Tu  ̂,  ii'^^H^'o^'^'  1 1  ii^^  3^.<(">^*)- and 
(log  l) 

dududt 

( d  /2ds      1    \      2  ds      1      d  ,        }  ̂  d  ,,  2  ds      1     1     d     ,,        . 

{M?d^^^'r-di7^^d^^'^'irqdt^^'^^^ 
two    independent  values   of   the   same   quantity,    whence   the   requiied   conditions 

may  be  obtained. 



TRANSFORMATION    OF    SURFACES    BY    BENDING. 

107 

Substituting   in   these   equations   the    values   of  those   quantities  which  occur 

in  the  original  equations,  we  obtain 

I  ds  (  d  ,      , 
ds 

du 
sin 

*) 

+  -  ,  \,  cot  <!>  y 
2  ds 
r  du 

\l  ds    (  d   ,      f     ,ds     .     A      2  ds      .   ,\ 

which  is  the  condition  which  must  hold  at  every  instant  during  the  process  of 

bending  for  the  lines  about  which  the  bending  takes  place  at  that  instant. 

When  the  bending  is  such  that  the  position  of  the  lines  of  bending  on  the 

surface  alters  at  every  instant,  this  is  the  only  condition  which  is  required. 
It   is  therefore   called   the   condition   of  Instantaneous   lines   of  bending. 

17.     To  find  the  condition  of  Permanent  lines  of  bending. 

Since  q  changes  with  the  time,  the  equation  of  last  article  will  not  be 

satisfied  for  any  finite  time  unless  both  sides  are  separately  equal  to  zero.  In 
that  case  we  have  the  two  conditions 

(!)■ 

d  ,      /      ds    .     ,\      2ds      ̂   ,     ̂ ^ 

^,log(i^r^^sm<^j  +  -^,cotc^  =  0, 
y   

1  ds     ̂  

or  -  -J-  =  0. r  du 

|^log(i>r'^,siD<^)+|^cot<^  =  0,' 
1  d/     ̂  

or   -,  -J-,  =  0. r  du 

(2). 
If  the  lines  of  bending  satisfy  these  conditions,  a  finite  amount  of  bending 

may  take  place  without  changing  the  position  of  the  system  on  the  surface. 
Such  lines  are  therefore  called  Permanent  lines  of  bending. 

The  only  case  in  which  the  phenomena  of  bending  may  be  exhibited  by 

means  of  the  polyhedron  with  quadrilateral  facets  is  that  in  which  permanent 

lines  of  bending  are  chosen  as  the  boundaries  of  the  facets.  In  all  other  cases 

the  bending  takes  place  about  an  instantaneous  system  of  lines  which  is  con- 

tinually in  motion  with  respect  to  the  surface,  so  that  the  nature  of  the  poly- 
hedron would  need  to  be  altered  at  every  instant. 

14—2 
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We  are  now  able  to  determine  whether  any  system  of  lines  drawn  on  a 

given  surface  is  a  system  of  instantaneous  or  permanent  lines  of  bending. 

We  are  also  able,  by  the  method  of  Article  (8),  to  deduce  from  two  con- 
secutive forms  of  a  surface,  the  lines  of  bending  about  which  the  transformation 

must  have  taken  place. 

If  our  analytical  methods  were  sufficiently  powerful,  we  might  apply  our 

results  to  the  determination  of  such  systems  of  lines  on  any  known  surface,  but 

the  necessary  calculations  even  in  the  simplest  cases  are  so  compHcated,  that, 

even  if  useful  results  were  obtained,  they  would  be  out  of  place  in  a  paper  of 

this  kind,  which  is  intended  to  afford  the  means  of  forming  distinct  conceptions 

rather  than  to  exhibit  the  results  of  mathematical  labour. 

18.  On  the  application  of  the  ordinary  unethods  of  analytical  geometry  to  the 

consideration  of  lines  of  bending. 

It  may  be  interesting  to  those  who  may  hesitate  to  accept  results  derived 

from  the  consideration  of  a  polyhedron,  when  applied  to  a  curved  surface,  to 

inquire  whether  the  same  results  may  not  be  obtained  by  some  independent 
method. 

As  the  following  method  involves  only  those  operations  which  are  most 

familiar  to  the  analyst,  it  will  be  sufficient  to  give  the  rough  outline,  which  may 

be  filled  up  at  pleasure. 

The  proof  of  the  invariability  of  the  specific  curvature  may  be  taken  from 

any  of  the  memoirs  above  referred  to,  and  its  value  in  terms  of  the  equation  of 

the  surface  will  be  foimd  in  the  memoir  of  Gauss. 

Let  the  equation  to  the  surface  be  put  under  the  form 

then  the  value  of  the  specific  curvature  is 

d\  dh       d^ 
dot?  dif     dx 

~dJz'^     dz^ 

dx       dy\ 

The  definition  of  conjugate  systems  of  curves  may   be   rendered   independent 

of  the  reasoning  formerly  employed  by  the  following  modification. 
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Let  a  tangent  plane  move  along  any  line  of  the  first  system,  then  if  the  line 
of  ultimate  intersection  of  this  plane  with  itself  be  always  a  tangent  to  some  line 

of  the  second  system,  the  second  system  is  said  to  be  conjugate  to  the  first. 

It  is  easy  to  show  that  the  first  system  is  also  conjugate  to  the  second. 

Let  the  system  of  curves  be  projected  on  the  plane  of  xy,  and  at  the  point 

(x,  y)  let  a  be  the  angle  which  a  projected  curve  of  the  first  system  makes  with 
the  axis  of  x,  and  /8  the  angle  which  the  projected  curve  of  the  second  system 

which  intersects  it  at  that  point  makes  with  the  same  axis.  Then  the  condition 

of  the  systems  being  conjugate  will  be  found  to  be 

a   and   y3   being   known   as   functions   of  x   and   y,    we  may  determine  the  nature 
of  the  curves  projected  on  the  plane  of  xy. 

Supposing  the  surface  to  touch  that  plane  at  the  origin,  the  length  and 
tangential  curvature  of  the  lines  on  the  surface  near  the  point  of  contact  may 

be  taken  the  same  as  those  of  their  projections  on  the  plane,  and  any  change 

of  form  of  the  surface  due  to  bending  will  not  alter  the  form  of  the  projected 

lines  indefinitely  near  the  point  of  contact.  We  may  therefore  consider  z  as  the 

only  variable  altered  by  bending;  but  in  order  to  apply  our  analysis  with  facility, 

we  may  assume 

72 

^  =  Pg  sin' a  +  PQ- sin' A 

d'z ,    J   =  —  PQ  sin  a  cos  a  —  PQ~^  sin  y3  cos  ̂ , 

^  =  PQ  cos'  a  +  P^-^  cos'  /8. 

It  will  be  seen  that  these  values  satisfy  the  condition  last  given.  Near  the 

origin  we  have 

d*z  dh        d\   I*      n-   .   ,  /        n\ 

and  q=Q'*. 



110  TRANSFORMATION    OF    SURFACES    BY    BENDING. 

Differentiating  these  values  of  -y-^ ,  &c.,  we  shall  obtain  two  values  of    ,      , 

and  of  1—7—3,  which  being  equated  will  give  two  equations  of  condition. 

Now   if  s'   be   measured  along   a   curve   of  the   first   system,    and   R  be  any 
function  of  x  and  y,  then 

dE     dR  dR  . 
-^j-y  =  -^j-  cos  a  +  -7-  sm  a, as       dx  ay 

,  dR  _  dR  ds' 
du'      ds  du  ' 

We  may  also  show  that  -=-^  =  - , 

,   ,,    ,  da      .       da      d  .      (ds'    .      ,\ 
and  that    cos  a  ;i —  sm  a  ;t-  =  t-  log  ( -j—,  sm  0  1 . cty  (j/X     cLs        \ci/U  I 

By  substituting  these  values  in  the  equations  thus  obtained,  they  are 

reduced  to  the  two  equations  given  at  the  end  of  (Art.  15).  This  method  of 

investigation  introduces  no  difficulty  except  that  of  somewhat  long  equations,  and 

is  therefore  satisfactory  as  supplementary  to  the  geometrical  method  given  at 

length. 

As  an  example  of  the  method  given  in  page  (2),  we  may  apply  it  to 

the  case  of  the  surface  whose  equation  is 

(^.)  *{rf-j-©' 
This    surface    may  be  generated   by  the  motion    of   a    straight    line    whose 

equation  is  of  the  form 

=  acosnl — j,  2/  =  asinni-f- 

t  being  the  variable,  by  the  change  of  which  we   pass    from   one    position    of  the 

line  to  another.     This  line  always  passes  through  the  circle 

z  =  0,        ar'  +  y  =  a', 

and  the  straight  lines   z  =  c,         cc=^0, 

and  z—  —c,    y  =  0, 

which  may  therefore  be  taken  as  the  directors  of  the  surface. 
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Taking  two  consecutive  positions  of  this  line,  in  which  the  values  of  t 
are  t  and  t  +  Bt,  we  may  find  by  the  ordinary  methods  the  equation  to  the 

shortest  line  between  them,  its  length,  and  the  co-ordinates  of  the  point  in  which 
it  intersects  the  first  line. 

Calling  the  length  8^, ac 

8C=  ,/^    Bin 2tBt, Ja'  +  c 

and  the  co-ordinates  of  the  point  of  intersection  are 

x  =  2a  cos' t,         y  =  2a  sin*  t,         z=  —c  cos  2t. 

The  angle  80  between  the  consecutive  lines  is 

Ja-  +  c 

The  distance  So-  between  consecutive  shortest  lines  is 

^       3a'-F-2c* 

and  the  angle  S<^  between  these  latter  lines  is 

sin  2t8t, 

'Ja'  +  c 

Hence  if  we  suppose  ̂ ,  6,  cr,  (f),  and  t  to  vanish  together,  we  shall  have  by 
integration 

(T  =  ~—,   ( 1  —  cos  2t), 

Ja'  +  c' 
By  bending  the  surface  about  its  generating  lines  we  alter  the  value  of  (ft 

in  any  manner  without  changing  4,  0,  or  or.  For  instance,  making  <^  =  0,  all  the 

generating  lines  become  parallel  to  the  same  plane.  Let  this  plane  be  that  of 

xy,  then  ̂   is  the  distance  of  a  generating  line  from  that  plane.     The  projections 



o-  = 
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of  the  generating  lines  on  the  plane  of  xy  will,  by  their  ultimate  intersections, 

form  a  curve,  the  length  of  which  is  measured  by  a,  and  the  angle  which  its 

tangent  makes  with  the  axis  of  x  hj  0,  6  and  o-  being  connected  by  the  equation 

^  I  1  -  cos   6  , 

which  shows  the  curve  to  be  an  epicycloid. 

The  generating  lines  of  the  surface  when  bent  into  this  form  are  therefore 
tangents  to  a  cylindrical  surface  on  an  epicycloidal  base,  touching  that  surface 
along  a  curve  which  is  always  equally  inclined  to  the  plane  of  the  base,  the 
tangents  themselves  being  drawn  parallel  to  the  base. 

We  may  now  consider  the   bending  of  the  surface  of  revolution 

Putting  r  =  Jaf  +  f,  then  the  equation  of  the  generating  line  is 
r^  +  z^  =  c^. 

This  is  the  well-known  hypocycloid  of  four  cusps. 

Let  s  be  the  length  of  the  curve  measured  from  the  cusp  in  the  axis  of  z, 
then, 

s  =  |<jV\ 

wherefore,  r  =  (|)'  c  "  *  5^. 

Let  6  be  the  angle  which  the  plane  of  any  generating  line  makes  with 
that  of  xz,  then  s  and  6  determine  the  position  of  any  point  on  the  surface. 
The  length  and  breadth  of  an  element  of  the  surface  will  be  Ss  and  rB$. 

Now  let  the  surface  be  bent  in  the  manner  formerly  described,  so  that  0 

becomes  0^,  and  r,  r,  when 

0^  =  1x0  and  r'  =  -ry 

then        r'  =  (f)'c-V"'s' 

provided        o'  =  /u,'c. 

The   equation   between  r'  and  s  being  of  the   same  form  as  that  between 
r  and  ̂    shows  that  the  surface  when   bent  is  similar  to  the  original  surface,  its 
dimensions  being  multiphed  by  fi*. 
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This,  however,  is  true  only  for  one  half  of  the  surface  when  bent.  The 

other  half  is  precisely  symmetrical,  but  belongs  to  a  surface  which  is  not  con- 
tinuous with  the  first. 

The  surface  in  its  original  form  is  divided  by  the  plane  of  xy  into  two 

parts  which  meet  in  that  plane,  forming  a  kind  of  cuspidal  edge  of  a  circular 

form  which  limits   the  possible  value  of  s  and  r. 

After  being  bent,  the  surface  still  consists  of  the  same  two  parts,  but  the 

edge    in   which   they   meet    is   no    longer   of  the  cuspidal   form,  but   has   a   finite 

angle  =  2  cos"^  - ,   and  the  two  sheets  of  the  surface  become  parts  of  two  different 

surfaces  which  meet  but  are  not  continuous. 

NOTE. 

As  an  example  of  the  application  of  the  more  general  theory  of  "  lines  of  bending,"  let  us 
consider  the  problem  which  has  been  already  solved  by  Professor  Jellett. 

To  determine  the  conditions  under  which  one  portion  of  a  surface  may  he  rendered  rigid,  while 
the  remainder  is  flexible. 

Suppose  the  lines  of  bending  to  be  traced  on  the  surface,  and  the  corresponding  poly- 
hedron to  be  formed,  as  in  (9)  and  (10),  then  if  the  angle  of  one  of  the  four  edges  which 

meet  at  any  solid  angle  of  the  polyhedron  be  altered  by  bending,  those  of  the  other  three 
must  be  also  altered.  These  edges  terminate  in  other  solid  angles,  the  forms  of  which  will 
also  be  changed,  and  therefore  the  efifect  of  the  alteration  of  one  angle  of  the  polyhedron  will 
be  communicated  to  every  other  angle  within  the  system  of  lines  of  bending  which  defines 
the  form  of  the  polyhedron. 

If  any  portion  of  the  surface  remains  unaltered  it  must  lie  beyond  the  limits  of  the 
system  of  lines  of  bending.  We  must  therefore  investigate  the  conditions  of  such  a  system 
being  bounded. 

The  boundary  of  any  system  of  lines  on  a  surface  is  the  curve  formed  by  the  ultimate  inter- 
section of  those  lines,  and  therefore  at  any  given  point  coincides  in  direction  with  the  curve  of 

the  system  which  passes  through  that  point.  In  this  case  there  are  two  systems  of  lines  of 
bending,  which  are  necessarily  coincident  in  extent,  and  must  therefore  have  the  same  boundary. 
At  any  point  of  this  boundary  therefore  the  directions  of  the  lines  of  bending  of  the  first 
and  second  systems  are  coincident. 

But,  by  (7),  these  two  directions  must  be  "conjugate"  to  each  other,  that  is,  must  corre- 
spond to  conjugate  diameters  of  the  "Conic  of  Contact."      Now  the  only  case  in  which  con- 

VOL.  I.  15 



114  TRANSFORMATION    OF    SURFACES    BY    BENDING. 

jugate  diameters  of  a  conic  can  coincide,  is  when  the  conic  is  an  hyperbola,  and  both  diameters 
coincide  with  one  of  the  asymptotes ;  therefore  the  boundary  of  the  system  of  lines  of  bending 
must  be  a  curve  at  every  point  of  which  the  conic  of  contact  is  an  hyperbola,  one  of  whose 
asymptotes  lies  in  the  direction  of  the  curve.  The  radius  of  "  normal  curvature "  must  there- 

fore by  (3)  be  infinite  at  eveiy  point  of  the  curve.  This  is  the  geometrical  property  of 
what  Professor  Jellett  calls  a  "  Curve  of  Flexure,"  so  that  we  may  express  the  result  as follows  : 

If  one  portion  of  a  surface  be  fixed,  while  the  remainder  is  bent,  the  boundary  of  the  fixed 
portion  is  a  curve  of  fiexure. 

This  theorem  includes  those  given  at  p.  (92),  relative  to  a  fixed  curve  on  a  surface,  for  in 
a  surface  whose  curvatures  are  of  the  same  sign,  there  can  be  no  "curves  of  flexure,"  and 
in  a  developable  surface,  they  are  the  rectilinear  sections.  Although  the  cuspidal  edge,  or 
arete  de  rebroussement,  satisfies  the  analytical  condition  of  a  curve  of  flexure,  yet,  since  its 
form  determines  that  of  the  whole  surface,  it  cannot  remain  fixed  while  the  form  of  the  surface 
is  changed. 

In  concavo-convex  surfaces,  the  curves  of  flexure  must  either  have  tangential  curvature  or 
be  straight  lines.  Now  if  we  put  <^=0  in  the  equations  of  Art.  (17),  we  find  that  the 
lines  of  bending  of  both  systems  have  no  tangential  curvature  at  the  point  where  they  touch 
the  curve  of  flexure.  They  must  therefore  lie  entirely  on  the  convex  side  of  that  curve,  and therefore 

If  a  curve  of  fiexure  be  fi^ed,  the  surface  on  the  concave  side  of  the  curve  is  not  flexible. 
I  have  not  yet  been  able  to  determine  whether  the  surface  is  inflexible  on  the  convex  side 

of  the  curve.  It  certainly  is  so  in  some  cases  which  I  have  been  able  to  work  out,  but  I 
have  no  general  proof. 

When  a  surface  has  one  or  more  rectilinear  sections,  the  portions  of  the  surface  between 
them  may  revolve  as  rigid  bodies  round  those  lines  as  axes  in  any  manner,  but  no  other  motion 
is  possible.  The  case  in  which  the  rectilinear  sections  form  an  infinite  series  has  been  discussed 
in  Sect.  (I.). 
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V.     On  a  particular  case  of  the  descent  of  a  heavy  body  in  a  resisting 
medium. 

Every  one  must  have  observed  that  when  a  slip  of  paper  falls  through 

the  air,  its  motion,  though  undecided  and  wavering  at  first,  sometimes  becomes 

regular.  Its  general  path  is  not  in  the  vertical  direction,  but  inclined  to  it 

at  aji  angle  which  remains  nearly  constant,  and  its  fluttering  appearance  will 

be  found  to  be  due  to  a  rapid  rotation  round  a  horizontal  axis.  The  direction 

of  deviation  from  the  vertical  depends  on  the  direction  of  rotation. 

If  the  positive  directions  of  an  axis  be  toward  the  right  hand  and  upwards, 

and  the  positive  angular  direction  opposite  to  the  direction  of  motion  of  the 

hands  of  a  watch,  then,  if  the  rotation  is  in  the  positive  direction,  the  hori- 
zontal part  of  the  mean  motion  will  be  positive. 

These  efiects  are  commonly  attributed  to  some  accidental  peculiarity  in  the 

form  of  the  paper,  but  a  few  experiments  with  a  rectangular  slip  of  paper 
(about  two  inches  long  and  one  broad),  will  shew  that  the  direction  of  rotation 

is  determined,  not  by  the  irregularities  of  the  paper,  but  by  the  initial  circum- 
stances of  projection,  and  that  the  symmetry  of  the  form  of  the  paper  greatly 

increases  the  distinctness  of  the  phenomena.  We  may  therefore  assume  that 

if  the  form  of  the  body  were  accurately  that  of  a  plane  rectangle,  the  same 
effects  would  be  produced. 

The  following  investigation  is  intended  as  a  general  explanation  of  the  true 
cause  of  the  phenomenon. 

I  suppose  the  resistance  of  the  air  caused  by  the  motion  of  the  plane  to 

be  in  the  direction  of  the  normal  and  to  vary  as  the  square  of  the  velocity 
estimated  in  that  direction. 

Now  though  this  may  be  taken  as  a  sufficiently  near  approximation  to  the 

magnitude   of  the  resisting  force   on   the   plane   taken   as   a  whole,   the  pressure 

15—2 
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on  any  given  element  of  the  surface  will  vary  with  its  position  so  that  the 
resultant  force  will  not  generally  pass  through  the  centre  of  gravity. 

It  is  found  by  experiment  that  the  position  of  the  centre  of  pressure 
depends  on  the  tangential  part  of  the  motion,  that  it  lies  on  that  side  of  the 

centre  of  gravity  towards  which  the  tangential  motion  of  the  plane  is  directed, 
and  that  its  distance  from  that  point  increases  as  the  tangential  velocity  in- 
creases. 

I  am  not  aware  of  any  mathematical  investigation  of  this  effect.  The 

explanation  may  be  deduced  from  experiment. 

Place  a  body  similar  in  shape  to  the  sHp  of  paper  obliquely  in  a  current 
of  some  visible  fluid.  Call  the  edge  where  the  fluid  first  meets  the  plane  the 
first  edge,  and  the  edge  where  it  leaves  the  plane,  the  second  edge,  then  we 
may  observe  that 

(1)  On  the  anterior  side  of  the  plane  the  velocity  of  the  fluid  increases 

as  it  moves  along  the  surface  from  the  first  to  the  second  edge,  and  therefore 

by  a  known  law  in  hydrodynamics,  the  pressure  must  diminish  from  the  first 
to  the  second  edge. 

(2)  The  motion  of  the  fluid  behind  the  plane  is  very  unsteady,  but  may 

be  observed  to  consist  of  a  series  of  eddies  diminishing  in  rapidity  as  they 

pass  behind  the  plane  from  the  first  to  the  second  edge,  and  therefore  relieving 

the  posterior  pressure  most  at  the  first  edge. 

Both  these  causes  tend  to  make  the  total  resistance  greatest  at  the  first 

edge,  and  therefore  to  bring  the  centre  of  pressure  nearest  to  that  edge. 

Hence  the  moment  of  the  resistance  about  the  centre  of  gravity  will  always 

tend  to  turn  the  plane  towards  a  position  perpendicular  to  the  direction  of  the 

current,  or,  in  the  case  of  the  slip  of  paper,  to  the  path  of  the  body  itself.  It 

will  be  shewn  that  it  is  this  moment  that  maintains  the  rotatory  motion  of 

the  falling  paper. 

When  the  plane  has  a  motion  of  rotation,  the  resistance  will  be  modified 

on  account  of  the  unequal  velocities  of  difierent  parts  of  the  surface.  The 

magnitude  of  the  whole  resistance  at  any  instant  will  not  be  sensibly  altered 

if  the  velocity  of  any  point  due  to  angular  motion  be  small  compared  with  that 

due  to  the  motion  of  the  centre  of  gravity.  But  there  will  be  an  additional 

moment  of  the  resistance  round  the  centre  of  gravity,  which  will  always  act  in 

the  direction  opposite  to  that  of  rotation,  and  wOl  vary  directly  as  the  normal 

and  angular  velocities  together. 
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The  part  of  the  moment  due  to  the  obliquity  of  the  motion  will  remain 
nearly  the  same  as  before. 

We  are  now  prepared  to  give  a  general  explanation  of  the  motion  of  the 

slip  of  paper  after  it  has  become  regular. 

Let  the  angular  position  of  the  paper  be  determined  by  the  angle  between 
the  normal  to  its  surface  and  the  axis  of  x,  and  let  the  angular  motion  be 

such  that  the  normal,  at  first  coinciding  with  the  axis  of  x,  passes  towards 
that  of  y. 

The  motion,  speaking  roughly,  is  one  of  descent,  that  is,  in  the  negative 
direction  along  the  axis  of  y. 

The  resolved  part  of  the  resistance  in  the  vertical  direction  will  always 

act  upwards,  being  greatest  when  the  plane  of  the  paper  is  horizontal,  and 
vanishing  when  it  is  vertical. 

When  the  motion  has  become  regular,  the  effect  of  this  force  during  a 

whole  revolution  will  be  equal  and  opposite  to  that  of  gravity  during  the  same 
time. 

Since  the  resisting  force  increases  while  the  normal  is  in  its  first  and  third 

quadrants,  and  diminishes  when  it  is  in  its  second  and  fourth,  the  maxima  of 

velocity  will  occur  when  the  normal  is  in  its  first  and  third  quadrants,  and 
the  minima  when  it  is  in  the  second  and  fourth. 

The  resolved  part  of  the  resistance  in  the  horizontal  direction  will  act  in 

the  positive  direction  along  the  axis  of  x  in  the  first  and  third  quadrants,  and 

in  the  negative  direction  during  the  second  and  fourth;  but  since  the  resistance 
increases  with  the  velocity,  the  whole  effect  during  the  first  and  third  quadrants 

will  be  greater  than  the  whole  effect  during  the  second  and  fourth.  Hence 

the  horizontal  part  of  the  resistance  will  act  on  the  whole  in  the  positive 

direction,  and  will  therefore  cause  the  general  path  of  the  body  to  incline  in 
that  direction,  that  is,  toward  the  right. 

That  part  of  the  moment  of  the  resistance  about  the  centre  of  gravity 
which  depends  on  the  angular  velocity  will  vary  in  magnitude,  but  wUl  always 
act  in  the  negative  direction.  The  other  part,  which  depends  on  the  obliquity 
of  the  plane  of  the  paper  to  the  direction  of  motion,  will  be  positive  in  the 
first  and  third  quadrants  and  negative  in  the  second  and  fourth ;  but  as  its 

magnitude  increases  with  the  velocity,  the  positive  effect  will  be  greater  than 
the  negative. 

When    the    motion    has    become    regular,    the   effect   of   this   excess   in   the 
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positive  direction  will  be  equal  and  opposite  to  the  negative  effect  due  to  the 
angular   velocity  during  a  whole  revolution. 

The  motion  will  then  consist  of  a  succession  of  equal  and  similar  parts 

performed  in  the  same  manner,  each  part  corresponding  to  half  a  revolution  of 
the  paper. 

These  considerations  will  serve  to  explain  the  lateral  motion  of  the  paper, 
and  the  maintenance  of  the  rotatory  motion. 

Similar  reasoning  will  shew  that  whatever  be  the  initial  motion  of  the 
paper,  it  cannot  remain  uniform. 

Any  accidental  oscillations  will  increase  till  their  amphtude  exceeds  half  a 

revolution.  The  motion  will  then  become  one  of  rotation,  and  will  continually 
approximate  to  that  which  we  have  just  considered. 

It  may  be  also  shewn  that  this  motion  will  be  unstable  unless  it  take 

place  about  the  longer  axis  of  the  rectangle. 

If  this  axis  is  incHned  to  the  horizon,  or  if  one  end  of  the  slip  of  paper 

be  different  from  the  other,  the  path  will  not  be  straight,  but  in  the  form  of 
a  helix.  There  will  be  no  other  essential  difference  between  this  case  and  that 

of  the  symmetrical  arrangement. 

Trinity  College,  April  5,  1853. 



[From  the  Transactions  of  the  Royal  Scottish  Society  of  Arts,  Vol.  iv.  Part  in] 

VI.     On  the  Theory  of  Colours  in  relation  to  Colour-Blindness. 
A  letter  to  Dr  G.  Wilson. 

Dear  Sir, — As  you  seemed  to  think  that  the  results  which  I  have  obtained 
in  the  theory  of  colours  might  be  of  service  to  you,  I  have  endeavoured  to 

arrange  them  for  you  in  a  more  convenient  form  than  that  in  which  I  first 

obtained  them.  I  must  premise,  that  the  first  distinct  statement  of  the  theory 

of  colour  which  I  adopt,  is  to  be  found  in  Young's  Lectures  on  Natural  Philo- 

sophy (p.  345,  Kelland's  Edition) ;  and  the  most  philosophical  enquiry  into  it 
which  I  have  seen  is  that  of  Helmholtz,  which  may  be  found  in  the  Annals  of 
Philosophy  for  1852. 

It  is  well  known  that  a  ray  of  light,  from  any  source,  may  be  divided  by 

means  of  a  prism  into  a  number  of  rays  of  different  refranglbility,  forming  a 

series  called  a  spectrum.  The  intensity  of  the  light  is  different  at  different 

points  of  this  spectrum ;  and  the  law  of  intensity  for  different  refrangibilities 
differs  according  to  the  nature  of  the  incident  light.  In  Sir  John  F.  W. 

Herschel's  Treatise  on  Light,  diagrams  will  be  found,  each  of  which  represents 
completely,  by  means  of  a  curve,  the  law  of  the  intensity  and  refranglbility  of 

a  beam  of  solar  light  after  passing  through  -various  coloured  media. 
I  have  mentioned  this  mode  of  defining  and  registering  a  beam  of  light, 

because  it  is  the  perfect  expression  of  what  a  beam  of  light  is  in  itself,  con- 
sidered with  respect  to  all  its  properties  as  ascertained  by  the  most  refined 

instruments.  When  a  beam  of  light  falls  on  the  human  eye,  certain  sensations 
are  produced,  from  which  the  possessor  of  that  organ  judges  of  the  colour  and 

intensity  of  the  light.  Now,  though  every  one  experiences  these  sensations,  and 

though  they  are  the  foundation  of  all  the  phenomena  of  sight,  yet,  on  account 

of  their  absolute  simplicity,  they  are  incapable  of  analysis,  and  can  never  become 

in   themselves   objects   of  thought.      If  we   attempt   to   discover   them,    we   must 
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do  SO  by  artificial  means ;  and  our  reasonings   on  tKem  must  be  guided  by  some 
theory. 

The  most  general  form  in  which  the  existing  theory  can  be  stated  is  this, — 

There    are    certain    sensations,    finite    in    number,    but   infinitely  variable   in 

degree,    which   may  be   excited  by  the   difierent   kinds  of  light.      The   compound 
sensation  resulting  from  all  these  is  the  object   of  consciousness,  is  a   simple  act 
of  vision. 

It  is   easy  to   see   that  the  numher  of  these  sensations  corresponds  to  what 

may  be  called  in  mathematical  language  the  number  of  independent  variables,  of 
which  sensible  colour  is  a  function. 

This  will  be  readily  understood  by  attending  to  the  following  cases : — 

1.  When  objects  are  illuminated  by  homogeneous  yellow  light,  the  only 

thing  which  can  be  distinguished  by  the  eye  is  difference  of  intensity  or 

brightness. 
If  we  take  a  horizontal  line,  and  colour  it  black  at  one  end,  with  increasing 

degrees  of  intensity  of  yellow  light  towards  the  other,  then  every  visible  object 
wiU  have  a  brightness  corresponding  to  some  point  in  this  line. 

In  this  case  there  is  nothing  to  prove  the  existence  of  more  than  one 
sensation  in  vision. 

In  those  photographic  pictures  in  which  there  is  only  one  tint  of  which 
the  different  intensities  correspond  to  the  different  degrees  of  illumination  of  the 

object,  we  have  another  illustration  of  an  optical  effect  depending  on  one  variable 
only. 

2.  Now,  suppose  that  different  kinds  of  light  are  emanating  from  different 
sources,  but  that  each  of  these  sources  gives  out  perfectly  homogeneous  light, 

then  there  will  be  two  things  on  which  the  nature  of  each  ray  will  depend : — 
(1)  its  intensity  or  brightness ;  (2)  its  hue,  which  may  be  estimated  by  its 

position  in  the  spectrum,  and  measured  by  its  wave  length. 
If  we  take  a  rectangular  plane,  and  illuminate  it  with  the  different  kinds 

of  homogeneous  light,  the  intensity  at  any  point  being  proportional  to  its  hori- 
zontal distance  along  the  plane,  and  its  wave  length  being  proportional  to  its 

height  above  the  foot  of  the  plane,  then  the  plane  will  display  every  possible 
variety  of  homogeneous  light,  and  will  furnish  an  instance  of  an  optical  effect 

depending  on  two  variables. 
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3.  Now,  let  us  take  the  case  of  nature.  We  find  that  colours  differ  not 

only  in  intensity  and  Ime,  but  also  in  tint ;  that  is,  they  are  more  or  less  pure. 

We  might  arrange  the  varieties  of  each  colour  along  a  line,  which  should  begin 

with  the  homogeneous  colour  as  seen  in  the  spectrum,  and  pass  through  all 

gradations  of  tint,  so  as  to  become  continually  purer,  and  terminate  in  white. 

We  have,  therefore,  three  elements  in  our  sensation  of  colour,  each  of  which 

may  vary  independently.  For  distinctness  sake  I  have  spoken  of  intensity,  hue, 

and  tint ;  but  if  any  other  three  independent  qualities  had  been  chosen,  the 

one  set  might  have  been  expressed  in  terms  of  the  other,  and  the  results  identified. 

The  theory  which  I  adopt  assumes  the  existence  of  three  elementary  sen- 

sations, by  the  combination  of  which  all  the  actual  sensations  of  colour  are 

produced.  It  will  be  shewn  that  it  is  not  necessary  to  specify  any  given  colours 

as  typical  of  these  sensations.  Young  has  called  them  red,  green,  and  violet ;  but 

any  other  three  colours  might  have  been  chosen,  provided  that  white  resulted 

from  their  combination  in  proper  proportions. 

Before  going  farther  I  would  observe,  that  the  important  part  of  the  theoiy 
is  not  that  three  elements  enter  into  our  sensation  of  colour,  but  that  there  are 

only  three.  Optically,  there  are  as  many  elements  in  the  composition  of  a  ray 

of  light  as  there  are  different  kinds  of  light  in  its  spectrum;  and,  therefore, 

strictly  speaking,  its  nature  depends  on  an  infinite  number  of  independent 
variables. 

I  now  go  on  to  the  geometrical  form  into  which  the  theory  may  be  thrown. 

Let   it   be   granted   that   the   three   pure  sensations   corre- 

spond to  the  colours  red,  green,  and  violet,   and  that  we 

can    estimate    the    intensity    of   each    of  these    sensations 

numerically. 

Let  V,  r,  g  be  the  angular  points  of  a  triangle,  and 

conceive  the  three  sensations  as  having  their  positions  at 

these  points.  If  we  find  the  numerical  measure  of  the 

red,  green,  and  violet  parts  of  the  sensation  of  a  given 

colour,  and  then  place  weights  proportional  to  these  parts 

at  r,  g,  and  v,  and  find  the  centre  of  gravity  of  the  three  weights  by  the 

ordinary  process,  that  point  will  be  the  position  of  the  given  colour,  and  the 

numerical  measure  of  its  intensity  will  be  the  sum  of  the  tliree  primitive 
sensations. 

In    this    way,    every    possible    colour    may    have    its   position   and    intensity 
VOL.  I.  16 
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ascertained;   and  it  is  easy  to   see  that  when   two   compound  colours  are   com- 
bined, their  centre  of  gravity  is  the  position  of  the  new  colour. 

The  idea  of  this  geometrical  method  of  investigating  colours  is  to  be  found 

in  Newton's  Opticks  (Book  I.,  Part  2,  Prop.  6),  but  I  am  not  aware  that  it  has 
been  ever  employed  in  practice,  except  in  the  reduction  of  the  experiments 
which  I  have  just  made.  The  accuracy  of  the  method  depends  entirely  on  the 

truth  of  the  theory  of  three  sensations,  and  therefore  its  success  is  a  testimony 
in  favour  of  that  theory. 

Every  possible  colour  must  be  included  within  the  triangle  rgv.  White 
will  be  foimd  at  some  point,  w,  within  the  triangle.  If  lines  be  drawn  through 

w  to  any  point,  the  colour  at  that  point  will  vary  in  hue  according  to  the 

angular  position  of  the  line  drawn  to  w,  and  the  purity  of  the  tint  will  depend 
on  the  length  of  that  line. 

Though  the  homogeneous  rays  of  the  prismatic  spectrum  are  absolutely  pure 

in  themselves,  yet  they  do  not  give  rise  to  the  "pure  sensations"  of  which  we 
are  speaking.  Every  ray  of  the  spectrum  gives  rise  to  all  three  sensations, 
though  in  different  proportions ;  hence  the  position  of  the  colours  of  the  spectrum 
is  not  at  the  boundary  of  the  triangle,  but  in  some  curve  C  R  Y  G  B  V 

considerably  within  the  triangle.  The  nature  of  this  curve  is  not  yet  determined, 

but  may  form  the  subject  of  a  future  investigation  *. 
All  natural  colours  must  be  within  this  curve,  and  all  ordinary  pigments 

do  in  fact  lie  very  much  within  it.  The  experiments  on  the  colours  of  the 

spectrum  which  I  have  made  are  not  brought  to  the  same  degree  of  accuracy  as 

those  on  coloured  papers.  I  therefore  proceed  at  once  to  describe  the  mode  of 
making  those  experiments  which  I  have  found  most  simple  and  convenient. 

The   coloured   paper  is   cut  into   the  form   of  discs,   each  with  a  small  hole 

in   the   centre,   and  divided  along  a  radius,  so  as  to  admit  ^   ^ 
of  several  of  them  being  placed  on  the  same  axis,  so  that  C^^  J 
part  of  each  is  exposed.     By  slipping  one  disc  over  another,    

we   can   expose   any  given  portion  of  each   colour.      These        >^ — ~^ 
j:«^«   „i   J   „    ̂ :^.^.^^   j.   j.^^i.^4.         ,'4.;   ^v       (       <=>       ) 
discs  are   placed  on  a  little  top  or  teetotum,  consisting  of      \^   y 
a  flat  disc  of  tin-plate  and  a  vertical  axis  of  ivory.     This 
axis  passes  through  the  centre  of  the  discs,  and  the  quantity  of  each  colour  exposed 
is  measured  by  a  graduation  on  the  rim  of  the  disc,  which  is  divided  into  100  parts. 

*  [See  the  author's  Memoir  in  the  Philosophical  Transactions,   1860,  on  the  Theory  o£  Compound 
Colours,  and  on  the  relations  of  the  Colours  of  the  Spectrum.] 



THE    THEORY    OF    COLOURS    IN     RELATION    TO    COLOUR-BLINDNESS.  123 

By  spinning  the  top,  each  colour  is  presented  to  the  eye  for  a  time  pro- 
portional to  the  angle  of  the  sector  exposed,  and  I  have  found  by  independent 

experiments,  that  the  colour  produced  by  fast  spinning  is  identical  with  that 

produced  by  causing  the  light  of  the  different  colours  to  fall  on  the  retina  at 
once. 

By  properly  arranging  the  discs,  any  given  colour  may  be  imitated  and 

afterwards  registered  by  the  graduation  on  the  rim  of  the  top.  The  principal 

use  of  the  top  is  to  obtain  colour-equations.  These  are  got  by  producing,  by 
two  different  combinations  of  colours,  the  same  mixed  tint.  For  this  purpose 
there  is  another  set  of  discs,  half  the  diameter  of  the  others,  which  lie  above 

them,  and  by  which  the  second  combination  of  colours  is  formed. 

The  two  combinations  being  close  together,  may  be  accurately  compared,  and 

when  they  are  made  sensibly  identical,  the  proportions  of  the  different  colours 
in  each  is  registered,  and  the  results  equated. 

These  equations  in  the  case  of  ordinary  vision,  are  always  between  four 
colours,  not  including  black. 

From  them,  by  a  very  simple  rule,  the  different  colours  and  compounds  have 

their  places  assigned  on  the  triangle  of  colours.  The  rule  for  finding  the  position 

is  this  : — Assume  any  three  points  as  the  positions  of  your  three  standard  colours, 
whatever  they  are  ;  then  form  an  equation  between  the  three  standard  colours, 

the  given  colour  and  black,  by  arranging  these  colours  on  the  inner  and  outer 

circles  so  as  to  produce  an  identity  when  spun.  Bring  the  given  colour  to  the 

left-hand  side  of  the  equation,  and  the  three  standard  colours  to  the  right  hand, 
leaving  out  black,  then  the  position  of  the  given  colour  is  the  centre  of  gravity 
of  three  masses,  whose  weights  are  as  the  number  of  degrees  of  each  of  the 

standard  colours,  taken  positive  or  negative,  as  the  case  may  be. 

In  this  way  the  triangle  of  colours  may  be  constructed  by  scale  and  compass 

from  experiments  on  ordinary  vision.  I  now  proceed  to  state  the  results  of 
experiments  on  Colour-Blind  vision. 

If  we  find  two  combinations  of  colours  which  appear  identical  to  a  Colour- 
Blind  person,  and  mark  their  positions  on  the  triangle  of  colours,  then  the 

straight  line  passing  through  these  points  will  pass  through  all  points  corre- 

sponding to  other  colours,  which,  to  such  a  person,  appear  identical-with  the  first 
two. 

We    may    in   the    same   way   find    other   lines  passing   through   the   series   of 

IG— 2 
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colours  wMch  appear  alike  to  the  Colour-Blind.  All  these 

lines  either  pass  through  one  point  or  are  parallel,  ac- 
cording to  the  standard  colours  which  we  have  assumed, 

and  the  other  arbitrary  assumptions  we  may  have  made. 

Knowing  this  law  of  Colour-Blind  vision,  we  may  predict 

any  number  of  equations  which  will  be  true  for  eyes 

having  this  defect. 

The  mathematical  expression  of  the  difference  between 

Colour-BUnd  and  ordinary  vision  is,  that  colour  to  the 

former  is  a  function  of  two  independent  variables,  but  to  an  ordinary  eye,  of 

three ;  and  that  the  relation  of  the  two  kinds  of  vision  is  not  arbitrary,  but 

indicates  the  absence  of  a  determinate  sensation,  depending  perhaps  upon  some 

undiscovered  structure  or  organic  arrangement,  which  forms  one-third  of  the 

apparatus  by  which  we  receive  sensations  of  colour. 

Suppose  the  absent  structure  to  be  that  which  is  brought  most  into  play 

when  red  light  falls  on  our  eyes,  then  to  the  Colour-Blind  red  light  will  be 

visible  only  so  far  as  it  affects  the  other  two  sensations,  say  of  blue  and 

green.  It  will,  therefore,  appear  to  them  much  less  bright  than  to  us,  and  will 

excite  a  sensation  not  distinguishable  from  that  of  a  bluish-green  light. 

I  cannot  at  present  recover  the  results  of  all  my  ̂ periments ;  but  I  recollect 

that  the  neutral  colours  for  a  Colour-Blind  person  may  be  produced  by  com- 

bining 6  degrees  of  ultramarine  with  94  of  vermiUon,  or  60  of  emerald-green 

with  40  of  ultramarine.  The  first  of  these,  I  suppose  to  represent  to  our  eyes 

the  kind  of  red  which  belongs  to  the  red  sensation.  It  excites  the  other  two 

sensations,  and  is,  therefore,  visible  to  the  Colour-BHnd,  but  it  appears  very 

dark  to  them  and  of  no  definite  colour.  I  therefore  suspect  that  one  of  the 

three  sensations  in  perfect  vision  will  be  found  to  correspond  to  a  red  of  the 

same  hue,  but  of  much  greater  purity  of  tint.  Of  the  nature  of  the  other  two, 

I  can  say  nothing  definite,  except  that  one  must  correspond  to  a  blue,  and  the 

other  to  a  green,  verging  to  yellow. 

I  hope  that  what  I  have  written  may  help  you  in  any  way  in  your 

experiments.  I  have'  put  down  many  things  simply  to  indicate  a  way  of  thinking 

about  colours  which  belongs  to  this  theory  of  triple  sensation.  We  are  indebted 

to  Newton  for  the  original  design ;  to  Young  for  the  suggestion  of  the  means 

of   working   it   out;    to    Prof.    Forbes''    for  a   scientific   history   of  its   application 

*Phil.  Mag.  1848. 
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to  practice;  to  Helmholtz  for  a  rigorous  examination  of  the  facts  on  which  it 
rests;  and  to  Prof  Graasman  (in  the  Phil.  Mag,  for  1852),  for  an  admirable 
theoretical  exposition  of  the  subject.  The  colours  given  in  Hay's  Nomenclature 
of  Colours  are  illustrations  of  a  similar  theory  applied  to  mixtures  of  pigments, 
but  the  results  are  often  different  from  those  in  which  the  colours  are  combined 
by  the  eye  alone.  I  hope  soon  to  have  results  with  pigments  compared  with 
those  given  by  the  prismatic  spectrum,  and  then,  perhaps,  some  more  definite 
results  may  be  obtained.     Yours  truly, 

J.  C.  MAXWELL. 

Edinburgh,  4tli  Jan.  1855. 



[From  the  Transactions  of  the  Royal  Society  of  Edinburgh,  Vol  xxi.  Part  ii.] 

VII.      Experiments  on  Colour,  as  perceived  hy  the  Eye,  with  remarks  on  Colour- 
Blindness.     Communicated  by  Dr  Gregory. 

The  object  of  tbe  following  communication  is  to  describe  a  method  by 

which  every  variety  of  visible  colour  may  be  exhibited  to  the  eye  m  such  a 

form  as  to  admit  of  accurate  comparison ;  to  shew  how  experiments  so  made 

may  be  registered  numerically;  and  to  deduce  from  these  numerical  results 
certain  laws  of  vision. 

The  different  tints  are  produced  by  means  of  a  combination  of  discs  of  paper, 

painted  with  the  pigments  commonly  used  in  the  arts,  and  arranged  round  an 

axis,  so  that  a  sector  of  any  required  angular  magnitude  of  each  colour  may  be 

exposed.  "When  this  system  of  discs  is  set  in  rapid  rotation,  the  sectors  of 
the  different  colours  become  indistinguishable,  and  the  whole  appears  of  one  uni- 

form tint.  The  resultant  tints  of  two  different  combinations  of  colours  may  be 

compared  by  using  a  second  set  of  discs  of  a  smaller  si^e,  and  placing  these  over 

the  centre  of  the  first  set,  so  as  to  leave  the  outer  portion  of  the  larger  discs 

exposed.  The  resultant  tint  of  the  first  combination  will  then  appear  in  a  ring 

round  that  of  the  second,  and  may  be  very  carefully  compared  with  it. 

The  form  in  which  the  experiment  is  most  manageable  is  that  of  the  com- 

mon top.  An  axis,  of  which  the  lower  extremity  is  conical,  carries  a  circular 

plate,  which  serves  as  a  support  for  the  discs  of  coloured  paper.  The  circumfer- 

ence of  this  plate  is  divided  into  100  equal  parts,  for  the  purpose  of  ascertainmg 

the  proportions  of  the  different  colours  which  form  the  combination.  When  the 

discs  have  been  properly  arranged,  the  upper  part  of  the  axis  is  screwed  down, 

so  as  to  prevent  any  alteration  in  the  proportions  of  the  colours. 

The  instrument  used  in  the  first  series  of  experiments  (at  Cambridge,  in 

November,  1854)  was  constructed  by  myself,  with  coloured    papers    procured   from 
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Mr  D.  R  Hay.  The  experiments  made  in  the  present  year  were  with  the 

improved  top  made  by  Mr  J.  M.  Bryson,  Edinburgh,  and  coloured  papers  pre- 
pared by  Mr  T.  Purdie,  with  the  unmixed  pigments  used  in  the  arts.  A  number 

of  Mr  Bryson's  tops,  with  Mr  Purdie's  coloured  papers  has  been  prepared,  so  as 
to  afford  different  observers  the  means  of  testing  and  comparing  results  inde- 

pendently obtained. 

The  colour  used  for  Mr  Purdie's  papers  were — 
Vermilion V Ultramarine U Emerald  Green EG 

Carmine    . C Prussian  Blue  . 
PB 

Brunswick  Green 

BG 

Red  Lead RL Verditer  Blue  . VB Mixture    of    Ultramarine 

Orange  Orpiment 00 and  Chrome 

uc 
Orange  Chrome OC 

Chrome  Yellow CY 

Gamboge Gam 

Pale  Chrome    . 
PC 

Ivory  Black      . 
Snow  White     . 

Bk 

SW White  Paper  (Pirie,  Aberdeen), 

The  colours  in  the  first  column  are  reds,  oranges,  and  yellows;  those  in 

the  second,  blues ;  and  those  in  the  third,  greens.  Vermilion,  ultramarine,  and 

emerald  green,  seem  the  best  colours  to  adopt  in  referring  the  rest  to  a  uniform 

standard.  They  are  therefore  put  at  the  head  of  the  Hst,  as  types  of  three 
convenient  divisions  of  colour,  red,  blue,  and  green. 

It  may  be  asked,  why  some  variety  of  yellow  was  not  chosen  in  place  of 

green,  which  is  commonly  placed  among  the  secondary  colours,  while  yellow 

ranks  as  a  primary?  The  reason  for  this  deviation  from  the  received  system  is, 

that  the  colours  on  the  discs  do  not  represent  primary  colours  at  all,  but  are 

simply  specimens  of  different  kinds  of  paint,  and  the  choice  of  these  was  deter- 

mined solely  by  the  power  of  forming  the  requisite  variety  of  combinations.  Now, 

if  red,  blue,  and  yellow,  had  been  adopted,  there  would  have  been  a  difficulty 

in  forming  green  by  any  compound  of  blue  and  yellow,  while  the  yellow  formed 

by  vermilion  and  emerald  green  is  tolerably  distinct.  This  will  be  more  clearly 

perceived  after  the  experiments  have  been  discussed,  by  referring  to  the  diagram. 

As  an  example  of  the  method  of  experimenting,  let  us  endeavour  to  form  a 

neutral  gray  by  the  combination  of  vermilion,  ultramarine,  and  emerald  green. 

The    most    perfect   results   are    obtained  by  two  persons  acting  in  concert.,   when 
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the  operator  arranges  the  colours  and  spins  the  top,  leaving  the  eye  of  the 
observer  free  from  the  distracting  effect  of  the  bright  colours  of  the  papers  when 
at  rest. 

After  placing  discs  of  these  three  colours  on  the  circular  plate  of  the  top, 

and  smaller  discs  of  white  and  black  above  them,  the  operator  must  spin  the 
top,  and  demand  the  opinion  of  the  observer  respecting  the  relation  of  the 
outer  ring  to  the  inner  circle.  He  will  be  told  that  the  outer  circle  is  too 

red,  too  blue,  or  too  green,  as  the  case  may  be,  and  that  the  inner  one  is  too 

light  or  too  dark,  as  compared  with  the  outer.  The  arrangement  must  then  be 
changed,  so  as  to  render  the  resultant  tint  of  the  outer  and  inner  circles  more 
nearly  alike.  Sometimes  the  observer  will  see  the  inner  circle  tinted  with  the 

complementary  colour  of  the  outer  one.  In  this  case  the  operator  must  interpret 

the  observation  with  respect  to  the  outer  circle,  as  the  inner  circle  contains  only 
black  and  white. 

By  a  little  experience  the  operator  will  learn  how  to  put  his  questions,  and 
how  to  interpret  their  answers.  The  observer  should  not  look  at  the  coloured 

papers,  nor  be  told  the  proportions  of  the  colours  during  the  experiments. 
When  these  adjustments  have  been  properly  made,  the  resultant  tints  of  the 

outer  and  inner  circles  ought  to  be  perfectly  indistinguishable,  when  the  top 
has  a  sufficient  velocity  of  rotation.  The  number  of  divisions  occupied  by  the 

different  colours  must  then  be  read  off  on  the  edge  of  the  plate,  and  registered 
in  the  form  of  an  equation.  Thus,  in  the  preceding  experiment  we  have  ver- 

milion, ultramarine,  and  emerald  green  outside,  and  black  and  white  inside.  The 

numbers,  as  given  by  an  experiment  on  the  6th  March  1855,  in  dayhght  without 
sun,  are — 

•37  V  +  -27  U  +  '36  EG  =  -28  SW+-72  Bk   (1). 

The  method  of  treating  these  equations  will  be  given  when  we  come  to  the 
theoretical  view  of  the  subject. 

In  this  way  we  have  formed  a  neutral  gray  by  the  combination  of  the 

three  standard  colours.  We  may  also  form  neutral  grays  of  different  intensities 

by  the  combination  of  vermilion  and  ultramarine  with  the  other  greens,  and  thus 

obtain  the  quantities  of  each  necessary  to  neutralize  a  given  quantity  of  the 
proposed  green.  By  substituting  for  each  standard  colour  in  succession  one  of  the 
colours  which  stand  under  it,  we  may  obtain  equations,  each  of  which  contains 

two  standard  colours,  and  one  of  the  remaining  colours. 
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Thus,  in  the  case  of  pale  chrome,  we  have,  from  the  same  set  of  experiments, 

•34  PC  +  -55U  +  -12  EG  =  '37  SW  +  -63Bk   (2). 

"We  may  also  make  experiments  in  which  the  resultiag  tint  is  not  a  neutral 
gray,  but  a  decided  colour.  Thus  we  may  combine  ultramarine,  pale  chrome,  and 
black,  so  as  to  produce  a  tint  identical  with  that  of  a  compound  of  vermilion 

and  emerald-green.  Experiments  of  this  sort  are  more  difficult,  both  from  the 
inability  of  the  observer  to  express  the  difference  which  he  detects  in  two  tints 

which  have,  perhaps,  the  same  hue  and  intensity,  but  differ  in  purity ;  and  also 

from  the  complementary  colours  which  are  produced  in  the  eye  after  gazing  too 
long  at  the  colours  to  be  compared. 

The  best  method  of  arriving  at  a  result  in  the  case  before  us,  is  to  render 

the  hue  of  the  red  and  green  combination  something  like  that  of  the  yellow,  to 

reduce  the  purity  of  the  yellow  by  the  admixture  of  blue,  and  to  diminish  its 

intensity  by  the  addition  of  black.  These  operations  must  be  repeated  and 

adjusted,  till  the  two  tints  are  not  merely  varieties  of  the  same  colour,  but 

absolutely  the  same.     An  experiment  made  5th  March  gives — 

•39  PC-I--21  U  +  -40  Bk  =  ̂ 59  V-f41  EG   (3). 

That  these  experiments  are  really  evidence  relating  to  the  constitution  of  the 

eye,  and  not  mere  comparisons  of  two  things  which  are  in  themselves  identical, 
may  be  shewn  by  observing  these  resultant  tints  through  coloured  glasses,  or  by 

using  gas-light  instead  of  day-light.  The  tints  which  before  appeared  identical 
will  now  be  manifestly  different,  and  will  require  alteration,  to  reduce  them  to 

equality. 

Thus,  in  the  case  of  carmine,  we  have  by  day-light, 

•44  C-h-22  JJ  +  'U  EG=  •I?  SW-f-^83  Bk, 

while  by  gas-light  (Edinburgh) 

•47  C-l-^08  U-1-^45  EG  =  ̂ 25  SW-|-^75  Bk, 

which  shews  that  the  yellowing  effect  of  the  gas-light  teUs  more  on  the  white 
than  on  the  combination  of  colours.  If  we  examine  the  two  resulting  tints 

which  appeared  identical  in  experiment  (3),  observing  the  whirling  discs  througli 

a  blue  glass,  the  combination  of  yellow,  blue,  and  black,  appears  redder  than-  the 
other,  while  through  a  yellow  glass,  the  red  and  green  mixture  appears  redder. 

So  also  a  red  glass  makes  the  first  side  of  the  equation  too  dark,  and  a  green 
glass  makes  it  too  light. 

VOL.  I.  17 
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The  apparent  identity  of  the  tints  in  these  experiments  is  therefore  not  real, 

but  a  consequence  of  a  determinate  constitution  of  the  eye,  and  hence  arises 
the  importance  of  the  results,  as  indicating  the  laws  of  human  vision. 

The  first  result  which  is  worthy  of  notice  is,  that  the  equations,  as  observed 

by  different  persons  of  ordinary  vision,  agree  in  a  remarkable  manner.  If  care 

be  taken  to  secure  the  same  kind  of  light  in  all  the  experiments,  the  equations, 
as  determined  by  two  independent  observers,  will  seldom  shew  a  difference  of 

more  than  three  divisions  in  any  part  of  the  equation  containing  the  bright 
standard  colours.  As  the  duller  colours  are  less  active  in  changing  the  resultant 

tint,  their  true  proportions  cannot  be  so  well  ascertained.  The  accuracy  of  vision 

of  each  observer  may  be  tested  by  repeating  the  same  experiment  at  different 
times,  and  comparing  the  equations  so  found. 

Experiments  of  this  kind,  made  at  Cambridge  in  November  1854,  shew  that 

of  ten  observers,  the  best  were  accurate  to  within  1^  division,  and  agreed 
within  1  division  of  the  mean  of  all ;  and  the  worst  contradicted  themselves  to 

the  extent  of  6  degrees,  but  still  were  never  more  than  4  or  5  from  the  mean 
of  all  the  observations. 

We  are  thus  led  to  conclude — 

1st.  That  the  human  eye  is  capable  of  estimating  the  likeness  of  colours 
with  a  precision  which  in  some  cases  is  very  great. 

2nd.  That  the  judgment  thus  formed  is  determined,  not  by  the  real  identity 
of  the  colours,  but  by  a  cause  residing  in  the  eye  of  the  observer. 

3rd.  That  the  eyes  of  different  observers  vary  in  accuracy,  but  agree  with 
each  other  so  nearly  as  to  leave  no  doubt  that  the  law  of  colour-vision  is 
identical  for  all  ordinary  eyes. 

Investigation  of  the  Law  of  the  Perception  of  Colour. 

Before  proceeding  to  the  deduction  of  the  elementary  laws  of  the  perception 
of  colour  from  the  numerical  results  previously  obtained,  it  will  be  desirable 
to  point  out  some  general  features  of  the  experiments  which  indicate  the  form 
which  these  laws  must  assume. 

Betuming  to  experiment  (1),  in  which  a  neutral  gray  was  produced  from 

red,  blue,    and  green,    we   may   observe,    that,  while  the  adjustments  were  incom- 
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plete,  the  difference  of  the  tints  could  be  detected  only  by  one  circle  appearing 
more  red,  more  green,  or  more  blue  than  the  other,  or  by  being  lighter  or 
darker,  that  is,  having  an  excess  or  defect  of  all  the  three  colours  together. 

Hence  it  appears  that  the  nature  of  a  colour  may  be  considered  as  dependent 

on  three  things,  as,  for  instance,  redness,  blueness,  and  greenness.  This  is  con- 
firmed by  the  fact  that  any  tint  may  be  imitated  by  mixing  red,  blue,  and 

green  alone,  provided  that  tint  does  not  exceed  a  certain  brilliancy. 

Another  way  of  shewing  that  colour  depends  on  three  things  is  by  con- 
sidering how  two  tints,  say  two  lilacs,  may  differ.  In  the  first  place,  one  may 

be  lighter  or  darker  than  the  other,  that  is,  the  tints  may  differ  in  shade. 

Secondly,  one  may  be  more  blue  or  more  red  than  the  other,  that  is,  they  may 
differ  in  hue.  Thirdly,  one  may  be  more  or  less  decided  in  its  colour ;  it  may  vary 

fi*om  purity  on  the  one  hand,  to  neutrality  on  the  other.  This  is  sometimes 
expressed  by  saying  that  they  may  differ  in  tint. 

Thus,  in  shade,  hue,  and  tint,  wo  have  another  mode  of  reducing  the 
elements  of  colour  to  three.  It  will  be  shewn  that  these  two  methods  of  con- 

sidering colour  may  be  deduced  one  from  the  other,  and  are  capable  of  exact 

numerical  comparison. 

On  a  Geographical  Method  of  Exhibiting  the  Relations  of  Colours. 

The  method  which  exhibits  to  the  eye  most  clearly  the  results  of  this  theory 

of  the  three  elements  of  colour,  is  that  which  supposes  each  colour  to  be  repre- 
sented by  a  point  in  space,  whose  distances  from  three  co-ordinate  planes  are 

proportional  to  the  three  elements  of  colour.  But  as  any  method  by  which  the 

operations  are  confined  to  a  plane  is  preferable  to  one  recLuiring  space  of  three 

dimensions,  we  shall  only  consider  for  the  present  that  which  has  been  adopted 

for  convenience,  founded  on  Newton's  Circle  of  colours  and  Mayer  and  Young's 
Triangle. 

Vermilion,  ultramarine,  and  emerald-green,  being  taken  (for  convenience)  as 

standard  colours,  are  conceived  to  be  represented  by  three  points,  taken  (for  con- 
venience) at  the  angles  of  an  equilateral  triangle.  Any  colour  compounded  of 

these  three  is  to  be  represented  by  a  point  found  by  conceiving  masses  propor- 
tional to  the  several  components  of  the  colour  placed  at  their  respective  angular 

points,  and  taking  the  centre  of  gravity  of  the  three  masses.     In  this  way,  each 

17—2 
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colour  will  indicate  by  its  position  the  proportions  of  the  elements  of  which  it  is 

composed.  The  total  intensity  of  the  colour  is  to  be  measured  by  the  whole 

number  of  divisions  of  V,  U,  and  EG,  of  which  it  is  composed.  This  may  be 

indicated  by  a  number  or  coefficient  appended  to  the  name  of  the  colour,  by 

which  the  number  of  divisions  it  occupies  must  be  multiplied  to  obtain  its  mass 

in  calculating  the  results  of  new  combinations. 

This  will  be  best  explained  by  an  example  on  the  diagram  (No.  1).  We 

have,  by  experiment  (l), 

•37  Y+-27  U  +  -36  EG=  -28  SW4-  72  Bk. 

To  find  the  position  of  the  resultant  neutral  tint,  we  must  conceive  a  mass 

of  -37  at  V,  of  -27  at  U,  and  of  '36  at  EG,  and  find  the  centre  of  gravity. 

This  may  be  done  by  taking  the  line  UV,  and  dividing  it  in  the  proportion  of 

•37  to  ̂ 27  at  the  point  a,  where 

aV  :  aU  ::  ̂ 27   :  '37. 

Then,  joining  a  with  EG,  divide  the  joining  line  in  W  in  the  proportion  of  ̂36 

to  ("37  + "27),  W  will  be  the  position  of  the  neutral  tint  required,  which  is  not 

white,  but  0*28  of  white,  diluted  with  0^72  of  black,  which  has  hardly  any  effect 

whatever,  except  in  decreasing  the  amount  of  the  other  colour.  The  total  in- 

tensity of  our  white  paper  will  be  represented  by  oi  =  3'57;  so  that,  whenever 

white  enters  into  an  equation,  the  number  of  divisions  must  be  multiplied  by 

the  coefficient  3-57  before  any  true  results  can  be  obtained. 

We  may  take,  as  the  next  example,  the  method  of  representing  the  relation 

of  pale  chrome  to  the  standard  colours  on  our  diagram,  by  making  use  of  ex- 

periment (2),  in  which  pale  chrome,  ultramarine,  and  emerald-green,  produced  a 

neutral  gray.     The  resulting  equation  was 

•33PC  +  -55U  +  -12EG  =  -37SW  +  -63Bk   (2). 

In  order  to  obtain  the  total  intensity  of  white,  we  must  multiply  the 

number  of  divisions,  -37,  by  the  proper  coefficient,  which  is  3*57.  The  result  is 

1-32,  which  therefore  measures  the  total  intensity  on  both  sides  of  the  equation. 

Subtracting  the  intensity  of  •55U  +  -12EG,  or  '67  from  1-32,  we  obtain  '65 

as  the  corrected  value  of  -33  PC.  It  will  be  convenient  to  use  these  corrected 

values  of  the  different  colours,  taking  care  to  distinguish  them  by  small  initials 

instead  of  capitals. 
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Equation  (2)  then  becomes 

•65  pc  +  -55  U  +  -12  EG  =  1  -32  w. 

Hence  pc  must  be  situated  at  a  point  such  that  w  is  the  centre  of  gravity 

of  •65pc  +  -55U  +  '12EG. 

To  find  it,  we  begin  by  determining  ̂   the  centre  of  gravity  of  -55  U  +  '12EG, 
then,  joining  /8w,  the  point  we  are  seeking  must  lie  at  a  certain  distance  on 

the  other  side  of  w  from  c     This  distance  may  be  found  from  the  proportion, 

•65   :  (-55 +  -12)   ::  ̂   :  w  pc, 

which   determines   the   position   of  pc.     The    proper   coefficient,  by   which  the  ob- 

served vakies  of  PC  must  be  corrected,  is  ̂ ,  or  1-97. 

We  have  thus  determined  the  position  and  coefficient  of  a  colour  by  a  single 

experiment,  in  which  it  was  made  to  produce  a  neutral  tint  along  with  two  of 
the  standard  colours.  As  this  may  be  done  with  every  possible  colour,  the 

method  is  applicable  wherever  we  can  obtain  a  disc  of  the  proposed  colour.  In 

this  way  the  diagram  (No.  l)  has  been  laid  down  from  observations  made  in 

daylight,  by  a  good  eye  of  the  ordinary  type. 

It  has  been  observed  that  experiments,  in  which  the  resultant  tint  is  neutral, 
are  more  accurate  than  those  in  which  the  resulting  tint  has  a  decided  colour, 

as  in  experiment  (3),  owing  to  the  effects  of  accidental  colours  produced  in  the 

eye  in  the  latter  case.  These  experiments,  however,  may  be  repeated  till  a 
very  good  mean  result  has  been  obtained. 

But  since  the  elements  of  every  colour  have  been  already  fixed  by  our 

previous  observations  and  calculations,  the  agreement  of  these  results  with  those 

calculated  from  the  diagram  forms  a  test  of  the  correctness  of  our  method. 

By  experiment  (No.  3),  made  at  the  same  time  with  (l)  and  (2),  we  have 

•39PC  +  -2lU  +  -40Bk  =  -59V  +  -4lEG   (3). 

Now,  joining  XJ  with  pc,  and  V  with  EG,  the  only  common  point  is  that 

at  which  they  cross,  namely  y. 

Measuring  the  parts  of  the  line  V  EG,  we  find  them  in  the  proportion  of 

•58  V  and  "42  EG  =  1*00  7. 

Similarly,  the  line  U  pc  is  divided  in  the  proportion 

78  pc  and   •22U=r00y. 
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But    -78  pc   must  be   divided  by    1-97,   to  reduce    it    to    PC,   as    was    previously 
explained.     The  result  of  calculation  is,  therefore, 

•39  PC  +  -22  U  +  -39  Bk  =  -58  V  +  "42  EG, 

the  black  being  introduced  simply  to  fill  up  the  circle. 

This  result  differs  very  little  from  that  of  experiment  (3),  and  it  must  be 

recollected  that  these  are  single  experiments,  made  independently  of  theory,  and 
chosen  at  random. 

Experiments  made  at  Cambridge,  with  all  the  combinations  of  five  colours, 

shew  that  theory  agrees  with  calculation  always  within  0-012  of  the  whole, 
and  sometimes  within  0*002.  By  the  repetition  of  these  experiments  at  the 

numerous  opportunities  which  present  themselves,  the  accuracy  of  the  results 

may  be  rendered  still  greater.  As  it  is,  I  am  not  aware  that  the  judgments 

of  the  human  eye  with  respect  to  colour  have  been  supposed  capable  of  so 
severe  a  test. 

Further  consideration  of  the  Diagram  of  Colours. 

We  have  seen  how  the  composition  of  any  tint,  in  terms  of  our  three 

standard  colours,  determines  its  position  on  the  diagram  and  its  proper  coefficient. 

In  the  same  way,  the  result  of  mixing  any  other  colours,  situated  at  other 

points  of  the  diagram,  is  to  be  found  by  taking  the  centre  of  gravity  of  their 
reduced  masses,  as  was  done  in  the  last  calculation  (experiment  3). 

We  have  now  to  turn  our  attention  to  the  general  aspect  of  the  diagram. 

The  standard  colours,  V,  U,  and  EG,  occupy  the  angles  of  an  equilateral 

triangle,  and  the  rest  are  arranged  in  the  order  in  which  they  participate  in 
red,  blue,  and  green,  the  neutral  tint  being  at  the  point  w  within  the  triangle. 
If  we  now  draw  lines  through  w  to  the  different  colours  ranged  round  it,  we 
shall  find  that,  if  we  pass  from  one  line  to  another  in  the  order  in  which  they 

lie  from  red  to  green,  and  through  blue  back  again  to  red,  the  order  will  be — 

Carmine    . 

Vermilion . 
Red  Lead . 

Oi-ange  Orpiment 
Orange  Chrome 
Chrome  Yellow 

Gramboge  . 

Coefficient. 

0-4 Pale  Chrome 

1-0 
Mixed  Green  (U  C) 

1-3 Brunswick  Green 10 
Emerald  Green    . 

1-6 Verditer  Blue     . 

1-5 
Prussian  Blue     . 

1-8 Ultramarine 

Coefficient. 

2  0 

0-4 
0-2 10 

0-8 

01 

10 
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It  may  be  easily  seen  that  this  arrangement  of  the  colours  corresponds  to 

that  of  the  prismatic  spectrum  ;  the  only  difference  being  that  the  spectrum 
is  deficient  in  those  fine  purples  which  lie  between  ultramarine  and  vermilion, 

and  which  are  easily  produced  by  mixture.  The  experiments  necessary  for  deter- 

mining the  exact  relation  of  this  list  to  the  lines  in  the  spectrum  are  not  yet 
completed. 

If  we  examine  the  colours  represented  by  different  points  in  one  of  these 
lines  through  w,  we  shall  find  the  purest  and  most  decided  colours  at  its  outer 

extremity,  and  the  faint  tints  approaching  to  neutrality  nearer  to  w. 

If  we  also  study  the  coefficients  attached  to  each  colour,  we  shall  find  that 
the  brighter  and  more  luminous  colours  have  higher  numbers  for  their  coefficients 
than  those  which  are  dark. 

In  this  way,  the  qualities  which  we  have  already  distinguished  as  hue,  tint, 
and  shade,  are  represented  on  the  diagram  by  angular  position  with  respect  to  ir, 
distance  from  w,  and  coefficient;  and  the  relation  between  the  two  methods  of 

reducing  the  elements  of  colour  to  three  becomes  a  matter  of  geometry. 

Theory  of  the  Perception  of  Colour. 

Opticians  have  long  been  divided  on  this  point ;  those  who  trusted  to 

popular  notions  and  their  own  impressions  adopting  some  theory  of  three  primary 
colours,  while  those  who  studied  the  phenomena  of  light  itself  proved  that  no 
such  theory  could  explain  the  constitution  of  the  spectrum.  Newton,  who  was 

the  first  to  demonstrate  the  actual  existence  of  a  series  of  kinds  of  light, 

countless  in  number,  yet  all  perfectly  distinct,  was  also  the  first  to  propound 
a  method  of  calculating  the  effect  of  the  mixture  of  various  coloured  light ; 

and  this  method  was  substantially  the  same  as  that  which  we  have  just 
verified.  It  is  true,  that  the  directions  which  he  gives  for  the  construction 
of  his  circle  of  colours  are  somewhat  arbitrary,  being  probably  only  intended 
as  an  indication  of  the  general  nature  of  the  method,  but  the  method  itself 

is  mathematically  reducible  to  the  theory  of  three  elements  of  the  colour- 
sensation*. 

♦  See  Note  III.     For  a  confirmation  of  Newton's  analysis  of  Light,   see  Helmholtz,    Pogg.     Ann, 1852;   and  Phil.  Mag.   1852,  Part  ii. 
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Youno",  who  made  the  next  great  step  in  the  establishment  of  the  theory 

of  light,  seems  also  to  have  been  the  first  to  follow  out  the  necessary  conse- 

quences of  Newton's  suggestion  on  the  mixture  of  colours.  He  saw  that,  since 

this  tripUcity  has  no  foundation  in  the  theory  of  light,  its  cause  must  be  looked 

for  in  the  constitution  of  the  eye;  and,  by  one  of  those  bold  assumptions 

which  sometimes  express  the  result  of  speculation  better  than  any  cautious 

trains  of  reasoning,  he  attributed  it  to  the  existence  of  three  distinct  modes 

of  sensation  in  the  retina,  each  of  which  he  supposed  to  be  produced  in  different 

deo-rees  by  the  different  rays.  These  three  elementary  effects,  according  to  his 

view,  correspond  to  the  three  sensations  of  red,  green,  and  violet,  and  would 

separately  convey  to  the  sensorium  the  sensation  of  a  red,  a  green,  and  a  violet 

picture ;  so  that  by  the  superposition  of  these  pictures,  the  actual  variegated 

world  is  represented*. 

In  order  fully  to  understand  Young's  theory,  the  function  which  he 
attributes  to  each  system  of  nerves  must  be  carefully  borne  in  mind.  Each  nerve 

acts,  not,  as  some  have  thought,  by  conveying  to  the  mind  the  knowledge  of  the 

length  of  an  undulation  of  light,  or  of  its  periodic  time,  but  simply  by  being 

Quore  or  less  affected  by  the  rays  which  fall  on  it.  The  sensation  of  each 

elementary  nerve  is  capable  only  of  increase  and  diminution,  and  of  no  other 

change.  We  must  also  observe,  that  the  nerves  corresponding  to  the  red 

sensation  are  affected  chiefly  by  the  red  rays,  but  in  some  degree  also  by  those 

of  every  other  part  of  the  spectrum  ;  just  as  red  glass  transmits  red  rays  freely, 

but  also  suffers  those  of  other  colours  to  pass  in  smaller  quantity. 

This  theory  of  colour  may  be  illustrated  by  a  supposed  case  taken  from 

the  art  of  photography.  Let  it  be  required  to  ascertain  the  colours  of  a  land- 

scape, by  means  of  impressions  taken  on  a  preparation  equally  sensitive  to  rays  of 

every  colour. 

Let  a  plate  of  red  glass  be  placed  before  the  camera,  and  an  impression 

taken.  The  positive  of  this  will  be  transparent  wherever  the  red  light  has  been 

abundant  in  the  landscape,  and  opaque  where  it  has  been  wanting.  Let  it  now 

be  put  in  a  magic  lantern,  along  with  the  red  glass,  and  a  red  picture  will  be 
thrown  on  the  screen. 

Let   this   operation   be   repeated   with    a    green    and    a  violet  glass,   and,  by 

*  Young's  Lectures,  p.  345,  Kelland's  Edition.  See  also  Helmholtz's  statement  of  Young's  Theory, 
in  his  Paper  referred  to  in  Note  I. ;   and  Herschel's  LigJU,  Art.  518. 
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means  of  three  magic  lanterns,  let  the  three  images  be  superimposed  on  the 
screen.  The  colour  of  any  point  on  the  screen  will  then  depend  on  that  of  the 

corresponding  point  of  the  landscape;  and,  by  properly  adjusting  the  intensities 

of  the  lights,  &c.,  a  complete  copy  of  the  landscape,  as  far  as  visible  colour  is 

concerned,  will  be  thrown  on  the  screen.  The  only  apparent  difference  will  be, 

that  the  copy  will  be  more  subdued,  or  less  pure  in  tint,  than  the  original. 

Here,  however,  we  have  the  process  performed  twice — first  on  the  screen,  and 
then  on  the  retina. 

This  illustration  will  shew  how  the  functions  which  Young  attributes  to  the 

three  systems  of  nerves  may  be  imitated  by  optical  apparatus.  It  is  therefore 

unnecessary  to  search  for  any  direct  connection  between  the  lengths  of  the 

undulations  of  the  various  rays  of  light  and  the  sensations  as  felt  by  us,  as 

the  threefold  partition  of  the  properties  of  light  may  be  effected  by  physical 
means.  The  remarkable  correspondence  between  the  results  of  experiments  on 
different  individuals  would  indicate  some  anatomical  contrivance  identical  in  all. 

As  there  is  little  hope  of  detecting  it  by  dissection,  we  may  be  content  at 

present  with  any  subsidary  evidence  which  we  may  possess.  Such  evidence  is 

furnished  by  those  individuals  who  have  the  defect  of  vision  which  was 

described  by  Dalton,  and  which  is  a  variety  of  that  which  Dr  G.  Wilson  has 

lately  investigated,   under  the   name   of  Colour-Blindness. 

Testimony  of  the  Colour- Blind  with  respect  to  Colour. 

Dr  George  Wilson  has  described  a  great  number  of  cases  of  colour- 

bhndness,  some  of  which  involve  a  general  indistinctness  in  the  appreciation 

of  colour,  while  in  others,  the  errors  of  judgment  are  plainly  more  numerous 

in  those  colours  which  approach  to  red  and  green,  than  among  those  which 

approach  to  blue  and  yellow.  In  these  more  definite  cases  of  colour-blindness, 
the  phenomena  can  be  tolerably  well  accoimted  for  by  the  hypothesis  of  an 
insensibility  to  red  light;  and  this  is,  to  a  certain  extent,  confirmed  by  the 

fact,  that  red  objects  appear  to  these  eyes  decidedly  more  obscure  than  to 

ordinary  eyes.  But  by  experiments  made  with  the  pure  spectrum,  it  appears 

that  though  the  red  appears  much  more  obscure  than  other  colours,  it  is  not 

wholly  invisible,  and,  what  is  more  curious,  resembles  the  green  more  than 

any   other   colour.     The   spectrum   to   them   appears    faintly   luminous  in  the  red; 
VOL.  L  18 
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bright  yellow  from  orange  to  yellow,  bright  but  not  coloured  from  yellow- 
green  to  blue,  and  then  strongly  coloured  in  the  extreme  blue  and  violet, 
after  which  it  seems  to  approach  the  neutral  obscure  tint  of  the  red.  It  is 

not  easy  to  see  why  an  insensibihty  to  red  rays  should  deprive  the  green 

rays,  which  have  no  optical  connection  with  them,  of  their  distinctive  appearance. 
The  phenomena  seem  rather  to  lead  to  the  conclusion  that  it  is  the  red 
serisation  which  is  wanting,  that  is,  that  supposed  system  of  nerves  which  is 

affected  in  various  degrees  by  all  light,  but  chiefly  by  red.  We  have  fortunately 
the   means  of  testing   this   hypothesis  by  numerical  results. 

Of  the  subjects  of  my  experiments  at  Cambridge,  four  were  decided  cases 
of  colour-bHndness.  Of  these  two,  namely,  Mr  E.  and  Mr  S.,  were  not 

suflficiently  critical  in  their  observations  to  afford  any  results  consistent  within 

10  divisions  of  the  colour-top.  The  remaining  two,  Mr  N.  and  Mr  X.,  were 
as  consistent  in  their  observations  as  any  persons  of  ordinary  vision  can  be, 
while  the  results  shewed  all  the  more  clearly  how  completely  their  sensations 
must  differ  from  ours. 

The  method  of  experimenting  was  the  same  as  that  adopted  with  ordinary 

eyes,  except  that  in  these  cases  the  operator  can  hardly  influence  the  result 

by  yielding  to  his  own  impressions,  as  he  has  no  perception  whatever  of  the 

similarity  of  the  two  tints  as  seen  by  the  observer.  The  questions  which  he 
must  ask  are  two,  Which  circle  appears  most  blue  or  yellow  ?  Which  appears 

lightest  and  which  darkest  ?  By  means  of  the  answers  to  these  questions  he 
must  adjust  the  resulting  tints  to  equality  in  these  respects  as  it  appears  to 
the  observer,  and  then  ascertain  that  these  tints  now  present  no  difference  of 

colour  whatever  to  his  eyes.  The  equations  thus  obtained  do  not  require  five 

colours  including  black,  but  four  only.  For  instance,  the  mean  of  several  obser- 
vations  gives — 

•19  G+'05  B  +  -76  Bk=100R   (4). 

[In  these  experiments  R,  B,  G,  Y,  stand  for  red,  blue,  green,  and  yellow 

papers  prepared  by  Mr  D.  R.  Hay.  I  am  not  certain  that  they  are  identical 

with  his  standard  colours,  but  I  beUeve  so.  Their  relation  to  vermihon,  ultra- 
marine, and  emerald-green  is  given  in  diagram  (1).  Their  relations  to  each  other 

are  very  accurately  given  in  diagram  (2).] 

It  appears,  then,  that  the  dark  blue-green  of  the  left  side  of  the  equation 
is  equivalent  to  the  full  red  of  the  right  side. 
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Hence,  if  we  divide  the  line  BG  in  the  proportion  19  to  5  at  the  point  y8, 

and  join  R)8,  the  tint  at  ̂   will  differ  from  that  at  R  (to  the  colour-blind) 

only  in  being  more  brilliant  in  the  proportion  of  100  to  24,  and  all  inter- 
mediate tints  on  the  line  R^  will  appear  to  them  of  the  same  hue,  but 

of  intermediate   intensities. 

Now,  if  we  take  a  point  D,  so  that  RD  is  to  R^  in  the  proportion  of 

24  to  100  —  24,  or  76,  the  tint  of  D,  if  producible,  should  be  invisible  to 

the  colour-blind.  D,  therefore,  represents  the  pure  sensation  which  is  unknown 

to  the  colour-blind,  and  the  addition  of  this  sensation  to  any  others  cannot 
alter   it   in   their  estimation.     It  is  for  them  equivalent   to   black. 

Hence,  if  we  draw  lines  through  D  in  different  directions,  the  colours 

belonging  to  any  line  ought  to  differ  only  in  intensity  as  seen  by  them,  so 

that  one  of  them  may  be  reduced  to  the  other  by  the  addition  of  black 

only.  If  we  draw  DW  and  produce  it,  all  colours  on  the  upper  side  of  DW 

will  be  varieties  of  blue,  and  those  on  the  under  side  varieties  of  yellow,  so 

that  the  line  DW  is  a  boundary  line  between  their  two  kinds  of  colour,  blue 

and  yellow  being  the  names  by  which  they  call  them. 

The  accuracy  of  this  theory  will  be  evident  from  the  comparison  of  the 

experiments  which  I  had  an  opportunity  of  making  on  Mr  N.  and  Mr  X.  with 

each  other,  and  with  measurements  taken  from  the  diagram  No.  2,  which  was 

constructed  from  the  observations  of  ordinary  eyes  only,  the  point  D  alone 

being   ascertained  from  a  series  of  observations  by  Mr  N. 

Taking  the  point  y,  between  R  and  B,  it  appears,  by  measurement  of  the 

lines  Ry   and  By,   that  y  corresponds  to 

•07  B  +  -93R. 

By  measurement  of  Wy  and  Dy,  and  correction  by  means  of  the  coeflScient 

of  W,   and  caUing   D  black   in  the  colour-blind  language,  y  corresponds  to 

•105  W-f895  Bk. 

Therefore 

By  measurement        -93  R+ '07  B  =  ̂ 105  W  + •sgs  Bk  1 

By  observation  N.  &  X.  together    "94  R-f -06  B  =  •lO    W-f-^90    Bk    I   (5). 

By  X.  alone      -93  R-h-07  B  =  -10    W  +  -90    Bk  J 

The  agreement  here  is  as  near  as  can  be  expected. 

18—2 
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By  a  similar  calculation  with  respect  to  the  point  8,  between  B  and  G, 

By  measurement        -43  B  +  -57  G  =  -335  W  +  *665  Bk  1 
Observed  by  N.  and  X     '41  B  +  '59  G  = '34    W  +  -66    Bk   I   (6). 

By  X.  alone      -42  B  +  -58  G  =  -32    W  +  -68    Bk  J 

We  may  also  observe,  that  the  line  GD  crosses  RY.     At  the  point  of  inter- 
section we  have — 

By  calculation    '87  B  +  'IS  Y  =  -34  G  +  -66  Bk 
Observed  by  N.  and  X    -86  R  +  -14  Y  =  -40  G  +  'GO  Bk 

X    •84R  +  '16  Y=-31  G  +  '69  Bk 
X    -QOR  +  'IO  Y  =  -27  G  +  73Bk 

.(7). 

Here  observations  are  at  variance,  owing  to  the  decided  colours  produced 

affecting  the  state  of  the  retina,  but  the  mean  agrees  well  with  calculation. 

Drawing  the  line  BY,  we  find  that  it  cuts  lines  through  D  drawn  to  every 

colour.  Hence  all  colours  appear  to  the  colour-blind  as  if  composed  of  blue 
and  yellow.     By  measurement  on  the  diagram,  we  find  for  red 

Measured      -138  Y+-123  B  +  749  Bk  =  100  R' 
Observed  by  N..., -15    Y  +  'll    B-1--74    Bk  =  100RJ-   (8). 

X....-13    Y  +  'll    B  +  -76    Bk  =  100R 

.(9). 

For  green  we  have  in  the  same  way — 

Measured       705  Y  +  -295  B  =  '95  G  +  -05  Bkl 

Observed  by  N....  70    Y  +  -30    B  =  -86  G  +  -14  Bk  i .... 
X....  70    Y+-30    B  =  '83  G+-17BkJ 

For  white — 

Measured       '407  Y  +  -593  B  =  '326  W  +  "674  Bk 

Observed  by  N....  -40    Y+-60    B  =  -33    W+-67    Bk 
X....  -44    Y+-56    B=-33    W+-67    Bk 

The  accuracy  of  these  results  shews  that,  whether  the  hypothesis  of  the 
want  of  one  element  out  of  three  necessary  to  perfect  vision  be  actually  true 

or  not,  it  affords  a  most  trustworthy  foundation  on  which  to  build  a  theory 

of  colour-blindness,  as  it  expresses  completely  the  observed  facts  of  the  case. 

They  also  furnish  us  with  a  datum  for  our  theory  of  perfect  vision,  namely, 

the  point  D,  which  points  out  the  exact  nature  of  the  colour-sensation,  which 
must  be   added   to   the   colour-blind   eye   to   render   it   perfect.     I  am  not  aware 
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of  any  method  of  determining  by  a  legitimate  process  the  nature  of  the  other 

two  sensations,  although  Young's  reasons  for  adopting  something  like  green  and 
violet  appear  to  me  worthy  of  attention. 

The  only  remaining  subject  to  which  I  would  call  the  attention  of  the 

Society  is  the  effect  of  coloured  glasses  on  the  colour-blind.  Although  they  can- 
not distinguish  reds  and  greens  from  varieties  of  gray,  the  transparency  of  red 

and  green  glasses  for  those  kinds  of  light  is  very  different.  Hence,  after  finding 

a  case  such  as  that  in  equation  (4),  in  which  a  red  and  a  green  appear  iden- 
tical, on  looking  through  a  red  glass  they  see  the  red  clearly  and  the  green 

obscurely,  while  through  a  green  glass  the  red  appears  dark  and  the  green  light. 

By  furnishing  Mr  X.  with  a  red  and  a  green  glass,  which  he  could  dis- 
tinguish only  by  their  shape,  I  enabled  him  to  make  judgments  in  previously 

doubtful  cases  of  colour  with  perfect  certainty.  I  have  since  had  a  pair  of 

spectacles  constructed  with  one  eye-glass  red  and  the  other  greeiL  These  Mr  X. 

intends  to  use  for  a  length  of  time,  and  he  hopes  to  acquire  the  habit  of  discri- 
minating red  from  green  tints  by  their  different  effects  on  his  two  eyes.  Though 

he  can  never  acquire  our  sensation  of  red,  he  may  then  discern  for  himself  what 

things  are  red,  and  the  mental  process  may  become  so  familiar  to  him  as  to  act 
unconsciously  like  a  new  sense. 

In  one  experiment,  after  looking  at  a  bright  light,  with  a  red  glass  over  one 

eye  and  a  green  over  the  other,  the  two  tints  in  experiment  (4)  appeared  to  him 

altered,  so  that  the  outer  circle  was  lighter  according  to  one  eye,  and  the  inner 

according  to  the  other.  As  far  as  I  could  ascertain,  it  appeared  as  if  the  eye 

which  had  used  the  red  glass  saw  the  red  circle  brightest.  This  result,  which 

seems  at  variance  with  what  might  be  expected,  I  have  had  no  opportunity  of 

verifying. 

This  paper  is  already  longer  than  was  originally  intended  For  further 

information  I  would  refer  the  reader  to  Newton's  Optich,  Book  i.  Part  ii.,  to 

Young's  Lectures  on  Natural  Philosophy,  page  345,  to  Mr  D.  R.  Hay's  works  on 

Colours,  and  to  Professor  Forbes  on  the  "Classification  of  Colours"  (Phil.  Mag., 
March,  1849). 

The  most  remarkable  paper  on  the  subject  is  that  of  M.  Helmholtz,  in  the 

Philosophical  Magazine  for  1852,  in  which  he  discusses  the  different  theories  of 

primary  colours,  and  describes  his  method  of  mixing  the  colours  of  the  spectrum. 

An    examination    of  the    results    of  M.    Helmholtz    with    reference  to   the  theory 
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of  three  elements  of  colour,  by  Professor  Grassmann,  is  translated  in  the  Phil. 

Mag.,  April,   1854. 

References  to  authors  on  colour-blindness  are  given  in  Dr  G.  Wilson's  papers 
on  that  subject.  A  valuable  Letter  of  Sir  J.  F.  W.  Herschel  to  Dalton  on  his 

peculiarity  of  vision,  is  to  be  found  in  the  Life  of  Dalton  by  Dr  Henry. 

I  had  intended  to  describe  some  experiments  on  the  propriety  of  the  method 

of  mixino-  colours  by  rotation,  which  might  serve  as  an  extension  of  Mr  Swan's 
experiments  on  instantaneous  impressions  on  the  eye.  These,  together  with  the 

explanation  of  some  phenomena  which  seem  to  be  at  variance  with  the  theory  of 

vision  here  adopted,  must  be  deferred  for  the  present.  On  some  future  occasion, 

I  hope  to  be  able  to  connect  these  simple  experiments  on  the  colours  of  pigments 

with  others  in  which  the  pure  hues  of  the  spectrum  are  used.  I  have  already 

constructed  a  model  of  apparatus  for  this  purpose,  and  the  results  obtained  are 

sufficiently  remarkable  to  encourage  perseverance. 

Note  I. 

On  different  Methods  of  Exhibiting  the  Mixtures  of  Colours. 

(1)  Mechanical  Mixture  of  Coloured  Powders. 

By  grinding  coloured  powders  together,  the  differently- coloured  particles  may 

be  so  intermingled  that  the  eye  cannot  distinguish  the  colours  of  the  separate 

powders,  but  receives  the  impression  of  a  uniform  tint,  depending  on  the  nature 

and  proportions  of  the  pigments  used.  In  this  way,  Newton  mixed  the  powders 

of  orpiment,  purple,  bise,  and  viride  ceris,  so  as  to  form  a  gray,  which,  in  sun- 

light, resembled  white  paper  in  the  shade.  (Newton's  Opticks,  Book  i.  Part  n., 

Exp.  XV.)  This  method  of  mixture,  besides  being  adopted  by  all  painters,  has 

been  employed  by  optical  writers  as  a  means  of  obtaining  numerical  results. 

The  specimens  of  such  mixtures  given  by  B.  R.  Hay  in  his  works  on  Colour, 

and  the  experiments  of  Professor  J.  D.  Forbes  on  the  same  subject,  shew  the 

importance  of  the  method  as  a  means  of  classifying  colours.  There  are  two 

objections,  however,  to  this  method  of  exhibiting  colours  to  the  eye.  When 

two  powders  of  unequal  fineness  are  mixed,  the  particles  of  the  finer  powder 

cover  over  those  of  the  coarser,  so  as  to  produce  more  than  their  due  effect 

in   influencing   the   resultant  tint.     For  instance,  a  small  quantity  of  lamp-black. 
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mixed  with  a  large  quantity  of  chalk,  will  produce  a  mixture  which  is  nearly 

black.  Although  the  powders  generally  used  are  not  so  different  in  this  respect 

as  lamp-black  and  chalk,  the  results  of  mixing  given  weights  of  any  coloured 

powders  must  be  greatly  modified  by  the  mode  in  which  these  powders  have 

been  prepared. 

Again,  the  light  which  reaches  the  eye  from  the  surface  of  the  mixed  pow- 

ders consists  partly  of  light  which  has  fallen  on  one  of  the  substances  mixed 

without  being  modified  by  the  other,  and  partly  of  light  which,  by  repeated 

reflection  or  transmission,  has  been  acted  on  by  both  substances.  The  colour  of 

these  rays  will  not  be  a  mixture  of  those  of  the  substances,  but  will  be  the 

result  of  the  absorption  due  to  both  substances  successively.  Thus,  a  mixture  of 

yellow  and  blue  produces  a  neutral  tint  tending  towards  red,  but  the  remainder 

of  white  light,  after  passing  through  both,  is  green;  and  this  green  is  generally 

sufficiently  powerful  to  overpower  the  reddish  gray  due  to  the  separate  colours 
of  the  substances  mixed.  This  curious  result  has  been  ably  investigated  by 

Professor  Helmholtz  of  Konigsberg,  in  his  Memoir  on  the  Theory  of  Compound 

Colours,  a  translation  of  which  may  be  found  in  the  Annals  of  Philosophy  for 

1852,  Part  2. 

(2)     Mixture  of  differently-coloured  Beams  of  Light   by   Superposition 
on  an  Opaque  Screen. 

When  we  can  obtain  light  of  sufficient  intensity,  this  method  produces  the 
most  beautiful  results.  The  best  series  of  experiments  of  this  kind  are  to  be 

found  in  Newton's  Opticks,  Book  i.  Part  ii.  The  different  arrangements  for 
mixing  the  rays  of  the  spectrum  on  a  screen,  as  described  by  Newton,  form 

a  very  complete  system  of  combinations  of  lenses  and  prisms,  by  which  almost 

every  possible  modification  of  coloured  light  may  be  produced.  The  principal 

objections  to  the  use  of  this  method  are— (1)  The  difficulty  of  obtaining  a  con- 
stant supply  of  uniformly  intense  light;  (2)  The  uncertainty  of  the  effect  of 

the  position  of  the  screen  with  respect  to  the  incident  beams  and  the  eye  of 

the  observer;  (3)  The  possible  change  in  the  colour  of  the  incident  light  due 

to  the  fluorescence  of  the  substance  of  the  screen.  Professor  Stokes  haa  found 

that  many  substances,  when  illuminated  by  homogeneous  light  of  one  refrangi- 
bility,  become  themselves  luminous,  so  as  to  emit  light  of  lower  refrangibility. 

This  phenomenon  must  be  carefully  attended  to  when  screens  are  used  to  exhibit 

light. 
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(3)     Union   of  Coloured   Beams   hy   a   Piism  so   as   to  form   one   Beam. 

The  mode  of  viewing  the  beam  of  light  directly,  without  first  throwing  it 

on  a  screen,  was  not  much  used  by  the  older  experimenters,  but  it  possesses 

the  advantage  of  saving  much  light,  and  admits  of  examining  the  rays  before 

they  have  been  stopped  in  any  way.  In  Newton's  11th  proposition  of  the  2nd 
Book,  an  experiment  is  described,  in  which  a  beam  is  analysed  by  a  prism, 

concentrated  by  a  lens,  and  recombined  by  another  prism,  so  as  to  form  a  beam 

of  white  light  similar  to  the  incident  beam.  By  stopping  the  coloured  rays  at 

the  lens,  any  proposed  combination  may  be  made  to  pass  into  the  emergent 

beam,  where  it  may  be  received  directly  by  the  eye,  or  on  a  screen,  at  pleasure. 

The  experiments  of  Helmholtz  on  the  colours  of  the  spectrum  were  made 

with  the  ordinary  apparatus  for  directly  viewing  the  pure  spectrum,  two  oblique 

slits  crossing  one  another  being  employed  to  admit  the  light  instead  of  one 

vertical  sht.  Two  pure  spectra  were  then  seen  crossing  each  other,  and  so 

exhibiting  at  once  a  large  number  of  combinations.  The  proportions  of  these 

combinations  were  altered  by  varying  the  inclination  of  the  slits  to  the  plane  of 

lefraction,  and  in  this  way  a  number  of  very  remarkable  results  were  obtained, — 
for  which  see  his  Memoir,  before  referred  to. 

In  experiments  of  the  same  kind  made  by  myself  in  August  1852  (inde- 

pendently of  M.  Helmholtz),  I  used  a  combination  of  three  moveable  vertical 

slits  to  admit  the  light,  instead  of  two  cross  shts,  and  observed  the  compound 

ray  through  a  slit  made  in  a  screen  on  which  the  pure  spectrum  is  formed. 

In  this  way  a  considerable  field  of  view  was  filled  with  the  mixed  light,  and 

might  be  compared  with  another  part  of  the  field  illuminated  by  light  proceeding 

from  a  second  system  of  slits,  placed  below  the  first  set.  The  general  character 

of  the  results  agreed  with  those  of  M.  Helmholtz.  The  chief  difficulties  seemed 

to  arise  from  the  defects  of  the  optical  apparatus  of  my  own  eye,  which  ren- 

dered apparent  the  compound  nature  of  the  light,  by  analysing  it  as  a  prism 

or  an  ordinary  lens  would  do,  whenever  the  lights  mixed  differed  much  in 

refrangibility. 
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(4)     Union   of  two   beams   by   means   of  a   transparent   surface,   which   reflects 

the  first  and  transmits  the  second. 

The  simplest  experiment  of  this  kind  is  described  by  M.  Helmholtz.  He 

places  two  coloured  wafers  on  a  table,  and  then,  taking  a  piece  of  transparent 

glass,  he  places  it  between  them,  so  that  the  reflected  image  of  one  apparently 

coincides  with  the  other  as  seen  through  the  glaas.  The  colours  are  thus  mixed, 

and,  by  varying  the  angle  of  reflection,  the  relative  intensities  of  the  reflected 

and  transmitted  beams  may  be  varied  at  pleasure. 

In  an  instrument  constructed  by  myself  for  photometrical  purposes  two  re- 

flecting plates  were  used.  They  were  placed  in  a  square  tube,  so  as  to  polarize 

the  incident  light,  which  entered  through  holes  in  the  sides  of  the  tubes,  and 

was  reflected  in  the  direction  of  the  axis.  In  this  way  two  beams  oppositely 

polarized  were  mixed,  either  of  which  could  be  coloured  in  any  way  by  coloured 

glasses  placed  over  the  holes  in  the  tube.  By  means  of  a  Nicol's  prism  placed 
at  the  end  of  the  tube,  the  relative  intensities  of  the  two  colours  as  they 

entered  the  eye  could  be  altered  at  pleasure. 

(5)     Union  of  two  coloured  beams  by  means  of  a  doubly -refracting  Prism. 

I  am  not  aware  that  this  method  has  been  tried,  although  the  opposite 

polarization  of  the  emergent  rays  is  favourable  to  the  variation  of  the  experiment. 

(6)     Successive  presentation  of  the  different  Colours  to  the  Retina. 

It  has  long  been  known,  that  light  does  not  produce  its  full  effect  on  the 

eye  at  once,  and  that  the  effect,  when  produced,  remains  visible  for  some  time 

after  the  light  has  ceased  to  act.  In  the  case  of  the  rotating  disc,  the  various 

colours  become  indistinguishable,  and  the  disc  appears  of  a  imiform  tint,  which 

is  in  some  sense  the  resultant  of  the  colours  so  blended.  This  method  of  com- 

bining colours  has  been  used  since  the  time  of  Newton,  to  exhibit  the  results 

of  theory.  The  experiments  of  Professor  J.  D.  Forbes,  which  I  witnessed  in 

1849,  first  encouraged  me  to  think  that  the  laws  of  this  kind  of  mixture  might 

be  discovered  by  special  experiments.  After  repeating  the  well-known  experiment 

in   which   a   series   of  colours   representing   those   of   the   spectrum   are    combined 

VOL.  I.  ^^ 
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to  form  gray,  Professor  Forbes  endeavoured  to  form  a  neutral  tint,  by  the 

combination  of  three  colours  only.  For  this  purpose,  he  combined  the  three 

so-called  primary  colours,  red,  blue,  and  yellow,  but  the  resulting  tint  could 
not  be  rendered  neutral  by  any  combination  of  these  colours ;  and  the  reason 

was  found  to  be,  that  blue  and  yellow  do  not  make  green,  but  a  pinkish  tint, 

when  neither  prevails  in  the  combination.  It  was  plain,  that  no  addition  of 

red  to  this,  could  produce  a  neutral  tint. 

This  result  of  mixing  blue  and  yellow  was,  I  beUeve,  not  previously  known. 

It  directly  contradicted  the  received  theory  of  colours,  and  seemed  to  be  at 

variance  with  the  fact,  that  the  same  blue  and  yellow  paint,  when  ground 

together,  do  make  green.  Several  experiments  were  proposed  by  Professor  Forbes, 

in  order  to  eliminate  the  effect  of  motion,  but  he  was  not  then  able  to  under- 

take them.  One  of  these  consisted  in  viewing  alternate  stripes  of  blue  and 

yellow,  with  a  telescope  out  of  focus.  I  have  tried  this,  and  find  the  resultant 

tint  pink  as  before*.  I  also  found  that  the  beams  of  light  coloured  by  trans- 
mission through  blue  and  yellow  glasses  appeared  pink,  when  mixed  on  a  screen, 

while  a  beam  of  light,  after  passing  through  both  glasses,  appeared  green.  By 

the  help  of  the  theory  of  absorption,  given  by  Herschelf,  I  made  out  the 

complete  explanation  of  this  phenomenon.  Those  of  pigments  were,  I  think,  first 

explained  by  Helmholtz  in  the  manner  above  referred  to  J. 

It  may  still  be  asked,  whether  the  effect  of  successive  presentation  to  the 

eye  is  identical  with  that  of  simultaneous  presentation,  for  if  there  is  any  action 

of  the  one  kind  of  light  on  the  other,  it  can  take  place  only  in  the  case  of 

vsimultaneous  presentation.  An  experiment  tending  to  settle  this  point  is  recorded 

by  Newton  (Book  i.  Part  ii.,  Exp.  10).  He  used  a  comb  with  large  teeth  to 

intercept  various  rays  of  the  spectrum.  When  it  was  moved  slowly,  the  various 

colours  could  be  perceived,  but  when  the  speed  was  increased  the  result  was 

perfect  whiteness.  For  another  form  of  this  experiment,  see  Newton's  Sixth 

Letter  to  Oldenburg  (Horsley's  Edition,  Vol.  iv.,  page  335). 
In  order  more  fully  to  satisfy  myself  on  this  subject,  I  took  a  disc  in 

which  were  cut  a  number  of  sUts,  so  as  to  divide  it  into  spokes.  In  a  plane, 

net-rly  passing   through   the   axis  of  this  disc,  I  placed  a  blue  glass,  so  that  one 

*  See  however  Encyc.  Metropolitana,  Art.  "Light,"  section  502.  t  lb.  sect.  516. 
X  I  have  lately  seen  a  passage  in  Moigno's  Cosmos,  stating  that  M.  Plateau,  in  1819,  had  obtained 

jjray  by  whirling  together  gamboge  and  Prussian  blue.  Correspondance  Math,  et  Phys.  de  M.  Quet«let, 
Vol.  v.,  p.  221. 
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half  of  the  disc  might  be  seen  by  transmitted  light — blue,  and  the  other  by 

reflected  light — white.  In  the  course  of  the  reflected  light  I  placed  a  yellow 

glass,  and  in  this  way  I  had  two  nearly  coincident  images  of  the  slits,  one 

yellow  and  one  blue.  By  turning  the  disc  slowly,  I  observed  that  in  some 

parts  the  yellow  slits  and  the  blue  slits  appeared  to  pass  over  the  field  alter- 
nately, while  in  others  they  appeared  superimposed,  so  as  to  produce  alternately 

their  mixture,  which  was  pale  pink,  and  complete  darkness.  As  long  as  the 

disc  moved  slowly  I  could  perceive  this,  but  when  the  speed  became  great,  the 

whole  field  appeared  uniformly  coloured  pink,  so  that  those  parts  in  which  the 

colours  were  seen  successively  were  indistinguishable  from  those  in  which  they 

were  presented  together  to  the  eye. 

Another  form  in  which  the  experiment  may  be  tried  requires  only  the 

colour-top  above  described.  The  disc  should  be  covered  with  alternate  sectors 

of  any  two  colours,  say  red  and  green,  disposed  alternately  in  four  quadrants. 

By  placing  a  piece  of  glass  above  the  top,  in  the  plane  of  the  axis,  we  make 

the  image  of  one  half  seen  by  reflection  coincide  with  that  of  the  other  seen 

by  transmission.  It  wiU  then  be  seen  that,  in  the  diameters  of  the  top  which 

are  parallel  and  perpendicular  to  the  plane  of  reflection,  the  transmitted  green 

coincides  with  the  reflected  green,  and  the  transmitted  red  with  the  reflected 

red,  so  that  the  result  is  always  either  pure  red  or  pure  green.  But  in  the 

diameters  intermediate  to  these,  the  transmitted  red  coincides  with  the  reflected 

green,  and  vice  versa,  so  that  the  pure  colours  are  never  seen,  but  only  their 

mixtures.  As  long  as  the  top  is  spun  slowly,  these  parts  of  the  disc  will 

appear  more  steady  in  colour  than  those  in  which  the  greatest  alternations 

take  place ;  but  when  the  speed  is  sufficiently  increased,  the  disc  appears  per- 

fectly uniform  in  colour.  From  these  experiments  it  appears,  that  the  apparent 

mixture  of  colours  is  not  due  to  a  mechanical  superposition  of  vibrations,  or 

to  any  mutual  action  of  the  mixed  rays,  but  to  some  cause  residing  in  the 

constitution  of  the  apparatus  of  vision. 

(7)     Presentation  of  the  Colours  to  he  mixed  one  to  each  Eye. 

This  method  is  said  not  to  succeed  with  some  people ;  but  I  have  always 

found  that  the  mixture  of  colours  was  perfect,  although  it  was  difficult  to  con- 

ceive  the    objects   seen   by   the   two   eyes   as   identical.      In   using   the   spectacles, 

19—2 
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of  which  one  eye  is  green  and  the  other  red,  I  have  found,  when  looking  at 

an  arrangement  of  green  and  red  papers,  that  some  looked  metallic  and  others 

transparent.  This  arises  from  the  very  different  relations  of  brightness  of  the 
two  colours  as  seen  by  each  eye  through  the  spectacles,  which  suggests  the  false 
conclusion,  that  these  differences  are  the  result  of  reflection  from  a  polished 

surface,  or  of  light  transmitted  through  a  clear  one. 

Note  IT. 

Results  of  Experiments  with  Mr  Hay's  Papers  at  Cambridge,  November,  1854. 

The  mean  of  ten  observations  made  by  six  observers  gave 

•449  E+-299  G  +  -252  B=-224  W+776  Bk   (l). 

■696  R+-304  G  =  '181  B  +  -327  Y  +  '492  Bk   (2). 

These   two  equations  served  to  determine  the  positions  of  white  and  yellow 

in  diagram   No.    2.     The   coeflScient   of  W   is    4*447,    and   that   of  yellow   2'506. 

From    these    data    we    may   deduce   three   other   equations,    either   by   calcu- 
lation,  or  by  measurement  on  the  diagram  (No.    2). 

Eliminating  green  from  the  equations,  we  find 

•565  B  +  -435  Y  =  -307  E.  +  -304  W  +  -389  Bk   (3). 

The  mean  of  three  observations  by  three  different  observers  gives 

•573  B-f477  Y  =  ̂ 313  E  +  ̂ 297  W  +  -390Bk. 

Errors  of  calculation    -  '008  B  +  ̂ 008  Y  -  '006  K  +  ̂ 007  W  -  •OOl  Bk. 

The   point   on  the  diagram   to   which   this    equation   corresponds   is   the  intersec- 
tion of  the  lines  BY  and  RW,  and  the  resultant  tint  is  a  pinkish-gray. 

Eliminating  red  from  the  equations,  we  obtain 

Calculation  "533  B-fl50  G-f317  Y  =  ̂ 337  W-f -663  Bk" 
By  10  observations     -537  B-l- '146  G-h  ̂ 317  Y= -337  W-f '663  Bk  ■   (4). 
Errors  -'004      -f- -004  —  —  — 

Eliminating  blue         •660  R-f340  G  =  -218  Y  +  -108  W-f '682  Bkl 
By  5  observations      ^672  R-f '328  G  =  "224  Y+ '094  W-f672  Bk  i   (5). 
Errors  -'012      -f012      -•006      -f014       -f008         I 
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Note  III. 

On  the  Tlicory  of  Compound  Colours. 

Newton's  theorem  on  the  mixture  of  colours  is  to  be  found  in  his  Opticks, 
Book  I.,  Part  ii.,  Prop.  vi. 

In  a  mixtiu'e  of  primary  colours^  the  quantity  and  quality  of  each  being 
gicen,  to  know  the  colour  of  the  compound. 

He  divides  the  circumference  of  a  circle  into  parts  proportional  to  the  seven 

musical  intervals,  in  accordance  with  his  opinion  of  the  divisions  of  the  spectrum. 

He  then  conceives  the  colours  of  the  spectrum  arranged  round  the  circle,  and  at 

the  centre  of  gravity  of  each  of  the  seven  arcs  he  places  a  little  circle,  the 

area  of  which  represents  the  number  of  rays  of  the  corresponding  colour  which 

enter  into  the  given  mixture.  He  takes  the  centre  of  gravity  of  all  these  circles 

to  represent  the  colour  formed  by  the  mixture.  The  hue  is  determined  by 

drawing  a  line  through  the  centre  of  the  circle  and  this  point  to  the  circum- 
ference. The  position  of  this  line  points  out  the  colour  of  the  spectrum  which 

the  mixture  most  resembles,  and  the  distance  of  the  resultant  tint  from  the 

centre  determines  the  fulness  of  its  colour. 

Newton,  by  this  construction  (for  which  he  gives  no  reasons),  plainly  shews 

that  he  considered  it  possible  to  find  a  place  within  his  circle  for  every  possible 

colour,  and  that  the  entire  nature  of  any  compound  colour  may  be  known  from 

its  place  in  the  circle.  It  will  be  seen  that  the  same  colour  may  be  compounded 

from  the  colours  of  the  spectrum  in  an  infinite  variety  of  ways.  The  apparent 

identity  of  all  these  mixtures,  which  are  optically  different,  as  may  be  shewn  by 

the  prism,  implies  some  law  of  vision  not  explicitly  stated  by  Newton.  This 

law,  if  Newton's  method  be  true,  must  be  that  which  I  have  endeavoured  to 
establish,  namely,  the  threefold  nature  of  sensible  colour. 

With  respect  to  Newton's  construction,  we  now  know  that  the  proportions 
of  the  colours  of  the  spectrum  vary  with  the  nature  of  the  refracting  medium. 

The  only  absolute  index  of  the  kind  of  light  is  the  time  of  its  vibration.  The 

length  of  its  vibration  depends  on  the  medium  in  which  it  is ;  and  if  any  pro- 

portions are  to  be  sought  among  the  wave-lengths  of  the  colours,  they  must 

be   determined   for   those   tissues   of  the   eye   in    which   their   physical  effects  are 
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supposed  to  terminate.  It  may  be  remarked,  *that  the  apparent  colour  of  the 
spectrum  changes  most  rapidly  at  three  points,  which  lie  respectively  in  the 

yellow,  between  blue  and  green,  and  between  violet  and  blue.  The  wave-lengths 

of  the  corresponding  rays  in  'water  are  in  the  proportions  of  three  geometric 
means  between  1  and  2  very  nearly.  This  result,  however,  is  not  to  be  con- 

sidered established,  unless  confirmed  by  better  observations  than  mine. 

The  only  safe  method  of  completing  Newton's  construction  is  by  an  exami- 
nation of  the  colours  of  the  spectrum  and  their  mixtures,  and  subsequent 

calculation  by  the  method  used  in  the  experiments  with  coloured  papers.  In 

this  way  I  hope  to  determine  the  relative  positions  in  the  colour-diagram  of 
every  ray  of  the  spectrum,  and  its  relative  intensity  in  the  solar  light.  The 

spectrum  will  then  form  a  curve  not  necessarily  circular  or  even  re-entrant,  and 
its  peculiarities  so  ascertained  may  form  the  foundation  of  a  more  complete 

theory  of  the  colour-sensation. 

On  the  relation  of  the  pure  rays  of  the  Spectrum  to  the  three  assumed  Elementary 
Sensations. 

If  we  place  the  three  elementary  colour-sensations  (which  we  may  call,  after 

Young,  red,  green,  and  violet)  at  the  angles  of  a  triangle,  all  colours  which 

the  eye  can  possibly  perceive  (whether  by  the  action  of  light,  or  by  pressure, 

disease,  or  imagination)  must  be  somewhere  within  this  triangle,  those  which  lie 

farthest  from  the  centre  being  the  fullest  and  purest  colours.  Hence  the  colours 

which  lie  at  the  middle  of  the  sides  are  the  purest  of  their  kind  which  the 

eye  can  see,  although  not  so  pure  as  the  elementary  sensations. 

It  is  natural  to  suppose  that  the  pure  red,  green,  and  violet  rays  of  the 

spectrum  produce  the  sensations  which  bear  their  names  in  the  highest  purity. 

But  from  this  supposition  it  would  follow  that  the  yellow,  composed  of  the  red 

and  green  of  the  spectrum,  would  be  the  most  intense  yellow  possible,  while 

it  is  the  result  of  experiment,  that  the  yellow  of  the  spectrum  itself  is  much 

more  full  in  colour.  Hence  the  sensations  produced  by  the  pure  red  and  green 

rays  of  the  spectrum  are  not  the  pure  sensations  of  our  theory.  Newton  has 

remarked,  that  no  two  colours  of  the  spectrum  produce,  when  mixed,  a  colour 

equal  in  fulness  to  the  intermediate  colour.  The  colours  of  the  spectrum  are 

all  more    intense    than    any   compound    ones.      Purple   is   the    only   colour   which 
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must  be  produced  by  combination.  The  experiments  of  Helmholtz  lead  to  the 

same  conclusion ;  and  hence  it  would  appear  that  we  can  find  no  part  of  the 

spectrum  which  produces  a  pure  sensation. 

An  additional,  though  less  satisfactory  evidence  of  this,  is  supplied  by  the 

observation  of  the  colours  of  the  spectrum  when  excessively  bright.  They  then 

appear  to  lose  their  peculiar  colour,  and  to  merge  into  pure  whiteness.  This 

is  probably  due  to  the  want  of  capacity  of  the  organ  to  take  in  so  strong  an 

impression ;  one  sensation  becomes  first  saturated,  and  the  other  two  speedily 

follow  it,  the  final  efiect  being  simple  brightness. 

From  these  facte  I  would  conclude,  that  every  ray  of  the  spectrum  is  capable 

of  producing  all  three  pure  sensations,  though  in  different  degrees.  The  curve, 

therefore,  which  we  have  supposed  to  represent  the  spectrum  will  be  quite  within 

the  triangle  of  colour.  All  natural  or  artificial  colours,  being  compounded  of 

the  colours  of  the  spectrum,  must  lie  within  this  curve,  and,  therefore,  the  colours 

corresponding  to  those  parts  of  the  triangle  beyond  this  curve  must  be  for  ever 

unknown  to  us.  The  determination  of  the  exact  nature  of  the  pure  sensations, 

or  of  their  relation  to  ordinary  colours,  is  therefore  impossible,  unless  we  can 

prevent  them  from  interfering  with  each  other  as  they  do.  It  may  be  possible 

to  experience  sensations  more  pure  than  those  directly  produced  by  the  spec- 

trum, by  first  exhausting  the  sensibility  to  one  colour  by  protracted  gazing,  and 

then  suddenly  turning  to  its  opposite.  But  if,  as  I  suspect,  colour-blindness  be 

due  to  the  absence  of  one  of  these  sensations,  then  the  point  D  in  diagram  (2), 

which  indicates  their  absent  sensation,  indicates  also  our  pure  sensation,  which 

we  may  call  red,  but  which  we  can  never  experience,  because  all  kinds  of 

light  excite  the  other  sensations. 

Newton  has  stated  one  objection  to  his  theory,  as  follows: — "Also,  if  only 

two  of  the  pnmanj  colours,  which  in  tJw  circle  are  opposite  to  one  another,  be 

mixed  in  an  equal  proportion,  the  point  Z"  (the  resultant  tint)  "shall  fall  upon 

the  centre  0 "  (neutral  tint)  ;  "  and  yet  the  colour  compounded  of  these  two  shcdl 

not  he  p>erfectly  white,  hut  some  faint  anonymous  colour.  For  I  could  never  yet,  by 

mixing  only  two  primary  colours,  produce  a  perfect  ivhite"  This  is  confirmed  by 

the  experiments  of  Helmholtz ;  who,  however,  has  succeeded  better  with  some 

pairs  of  colours   than  with  others. 

In.  my  experiments  on  the  spectrum,  I  came  to  the  same  result ;  but  It 

appeared   to   me  that  the  very  peculiar  appearance  of  the  neutral  tints  produced 
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was  owing  to  some  opticjal  effect  taking  place  in  the  transparent  part  of  the 

eye  on  the  mixture  of  two  rays  of  very  different  refrangibility.  Most  eyes  are 

by  no  means  achromatic,  so  that  the  images  of  objects  illuminated  with  mixed 

light  of  this  kind  appear  divided  into  two  different  colours;  and  even  when 
there  is  no  distinct  object,  the  mixtures  become  in  some  degree  analysed,  so  as 

to  present  a  very  strange,  and  certainly  "anonymous"  appearance. 

Additional  Note  on  the  more  recent  experiments  of  M.  Helmholtz*. 

In  his  former  memoir  on  the  Theory  of  Compound  Colours  f,  M.  Helmholtz 

arrived  at  the  conclusion  that  only  one  pair  of  homogeneous  colours,  orange- 

yellow  and  indigo-blue,  were  strictly  complementary.  This  result  was  shewn  by 

Professor  Grassmann|  to  be  at  variance  with  Newton's  theory  of  compound 
colours ;  and  although  the  reasoning  was  founded  on  intuitive  rather  than 

experimental  truths,  it  pointed  out  the  tests  by  which  Newton's  theory  must 
be  verified  or  overthrown.  In  applying  these  tests,  M.  Helmholtz  made  use  of 

an  apparatus  similar  to  that  described  by  M.  Foucault§,  by  which  a  screen  of 

white  paper  is  illuminated  by  the  mixed  light.  The  field  of  mixed  colour  is 

much  larger  than  in  M.  Helmholtz's  former  experiments,  and  the  facility  of 
forming  combinations  is  much  increased.  In  this  memoir  the  mathematical  theory 

of  Newton's  circle,  and  of  the  curve  formed  by  the  spectrum,  with  its  possible 
transformations,  is  completely  stated,  and  the  form  of  this  curve  is  in  some 

degree  indicated,  as  far  as  the  determination  of  the  colours  which  he  on  oppo- 
site sides  of  white,  and  of  those  which  He  opposite  the  part  of  the  curve  which 

is  wanting.  The  colours  between  red  and  yellow-green  are  complementary  to 
colours  between  blue-green  and  violet,  and  those  between  yellow-green  and  blue- 
green  have  no  homogeneous  complementaries,  but  must  be  neutrahzed  by  various 
hues  of  purple,  i.e.,  mixtures  of  red  and  violet.  The  names  of  the  complementary 

colours,  with  their  wave-lengths  in  air,  as  deduced  from  Fraunhofer's  measure- 
ments, are  given  in  the  following  table  : — 

•  PoggendorflF's  Annalen,  BA  xciv.      (I  am  indebted  for  the  perusal  of  this  Memoir  to  Professor 
Stokes.) 

+  lb.  Bd.  Lxxxvii.     Annals  of  Philosophy,  1852,  Part  ii. 

t  Ih.  Bd.  Lxxxix.     Ann.  Phil.,  1854,  April. 

§  lb.  Bd.  LXixvm.     Moigno,  Cosmos,  1853,  Tom.  ii,,  p.  232. 
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Colour Wave-length Complementary 
Colour 

Wave-length 
Ratio  of 

wave-lengths 

Red    ...     . 

Orange    .     .     . 

Gold-yellow 
Gold  veUow      . 
Yellow    .     .     . 
Yellow    .     .     . 

Green-yellow     . 

2425 

2244 
2162 
2120 

2095 
2085 
2082 

Green-blue  . 
Blue  .     .     . 
Blue  .     .     . 
Blue  .     .     . 

Indigo-blue 
Indigo-blue Violet     .     . 

1818 

1809 
1793 

1781 

1716 
1706 

1600- 

1-334 
1-240 

1-206 

1-190 
1-221 
1-222 

1-301 

(The  wave-lengtha  are  expressed  in  millionths  of  a  Paris  inch.) 

(In  order  to  reduce  these  wave-lengths  to  their  actual  lengths  in  the  eye, 

each  must  be  divided  by  the  index  of  refraction  for  that  kind  of  light  in  the 

medium  in  which  the  physical  etfect  of  the  vibrations  is  supposed  to  take  place.) 

Although  these  experiments  are  not  in  themselves  sufficient  to  give  the  com- 

plete theory  of  the  curve  of  homogeneous  colours,  they  determine  the  most 

important  element  of  that  theory  in  a  way  which  seems  very  accurate,  and  I 

cannot  doubt  that  when  a  philosopher  who  has  so  fully  pointed  out  the  im- 

portance of  general  theories  in  physics  turns  his  attention  to  the  theory  of 

sensation,  he  will  at  least  establish  the  principle  that  the  laws  of  sensation  can 

be  successfully  investigated  only  after  the  corresponding  physical  laws  have  been 

ascertained,  and  that  the  connection  of  these  two  kinds  of  laws  can  be  appre- 

hended only  when  the  distinction  between  them  is  fully  recognised. 

Note  IV. 

Description  of  the  Figures.     Plate  I. 

No.  1.  is  the  colour-diagi-am  already  referred  to,  representing,  cm  Newton's  principle,  the  relations  of 

diflferent  coloured  papers  to  the  three  standard  colours— vermilion,  emerald-green,  and  ultra- 

marine. The  initials  denoting  the  colours  are  explained  in  the  list  at  page  276,  and  the 

numbers  belonging  to  them  are  their  coefficients  of  intensity,  the  use  of  which  has  been 

explained.  The  initials  H.R.,  H.B.,  and  H.G.,  represent  the  red,  blue  and  green  papers 

of  Mr  Hay,  and  serve  to  connect  this  diagram  -vith  No.  (2),  which  takes  these  colours  for 
its  standards. 

VOL.  I.  20 
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No.  2.  represents  the  relations  of  Mr  Hay's  red,  blue,  green,  white,  and  yellow  papers,  as  deter- 
mined by  a  large  number  of  experiments  at  Cambridge. — (See  Note  II.).  The  use  of  the 

point   D,    in   calculating   the   results   of  colour-blindness,    is   explained   in   the   Paper. 

Fig,  3.  represents   a   disc   of   the   larger  size,    with   its   slit. 

Fig.  4.  shows   the   mode   of  combining   two   discs   of   the   smaller   size. 

Fi«^.  5.  shows   the   combination   of  discs,   as  placed   on    the    top,    in    the    first    experiment    described 

in   the   Paper. 

Fig.  6.  represents   the   method   of  spinning  the   top,   when   speed   is   required. 

The   last   four   figures   are   half  the   actual   size. 

Colour-tops  of  the  kind  used  in  these  experiments,  with  paper  discs  of  the  colours  whose  relations 

are   represented   in   No.    1,   are   to   be   had   of  Mr  J.    M.    Bryson,    Optician,    Edinburgh. 
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[From  the  Transactions  of  the  Cambridge  Philosophical  Society,  VoL  x.  Part  i.] 

VIII.      On    Faraday's  Lines  of  Force. 

[Read  Dec.  10,  1855,  and  Feb.  11,  1856.] 

The  present  state  of  electrical  science  seems  peculiarl^^  unfavourable  to  specu- 
lation. The  laws  of  the  distribution  of  electricity  on  the  surface  of  conductors 

have  been  analytically  deduced  from  experiment;  some  parts  of  the  mathematical 

theory  of  magnetism  are  established,  while  in  other  parts  the  experimental  data 

are  wanting ;  the  theory  of  the  conduction  of  galvanism  and  that  of  the  mutual 
attraction  of  conductors  have  been  reduced  to  mathematical  formulae,  but  have 

not  fallen  into  relation  with  the  other  parts  of  the  science.  No  electrical  theory 

can  now  be  put  forth,  unless  it  shews  the  connexion  not  only  between  electricity 

at  rest  and  current  electricity,  but  between  the  attractions  and  inductive  effects 

of  electricity  in  both  states.  Such  a  theory  must  accurately  satisfy  those  laws, 

the  mathematical  form  of  which  is  known,  and  must  afford  the  means  of  calcu- 

lating the  effects  in  the  limiting  cases  where  the  known  formulae  are  inapplicable. 

In  order  therefore  to  appreciate  the  requirements  of  the  science,  the  student 

must  make  himself  familiar  with  a  considerable  body  of  most  intricate  mathe- 

matics, the  merfi  retention  of  which  in  the  memory  materially  interferes  with 

further  progress.  The  first  process  therefore  in  the  effectual  study  of  the  science^, 

must  be  one  of  simplification  and  reduction  of  the  results  of  previous  investiga- 

tion to  a  form  in  which  the  mind  can  grasp  them.  The  results  of  this  simplifi- 

cation may  take  the  form  of  a  purely  mathematical  formula  or  of  a  physical 

hypothesis.  In  the  first  case  we  entirely  lose  sight  of  the  phenomena  to  be 

explained ;  and  though  we  may  trace  out  the  consequences  of  given  laws,  we 

can  never  obtain  more  extended  views  of  the  connexions  of  the  subject^  If, 

on  the  other  luiml,  we  adopt  a  physical  hypothesis,  we  see  the  phenomena  only 

throucrh    a    medium,    and    are    liable    to    that    blindness    to    facts    and    rashness    m 

20—2 
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assumption  wKich  a  partial  explanation  encourages.  "We  must  therefore  discover 
some  method  of  investigation  which  allows  the  mind  at  every  step  to  lay  hold 

of  a  clear  physical  conception,  without  being  committed  to  any  theory  founded 

on  the  physical  science  from  which  that  conception  is  borrowed,  so  that  it  is 

neither  drawn  aside  from  the  subject  in  pursuit  of  analytical  subtleties,  nor  carried 

beyond  the  truth  by  a  favourite  hypothesis. 

In  order  to  obtain  physical  ideas  without  adopting  a  physical  theory  we  must 

make  ourselves  familiar  with  the  existence  of  physical  analogies.  By  a  physical 

analogy  I  mean  that  partial  similarity  between  the  laws  of  one  science  and  those 

of  another  which  makes  each  of  them  illustrate  the  other.  Thus  all  the  mathe- 

matical sciences  are  founded  on  relations  between  physical  laws  and  laws  of 

numbers,  so  that  the  aim  of  exact  science  is  to  reduce  the  problems  of  nature 

to  the  determination  of  quantities  by  operations  with  numbers.  Passing  from 

the  most  universal  of  all  analogies  to  a  very  partial  one,  we  find  the  same 

resemblance  in  mathematical  form  between  two  different  phenomena  giving  rise 

to  a  physical  theory  of  light. 

The  changes  of  direction  which  light  undergoes  in  passing  from  one  medium 

to  another,  are  identical  with  the  deviations  of  the  path  of  a  particle  in  moving 

through  a  narrow  space  in  which  intense  forces  act.  This  analogy,  which  extends 

only  to  the  direction,  and  not  to  the  velocity  of  motion,  was  long  believed  to 

he  the  true  explanation  of  the  refraction  of  Ught ;  and  we  still  find  it  useful 

in  the  solution  of  certain  problems,  in  which  we  employ  it  without  danger,  as 

an  artificial  method.  The  other  analogy,  between  light  and  the  vibrations  of  an 

elastic  medium,  extends  much  farther,  but,  though  its  importance  and  fruitfulness 

cannot  be  over-estimated,  we  must  recollect  that  it  is  founded  only  on  a  resem- 

blance in  form  between  the  laws  of  light  and  those  of  vibrations.  By  stripping 

it  of  its  physical  dress  and  reducing  it  to  a  theory  of  "  transverse  alternations," 

we  might  obtain  a  system  of  truth  strictly  founded  on  observation,  but  probably 

deficient  both  in  the  vividness  of  its  conceptions  and  the  fertility  of  its  method. 

I  have  said  thus  much  on  the  disputed  questions  of  Optics,  as  a  preparation 

for  the  discussion  of  the  almost  universally  admitted  theory  of  attraction  at  a 

distance. 

We  have  all  acquired  the  mathematical  conception  of  these  attractions.  We 

can  reason  about  them  and  determine  their  appropriate  forms  or  formulae.  These 

formulae  have  a  distinct  mathematical  significance,  and  their  results  are  found 

to  be  in  accordance   with   natural   phenomena.      There   is   no   formula   in   applied 
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mathematics  more  consistent  with  nature  than  the  formula  of  attractions,  and  no 

theory  better  estabUshed  in  the  minds  of  men  than  that  of  the  action  of  bodies 
on  one  another  at  a  distance.  The  laws  of  the  conduction  of  heat  in  uniform 

media  appear  at  first  sight  among  the  most  different  in  their  physical  relations 

from  those  relating  to  attractions.  The  quantities  which  enter  into  them  are 

teviperature,  flow  of  heat,  conductivity.  The  word  force  is  foreign  to  the  subject. 
Yet  we  find  that  the  mathematical  laws  of  the  uniform  motion  of  heat  in 

homogeneous  media  are  identical  in  form  with  those  of  attractions  varying  in- 
versely as  the  square  of  the  distance.  We  have  only  to  substitute  source  of 

heat  for  centre  of  attrax^tion,  flow  of  heat  for  accelerating  effect  of  attraction  at 

any  point,  and  temperature  for  potential,  and  the  solution  of  a  problem  in 

attractions   is   transformed  into  that  of  a  problem  in  heat. 

This  analogy  between  the  formulae  of  heat  and  attraction  was,  I  believe, 

first  pointed  out  by  Professor  William  Thomson  in  the  Camh.  Math.  Journal, 
Vol.   III. 

Now  the  conduction  of  heat  is  supposed  to  proceed  by  an  action  between 

contiguous  parts  of  a  medium,  while  the  force  of  attraction  is  a  relation  be- 

tween distant  bodies,  and  yet,  if  we  knew  nothing  more  than  is  expressed  in 

the  mathematical  formulae,  there  would  be  nothing  to  distinguish  between  the 

one  set  of  phenomena  and  the  other. 

It  is  true,  that  if  we  introduce  other  considerations  and  observe  additional 

facts,  the  two  subjects  will  assume  very  difierent  aspects,  but  the  mathematical 

resemblance  of  some  of  their  laws  will  remain,  and  may  still  be  made  useful 

in  exciting   appropriate  mathematical  ideas. 

It  is  by  the  use  of  analogies  of  this  kind  that  I  have  attempted  to  bring 

before  the  mind,  in  a  convenient  and  manageable  form,  those  mathematical  ideas 

which  are  necessary  to  the  study  of  the  phenomena  of  electricity.  The  methods 

are  generally  those  suggested  by  the  processes  of  reasoning  which  are  found  in 

the  researches  of  Faraday"*',  and  which,  though  they  have  been  interpreted 
mathematically  by  Prof.  Thomson  and  others,  are  very  generally  supposed  to  be 

of  an  indefinite  and  unmathematical  character,  when  compared  with  those  em- 

ployed by  the  professed  mathematicians.  By  the  method  which  I  adopt,  I  hope 

to  render  it  evident  that  I  am  not  attempting  to  estabhsh  any  physical  theory 

of  a  science  in  which  I  have  hardly  made  a  single  experiment,  and  that  the 

limit   of  my    design   is  to   shew   how,   by   a   strict   application   of   the   ideas   and 

*  See  especially  Series  xxxviii.  of  the  Experimental  Researcltes,  and  Phil.   Mag.   1852. 
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methods  of  Faraday,  the  connexion  of  the  very  different  orders  of  phenomena 
which  he  has  discovered  may  be  clearly  placed  before  the  mathematical  mind. 

I  shall  therefore  avoid  as  much  as  I  can  the  introduction  of  anything  which 

does  not  serve  as  a  direct  illustration  of  Faraday's  methods,  or  of  the  mathe- 
matical deductions  which  may  be  made  from  them.  In  treating  the  simpler 

parts  of  the  subject  I  shall  use  Faraday's  mathematical  methods  as  well  as 
his  ideas.  When  the  complexity  of  the  subject  requires  it,  I  shall  use  analytical 

notation,  still  confining  myself  to  the  development  of  ideas  originated  by  the 
same   philosopher. 

I  have  in  the  first  place  to  explain  and  illustrate  the  idea  of  "lines  of 

force." 
When  a  body  is  electrified  in  any  manner,  a  small  body  charged  with  posi- 

tive electricity,  and  placed  in  any  given  position,  will  experience  a  force  urging 
it  in  a  certain  direction.  If  the  small  body  be  now  negatively  electrified,  it  will 
be  urged  by  an  equal  force  in  a  direction  exactly  opposite. 

The  same  relations  hold  between  a  magnetic  body  and  the  north  or  south 

poles  of  a  small  magnet.  If  the  north  pole  is  urged  in  one  direction,  the  south 
pole  is  urged  in  the  opposite  direction. 

In  this  way  we  might  find  a  line  passing  through  any  point  of  space,  such 
that  it  represents  the  direction  of  the  force  acting  on  a  positively  electrified 
particle,  or  on  an  elementary  north  pole,  and  the  reverse  direction  of  the  force 

on  a  negatively  electrified  particle  or  an  elementary  south  pole.  Since  at  every 
point  of  space  such  a  direction  may  be  found,  if  we  commence  at  any  point 
and  draw  a  line  so  that,  as  we  go  along  it,  its  direction  at  any  point  shall 
always  coincide  with  that  of  the  resultant  force  at  that  point,  this  curve  wiU 
indicate  the  direction  of  that  force  for  every  point  through  which  it  passes,  and 
might  be  called  on  that  account  a  line  of  force.  We  might  in  the  same  way 
draw  other  lines  of  force,  till  we  had  filled  all  space  with  curves  indicating  by 
their  direction  that  of  the  force  at  any  assigned  point. 

We  should  thus  obtain  a  geometrical  model  of  the  physical  phenomena, 
which  would  tell  us  the  direction  of  the  force,  but  we  should  stiU  require  some 
method  of  indicating  the  intensity  of  the  force  at  any  point.  If  we  consider 
these  curves  not  as  mere  lines,  but  as  fine  tubes  of  variable  section  carrying 
an  incompressible  fluid,  then,  since  the  velocity  of  the  fluid  is  inversely  as  the 
section  of  the  tube,  we  may  make  the  velocity  vary  according  to  any  given  law, 
by  regulating  the   section  of  the  tube,  and  in  this  way  we  might  represent  the 
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intensity  of  the  force  as  well  as  its  direction  by  the  motion  of  the  fluid  in 

these  tubes.  This  method  of  representing  the  intensity  of  a  force  by  the  velocity 

of  an  imaginary  fluid  in  a  tube  is  applicable  to  any  conceivable  system  of  forces, 

but  it  is  capable  of  great  simplification  in  the  case  in  which  the  forces  are  such 

as  can  be  explained  by  the  hypothesis  of  attractions  varying  inversely  as  the 

square  of  the  distance,  such  as  those  observed  in  electrical  and  magnetic  pheno- 

mena. In  the  case  of  a  perfectly  arbitrary  system  of  forces,  there  will  generally 

be  interstices  between  the  tubes  ;  but  in  the  case  of  electric  and  magnetic  forces 

it  is  possible  to  arrange  the  tubes  so  as  to  leave  no  interstices.  The  tubes  will 

then  be  mere  surfaces,  directing  the  motion  of  a  fluid  filling  up  the  whole  space. 

It  has  been  usual  to  commence  the  investigation  of  the  laws  of  these  forces  by 

at  once  assuming  that  the  phenomena  are  due  to  attractive  or  repulsive  forces 

acting  between  certain  points.  We  may  however  obtain  a  different  view  of  the 

subject,  and  one  more  suited  to  our  more  difficult  inquiries,  by  adopting  for  the 

definition  of  the  forces  of  which  we  treat,  that  they  may  be  represented  in 

magnitude  and  direction  by  the  uniform  motion  of  an  incompressible  fluid. 

I  propose,  then,  first  to  describe  a  method  by  which  the  motion  of  such  a 

fluid  can  be  clearly  conceived;  secondly  to  trace  the  consequences  of  assuming 

certain  conditions  of  motion,  and  to  point  out  the  application  of  the  method  to 

some  of  the  less  complicated  phenomena  of  electricity,  magnetism,  and  galvanism ; 

and  lastly  to  shew  how  by  an  extension  of  these  methods,  and  the  introduction 

of  another  idea  due  to  Faraday,  the  laws  of  the  attractions  and  inductive  actions 

of  magnets  and  currents  may  be  clearly  conceived,  without  making  any  assump- 

tions as  to  the  physical  nature  of  electricity,  or  adding  anything  to  that  which 

has  been  already  proved  by  experiment. 

By  referring  everything  to  the  purely  geometrical  idea  of  the  motion  of  an 

imaginary  fluid,  I  hope  to  attain  generahty  and  precision,  and  to  avoid  the 

dangers  arising  from  a  premature  theory  professing  to  explain  the  cause  of  the 

phenomena.  If  the  results  of  mere  speculation  which  I  have  collected  are  found 

to  be  of  any  use  to  experimental  philosophers,  in  arranging  and  interpreting 

their  results,  they  will  have  served  their  purpose,  and  a  mature  theory,  in  which 

physical  facts  will  be  physically  explained,  will  be  formed  by  those  who  by 

interrogating  Nature  herself  can  obtain  the  only  true  solution  of  the  questions 

which  the  mathematical  theory  suggests. 
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I.     Theoi-y  of  the  Motion  of  an  incompressible  Fluid. 

(1)  The  substance  here  treated  of  must  not  be  assumed  to  possess  any  of 

the  properties  of  ordinary  fluids  except  those  of  freedom  of  motion  and  resistance 

to  compression.  It  is  not  even  a  hypothetical  fluid  which  is  introduced  to 

explain  actual  phenomena.  It  is  merely  a  collection  of  imaginary  properties 

which  may  be  employed  for  establishing  certain  theorems  in  pure  mathematics  in 

a  way  more  intelligible  to  many  minds  and  more  applicable  to  physical  problems 

than  that  in  which  algebraic  symbols  alone  are  used.  The  use  of  the  word 

"Fluid"  will  not  lead  us  into  error,  if  we  remember  that  it  denotes  a  purely 
imaginary  substance  with  the  following  property  : 

The  poHion  of  fluid  which  at  any  iTistant  occupied  a  given  volume,  will  at 

any  succeeding  instant  occupy  an  equal  volume. 

This  law  expresses  the  incompressibility  of  the  fluid,  and  furnishes  us  with 

a  convenient  measure  of  its  quantity,  namely  its  volume.  The  unit  of  quantity 
of  the  fluid  will  therefore  be  the  unit  of  volume. 

(2)  The  direction  of  motion  of  the  fluid  will  in  general  be  dlflerent  at 

different  points  of  the  space  which  it  occupies,  but  since  the  direction  is  deter- 

minate for  every  such  point,  we  may  conceive  a  line  to  begin  at  any  point  and 

to  be  continued  so  that  every  element  of  the  line  indicates  by  its  direction  the 

direction  of  motion  at  that  point  of  space.  Lines  drawn  in  such  a  manner  that 

their  direction  always  indicates  the  direction  of  fluid  motion  are  called  lines  of 

fluid  motion. 

If  the  motion  of  the  fluid  be  what  is  called  steady  motion,  that  is,  if  the 

direction  and  velocity  of  the  motion  at  any  fixed  point  be  independent  of  the 

time,  these  curves  will  represent  the  paths  of  individual  particles  of  the  fluid, 

but  if  the  motion  be  variable  this  will  not  generally  be  the  case.  The  cases 

of  motion  which  will  come  under  our  notice  will  be  those  of  steady  motion. 

(3)  If  upon  any  surface  which  cuts  the  lines  of  fluid  motion  we  draw  a 

closed  curve,  and  if  from  every  point  of  this  curve  we  draw  a  line  of  motion, 

these  lines  of  motion  will  generate  a  tubular  surface  which  we  may  call  a  tube 

of  fluid  motion.     Since  this  surface  is  generated  by  lines  in  the  direction  of  fluid 
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motion    no   part    of  the    fluid    can    flow   across    it,    so   that   this    imaginary  surface 
is  as  impermeable  to  the  fluid  as  a  real  tube. 

(4)  The  quantity  of  fluid  which  in  unit  of  time  crosses  any  fixed  section 

of  the  tube  is  the  same  at  whatever  part  of  the  tube  the  section  be  taken. 

For  the  fluid  is  incompressible,  and  no  part  runs  through  the  sides  of  the  tube, 

therefore  the  quantity  which  escapes  from  the  second  section  is  equal  to  that 
which  enters  through  the  first. 

If  the  tube  be  such  that  unit  of  volume  passes  through  any  section  in 
unit  of  time  it  is  called  a  unit  tube  of  fluid  motion. 

(5)  In  what  follows,  various  units  will  be  referred  to,  and  a  finite  number 
of  lines  or  surfaces  will  be  drawn,  representing  in  terms  of  those  units  the 
motion  of  the  fluid.  Now  in  order  to  define  the  motion  in  every  part  of  the 

fluid,  an  infinite  number  of  lines  would  have  to  be  drawn  at  indefinitely  small 

intervals ;  but  since  the  description  of  such  a  system  of  lines  would  involve 

continual  reference  to  the  theory  of  limits,  it  has  been  thought  better  to  suppose 

the  lines  drawn  at  intervals  depending  on  the  assumed  unit,  and  afterwards  to 

assume  the  unit  as  small  as  we  please  by  taking  a  small  submultiple  of  the 
standard  unit. 

(6)  To  define  the  motion  of  the  whole  fluid  by  means  of  a  system  of  unit 
tubes. 

Take  any  fixed  surface  which  cuts  all  the  lines  of  fluid  motion,  and  draw 

upon  it  any  system  of  curves  not  intersecting  one  another.  On  the  same  surface 
draw  a  second  system  of  curves  intersecting  the  first  system,  and  so  arranged 

that  the  quantity  of  fluid  which  crosses  the  surface  within  each  of  the  quadri- 
laterals formed  by  the  intersection  of  the  two  systems  of  curves  shall  be  unity 

in  unit  of  time.  From  every  point  in  a  curve  of  the  first  system  let  a  line 
of  fluid  motion  be  drawn.  These  lines  will  form  a  surface  through  which  no 

fluid  passes.  Similar  impermeable  surfaces  may  be  drawn  for  all  the  curves  of 

the  first  system.  The  curves  of  the  second  system  will  give  rise  to  a  second 

system  of  impermeable  surfaces,  which,  by  their  intersection  with  the  first  system, 
will  form  quadrilateral  tubes,  which  will  be  tubes  of  fluid  motion.  Since  each 

quadrilateral  of  the  cutting  surface  transmits  unity  of  fluid  in  unity  of  time, 

every  tube  in  the  system  will  transmit  unity  of  fluid  through  any  of  its  sections 

in  unit  of  time.      The  motion  of  the  fluid  at  every  part  of  the  space  it  occupies 
VOL,  I.  21 
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is  determined  by  this  system  of  unit  tubes ;  for  the  direction  of  motion  is  that 

of  the  tube  through  the  point  in  question,  and  the  velocity  is  the  reciprocal 
of  the  area  of  the  section  of  the  unit  tube  at.  that  point. 

(7)  We  have  now  obtained  a  geometrical  construction  which  completely 
defines  the  motion  of  the  fluid  by  dividing  the  space  it  occupies  into  a  system 
of  unit  tubes.  We  have  next  to  shew  how  by  means  of  these  tubes  we  may 

ascertain  various  points  relating  to  the  motion  of  the  fluid. 

A  unit  tube  may  either  return  into  itself,  or  may  begin  and  end  at  differ- 
ent points,  and  these  may  be  either  in  the  boundary  of  the  space  in  which  we 

investigate  the  motion,  or  within  that  space.  In  the  first  case  there  is  a  con- 
tinual circulation  of  fluid  in  the  tube,  in  the  second  the  fluid  enters  at  one  end 

and  flows  out  at  the  other.  If  the  extremities  of  the  tube  are  in  the  bound- 

ing surface,  the  fluid  may  be  supposed  to  be  continually  supplied  from  without 
from  an  unknown  source,  and  to  flow  out  at  the  other  into  an  unknown  reser- 

voir;  but  if  the  origin  of  the  tube  or  its  termination  be  within  the  space  under 
consideration,  then  we  must  conceive  the  fluid  to  be  supplied  by  a  source  within 

that  space,  capable  of  creating  and  emitting  unity  of  fluid  in  unity  of  time,  and 
to  be  afterwards  swallowed  up  by  a  sink  capable  of  receiving  and  destroying 
the  same  amount  continually. 

There  is  nothing  self-contradictory  in  the  conception  of  these  sources  where 
the  fluid  is  created,  and  sinks  where  it  is  annihilated.  The  properties  of  the 

fluid  are  at  our  disposal,  we  have  made  it  incompressible,  and  now  we  suppose 

it  produced  from  nothing  at  certain  points  and  reduced  to  nothing  at  others. 

The  places  of  production  will  be  called  sources,  and  their  numerical  value  will  be 
the  number  of  units  of  fluid  which  they  produce  in  unit  of  time.  The  places 

of  reduction  will,  for  want  of  a  better  name,  be  called  sinks,  and  will  be  esti- 

mated by  the  number  of  units  of  fluid  absorbed  in  unit  of  time.  Both  places 
win  sometimes  be  called  sources,  a  source  being  understood  to  be  a  sink  when 

its  sign  is  negative. 

(8)  It  is  evident  that  the  amount  of  fluid  which  passes  any  fixed  surface 
is  measured  by  the  number  of  unit  tubes  which  cut  it,  and  the  direction  in 
which  the  fluid  passes  is  determined  by  that  of  its  motion  in  the  tubes.  If 
the  surface  be  a  closed  one,  then  any  tube  whose  terminations  lie  on  the  same 
side  of  the  surface  must  cross  the  surface  as  many  times  in  the  one  direction 

as  in  the   other,  and  therefore   must   cany  as  much  fluid  out   of  the  surface  as 
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it  carries  in.  A  tube  which  begins  within  the  surface  and  ends  without  it 

will  carry  out  unity  of  fluid;  and  one  which  enters  the  surface  and  terminates 
within  it  will  carry  in  the  same  quantity.  In  order  therefore  to  estimate  the 
amount  of  fluid  which  flows  out  of  the  closed  surface,  we  must  subtract  the 

number  of  tubes  which  end  within  the  surface  from  the  number  of  tubes  which 

begin  there.     If  the  result  is  negative  the  fluid  will  on  the  whole  flow  inwards. 
If  we  call  the  beginning  of  a  unit  tube  a  unit  source,  and  its  termination 

a  unit  sink,  then  the  quantity  of  fluid  produced  within  the  surface  is  estimated 

by  the  number  of  unit  sources  minus  the  number  of  unit  sinks,  and  this  must 
flow  out  of  the  surface  on  account  of  the  incompressibility  of  the  fluid. 

In  speaking  of  these  imit  tubes,  sources  and  sinks,  we  must  remember  what 
was  stated  in  (5)  as  to  the  magnitude  of  the  unit,  and  how  by  diminishing 

their  size  and  increasing  their  number  we  may  distribute  them  according  to  any 
law   however  complicated. 

(9)  If  we  know  the  direction  and  velocity  of  the  fluid  at  any  point  in 
two  diSerent  cases,  and  if  we  conceive  a  third  case  in  which  the  direction  and 

velocity  of  the  fluid  at  any  point  is  the  resultant  of  the  velocities  in  the  two 

former  cases  at  corresponding  points,  then  the  amount  of  fluid  which  passes  a 

given  fixed  surface  in  the  third  case  will  be  the  algebraic  sum  of  the  quantities 

which  pass  the  same  surface  in  the  two  former  cases.  For  the  rate  at  which 
the  fluid  crosses  any  surface  is  the  resolved  part  of  the  velocity  normal  to  the 

surface,  and  the  resolved  part  of  the  resultant  is  equal  to  the  sum  of  the 

resolved  parts  of  the  components. 
Hence  the  number  of  unit  tubes  which  cross  the  surface  outwards  in  the 

third  case  must  be  the  algebraical  sum  of  the  numbers  which  cross  it  in  the 
two  former  cases,  and  the  number  of  sources  within  any  closed  surface  will  be 
the  sum  of  the  numbers  in  the  two  former  cases.  Since  the  closed  surface  may 

be  taken  as  small  as  we  please,  it  is  evident  that  the  distribution  of  sources 

and  sinks  in  the  third  case  arises  from  the  simple  superposition  of  the  distri- 
butions in  the  two  former  cases. 

n.     TTieory  of  the  uniform  motion  of  an  imponderable  incompressible  fluid 
through  a  resisting  medium. 

(10)    The  fluid  is  here  supposed  to  have  no  inertia,  and  its  motion  is  opposed 

by  the  action  of  a  force  which  we  may  conceive  to  be  due  to  the  resistance  of  a 

21—2 
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medium  through  which  the  fluid  is  supposed  to  flow.  This  resistance  depends  on 
the  nature  of  the  medium,  and  will  in  general  depend  on  the  direction  in  which 

the  fluid  moves,  as  well  as  on  its  velocity.  For  the  present  we  may  restrict 

ourselves  to  the  case  of  a  uniform  medium,  whose  resistance  is  the  same  in  all 

directions.     The  law  which  we  assume  is  as  follows. 

Any  portion  of  the  fluid  moving  through  the  resisting  medium  is  directly 

opposed  by  a  retarding  force  proportional  to  its  velocity. 

If  the  velocity  be  represented  by  i',  then  the  resistance  will  be  a  force  equal 

to  kv  acting  on  unit  of  volume  of  the  fluid  in  a  direction  contrary  to  that  of 
motion.  In  order,  therefore,  that  the  velocity  may  be  kept  up,  there  must  be  a 

greater  pressure  behind  any  portion  of  the  fluid  than  there  is  in  front  of  it,  so 

that  the  difference  of  pressures  may  neutrahse  the  effect  of  the  resistance.  Con- 
ceive a  cubical  unit  of  fluid  (which  we  may  make  as  small  as  we  please,  by  (5)), 

and  let  it  move  in  a  direction  perpendicular  to  two  of  its  faces.  Then  the  resist- 
ance will  be  kv,  and  therefore  the  difference  of  pressures  on  the  first  and  second 

faces  is  kv,  so  that  the  pressure  diminishes  in  the  direction  of  motion  at  the  rate 

of  kv  for  every  unit  of  length  measured  along  the  line  of  motion ;  so  that  if  w6 

measure  a  length  equal  to  h  units,  the  difference  of  pressure  at  its  extremities 
will  be  kvh. 

(11)  Since  the  pressure  is  supposed  to  vary  continuously  in  the  fluid,  all 
the  points  at  which  the  pressure  is  equal  to  a  given  pressure  p  will  lie  on  a 

certain  surface  which  we  may  call  the  surface  (p)  of  equal  pressure.  If  a  series 
of  these  surfaces  be  constructed  in  the  fluid  corresponding  to  the  pressures  0,  1, 

2,  3  &c.,  then  the  number  of  the  surface  will  indicate  the  pressure  belonging  to 

it,  and  the  surface  may  be  referred  to  as  the  surface  0,  1,  2  or  3.  The  unit  of 

pressure  is  that  pressure  which  is  produced  by  unit  of  force  acting  on  unit  of 
surface.  In  order  therefore  to  diminish  the  unit  of  pressure  as  in  (5)  we  must 
diminish  the  unit  of  force  in  the  same  proportion. 

(12)  It  is  easy  to  see  that  these  surfaces  of  equal  pressure  must  be  perpen- 
dicular to  the  lines  of  fluid  motion;  for  if  the  fluid  were  to  move  in  any  other 

direction,  there  would  be  a  resistance  to  its  motion  which  could  not  be  balanced 

by  any  difference  of  pressures.  (We  must  remember  that  the  fluid  here  con- 
sidered has  no  inertia  or  mass,  and  that  its  properties  are  those  only  which  are 

formally  assigned  to  it,  so  that  the  resistances  and  pressures  are  the  only  things 
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to  be  considered.)  There  are  therefore  two  sets  of  surfaces  which  by  their  inter- 

section form  the  system  of  unit  tubes,  and  the  system  of  surfaces  of  equal  pres- 
sure cuts  both  the  others  at  right  angles.  Let  h  be  the  distance  between  two 

consecutive  surfaces  of  equal  pressure  measured  along  a  line  of  motion,  then  since 

the  difference  of  pressures  =  1, 
kvh=  1, 

which  determines  the  relation  of  v  to  h,  so  that  one  can  be  found  when  the 

other  is  known.  Let  s  be  the  sectional  area  of  a  unit  tube  measured  on  a 

surface  of  equal  pressure,  then  since  by  the  definition  of  a  unit  tube vs  =  \, 

we  find  by  the  last  equation 
s  =  kh. 

(13)  The  surfaces  of  equal  pressure  cut  the  unit  tubes  into  portions  whose 

length  is  h  and  section  s.  These  elementary  portions  of  unit  tubes  will  be  called 
unit  cells.  In  each  of  them  unity  of  volume  of  fluid  passes  from  a  pressure  p  to 

a  pressure  (p  — 1)  in  unit  of  time,  and  therefore  overcomes  unity  of  resistance  in 
that  time.  The  work  spent  in  overcoming  resistance  is  therefore  unity  in  every 

cell  in  every  unit  of  time. 

(14)  If  the  surfaces  of  equal  pressure  are  known,  the  direction  and  magni- 
tude of  the  velocity  of  the  fluid  at  any  point  may  be  found,  after  which  the 

complete  system  of  unit  tubes  may  be  constructed,  and  the  beginnings  and  end- 
ings of  these  tubes  ascertained  and  marked  out  as  the  sources  whence  the  fluid 

is  derived,  and  the  sinks  where  it  disappears.  In  order  to  prove  the  converse  of 
this,  that  if  the  distribution  of  sources  be  given,  the  pressure  at  every  point  may 

be  found,  we  must  lay  down  certain  preliminary  propositions. 

(15)  If  we  know  the  pressures  at  every  point  in  the  fluid  in  two  different 
cases,  and  if  we  take  a  third  case  in  which  the  pressure  at  any  point  is  the 

sum  of  the  pressures  at  corresponding  points  in  the  two  former  cases,  then  the 

velocity  at  any  point  in  the  third  case  is  the  resultant  of  the  velocities  in  the 
other  two,  and  the  distribution  of  sources  is  that  due  to  the  simple  superposition 
of  the  sources  in  the  two  former  cases. 

For  the  velocity  in  any  direction  is  proportional  to  the  rate  of  decrease  of 

the   pressure    in    that   direction;   so    that    if  two    systems   of  pressures   be   added 
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together,  since  the  rate  of  decrease  of  pressure  along  any  line  will  be  the  sum 
of  the  combined  rates,  the  velocity  in  the  new  system  resolved  in  the  same 

direction  will  be  the  sum  of  the  resolved  parts  in  the  two  original  systems. 

The  velocity  in  the  new  system  will  therefore  be  th€  resultant  of  the  velocities 

at  corresponding  points  in  the  two  former  systems. 
It  follows  from  this,  by  (9),  that  the  (quantity  of  fluid  which  crosses  any 

fixed  surface  is,  in  the  new  system,  the  sum  of  the  corresponding  quantities  in 

the  old  ones,  and  that  the  sources  of  the  two  original  systems  are  simply 
combined  to  form  the  third. 

It  is  evident  that  in  the  system  in  which  the  pressure  is  the  diiBPerence 

of  pressure  in  the  two  given  systems  the  distribution  of  sources  will  be  got 

by  changing  the  sign  of  all  the  sources  in  the  second  system  and  adding  them 
to   those   in   the   first. 

(16)  If  the  pressure  at  every  point  of  a  closed  surface  be  the  same  and 

equal  to  p,  and  if  there  be  no  sources  or  sinks  within  the  surface,  then  there 
will  be  no  motion  of  the  fluid  within  the  surface,  and  the  pressure  within  it 

will  be  uniform  and   equal  to  p. 
For  if  there  be  motion  of  the  fluid  within  the  surface  there  will  be  tubes 

of  fluid  motion,  and  these  tubes  must  either  return  into  themselves  or  be 

terminated  either  within  the  surface  or  at  its  boundary.  Now  since  the  fluid 

always  flows  from  places  of  greater  pressure  to  places  of  less  pressure,  it 

cannot  flow  in  a  re-entering  curve;  since  there  are  no  sources  or  sinks  within 
the  surface,  the  tubes  cannot  begin  or  end  except  on  the  surface  ;  and  since 

the  pressure  at  all  points  of  the  surface  is  the  same,  there  can  be  no  motion 

in  tubes  having  both  extremities  on  the  surface.  Hence  there  is  no  motion 
within  the  surface,  and  therefore  no  difference  of  pressure  which  would  cause 

motion,  and  since  the  pressure  at  the  bounding  surface  is  p,  the  pressure  at 

any   point   within   it   is  also  p. 

(17)  If  the  pressure  at  every  point  of  a  given  closed  surface  be  known, 
and  the  distribution  of  sources  within  the  surface  be  also  known,  then  only 

one   distribution   of  pressures   can   exist   within   the   surface. 

For  if  two  different  distributions  of  pressures  satisfying  these  conditions 
could  be  found,  a  third  distribution  could  be  formed  in  which  the  pressure  at 

any  point  should  be  the  difference  of  the  pressures  in  the  two  former  distri- 
butions.    In  this  case,  since  the  pressures  at  the  surface  and  the  sources  within 
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it  are  the  same  in  both  distributions,  the  pressure  at  the  surface  in  the  third 
distribution  would  be  zero,  and  all  the  sources  within  the  surface  would 

vanish,    by    (15). 

Then  by  (16)  the  pressure  at  every  point  in  the  third  distribution  must 
be  zero ;  but  this  is  the  difference  of  the  pressures  in  the  two  former  cases, 

and  therefore  these  cases  are  the  same,  and  there  is  only  one  distribution  of 

pressure   possible. 

(18)  Let  us  next  determine  the  pressure  at  any  point  of  an  infinite  body 
of  fluid  in  the  centre  of  which  a  unit  source  is  placed,  the  pressure  at  an 

infinite   distance   from   the  source   being  supposed  to   be   zero. 

The  fluid  will  flow  out  from  the  centre  symmetrically,  and  since  unity  of 

volume  flows  out  of  every  spherical  surface  surrounding  the  point  in  unit  of 

time,  the   velocity   at  a  distance  r  from  the   source   will  be 

k 
The   rate   of  decrease    of  pressure    is    therefore    hv   or  — -^,    and    since    the 

pressure  =  0    when   r  is   infinite,   the   actual   pressure   at   any   point   will  be 

=  A 
The  pressure  is  therefore  inversely  proportional  to  the  distance  from  the 

source. 

It   is    evident   that  the   pressure   due    to  a    unit    sink   will  be   negative  and 

equal  to  —  - —  . 

If  we   have   a  source   formed   by   the   coalition   of  »S'  unit   sources,   then    the TcS 

resulting    pressure   will    be  X>=t—,,    so    that    the    pressure    at    a    given   distance 

varies  as  the  resistance  and   number  of  sources  conjointly. 

(19)  If  a  number  of  sources  and  sinks  coexist  in  the  fluid,  then  in  order 
to  determine  the  resultant  pressure  we  have  only  to  add  the  pressures  which 
each  source  or  sink  produces.  For  by  (15)  this  will  be  a  solution  of  the 

problem,  and  by  (17)  it  will  be  the  only  one.  By  this  method  we  can 

determine   the   pressures   due  to   any    distribution    of  sources,   as   by   the   method 
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of  (14)    we   can    determine   the   distribution   of  sources   to   which   a  given   distri- 
bution  of  pressures   is   due. 

(20)  We  have  next  to  shew  that  if  we  conceive  any  imaginary  surface 
as  fixed  in  space  and  intersecting  the  lines  of  motion  of  the  fluid,  we  may 
substitute  for  the  fluid  on  one  side  of  this  surface  a  distribution  of  sources 
upon  the  surface  itself  without  altering  in  any  way  the  motion  of  the  fluid 
on  the  other   side  of  the  surface. 

For  if  we  describe  the  system  of  unit  tubes  which  defines  the  motion  of 
the  fluid,  and  wherever  a  tube  enters  through  the  surface  place  a  unit  source, 
and  wherever  a  tube  goes  out  through  the  surface  place  a  unit  sink,  and  at  the 
same  time  render  the  surface  impermeable  to  the  fluid,  the  motion  of  the  fluid 
in  the  tubes  will  go   on  as  before. 

(21)  If  the  system  of  pressures  and  the  distribution  of  sources  which  pro- 
duce them  be  known  in  a  medium  whose  resistance  is  measured  by  k,  then  in 

order  to  produce  the  same  system  of  pressures  in  a  medium  whose  resistance 
is  unity,  the  rate  of  production  at  each  source  must  be  multiplied  by  k.  For 
the  pressure  at  any  point  due  to  a  given  source  varies  as  the  rate  of  produc- 

tion and  the  resistance  conjointly;  therefore  if  the  pressure  be  constant,  the 
rate  of  production  must  vary  inversely  as  the  resistance. 

(22)  On  the  conditions  to  he  fulfilled  at  a  surface  which  separates  two  media 
whose  coefficients  of  resistance  are  k  and  k\ 

These  are  found  from  the  consideration,  that  the  quantity  of  fluid  which 

flows  out  of  the  one  medium  at  any  point  flows  into  the  other,  and  that  the 

pressure  varies  continuously  from  one  medium  to  the  other.  The  velocity  normal 
to  the  surface  is  the  same  in  both  media,  and  therefore  the  rate  of  diminution 

of  pressure  is  proportional  to  the  resistance.  The  direction  of  the  tubes  of 

motion  and  the  surfaces  of  equal  pressure  will  be  altered  after  passing  through 

the  surface,  and  the  law  of  this  refraction  will  be,  that  it  takes  place  in  the 
plane  passing  through  the  direction  of  incidence  and  the  normal  to  the  surface, 

and  that  the  tangent  of  the  angle  of  incidence  is  to  the  tangent  of  the  angle 

of  refraction  as  k'  is  to  k. 

(23)  Let  the  space  within  a  given  closed  surface  be  filled  with  a  medium 
different  from  that  exterior  to  it,  and  let  the  pressures  at  any  point  of  this 
compound  system   due   to   a   given   distribution    of   sources   within    and    without 



ON  fakaday's   lines   of   force.  169 

the  surface  be  given  ;  it  is  required  to  determine  a  distribution  of  sources  which 

would  produce  the  same  system  of  pressures  in  a  medium  whose  coefficient  of 
resistance  is  unity. 

Construct  the  tubes  of  fluid  motion,  and  wherever  a  unit  tube  enters  either 

medium  place  a  unit  source,  and  wherever  it  leaves  it  place  a  unit  sink.  Then 

if  we  make  the  surface  impermeable  all  will  go  on  as  before. 

Let  the  resistance  of  the  exterior  medium  be  measured  by  k,  and  that  of 

the  interior  by  V.  Then  if  we  multiply  the  rate  of  production  of  all  the  sources 
in  the  exterior  medium  (including  those  in  the  surface),  by  k,  and  make  the 

coefficient  of  resistance  unity,  the  pressures  will  remain  as  before,  and  the  same 

will  be  true  of  the  interior  medium  if  we  multiply  all  the  sources  in  it  by  k', 
including  those  in  the  surface,  and  make  its  resistance  unity. 

Since  the  pressures  on  both  sides  of  the  surface  are  now  equal,  we  may 

suppose  it  permeable  if  we  please. 
We  have  now  the  original  system  of  pressures  produced  in  a  uniform  medium 

by  a  combination  of  three  systems  of  sources.  The  first  of  these  is  the  given 

external  system  multipHed  by  k,  the  second  is  the  given  internal  system  multi- 

plied by  k',  and  the  third  is  the  system  of  sources  and  sinks  on  the  surface 
itself.  In  the  original  case  every  source  in  the  external  medium  had  an  equal 
sink  in  the  internal  medium  on  the  other  side  of  the  surface,  but  now  the 

source  is  multiplied  by  k  and  the  sink  by  k',  so  that  the  result  is  for  every 
external  unit  source  on  the  surface,  a  source  ={k  —  k').  By  means  of  these  three 
systems  of  sources  the  original  system  of  pressures  may  be  produced  in  a  medium 
for  which  k  =  \. 

(24)  Let  there  be  no  resistance  in  the  medium  within  the  closed  surface, 

that  is,  let  /t'  =  0,  then  the  pressure  within  the  closed  surface  is  uniform  and 
equal  to  p,  and  the  pressure  at  the  surface  itself  is  also  p.  If  by  assuming 
any  distribution  of  pairs  of  sources  and  sinks  within  the  surface  in  addition  to 
the  given  external  and  internal  sources,  and  by  supposing  the  medium  the  same 

within  and  without  the  surface,  we  can  render  the  pressure  at  the  surface  uni- 
form, the  pressures  so  found  for  the  external  medium,  together  with  the  uniform 

pressure  p  in  the  internal  medium,  will  be  the  true  and  only  distribution  of 
pressures  which  is  possible. 

For   if  two  such   distributions   could  be  found  by  taking  diffijrent  imaginary 

distributions   of  pairs   of  sources   and   sinks   within  the  medium,  then  by  taking 
VOL.  I.  22 
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the  difference  of  the  two  for  a  third  distribution,  we  should  have  the  pressure 

of  the  bounding  surface  constant  in  the  new  system  and  as  many  sources  as 
sinks  within  it,  and  therefore  whatever  fluid  flows  in  at  any  point  of  the  surface, 

an  equal  quantity  must  flow  out  at  some  other  point. 

In  the  external  medium  all  the  sources  destroy  one  another,  and  we  have 

an  infinite  medium  without  sources  surrounding  the  internal  medium.  The  pres- 
sure at  infinity  is  zero,  that  at  the  surface  is  constant.  If  the  pressure  at  the 

surface  is  positive,  the  motion  of  the  fluid  must  be  outwards  from  every  point 
of  the  surface ;  if  it  be  negative,  it  must  flow  inwards  towards  the  surface.  But 

it  has  been  shewn  that  neither  of  these  cases  is  possible,  because  if  any  fluid 
enters  the  surface  an  equal  quantity  must  escape,  and  therefore  the  pressure  at 

the  surface  is  zero  in  the  third  system. 

The  pressure  at  all  points  in  the  boundary  of  the  internal  medium  in  the 

third  case  is  therefore  zero,  and  there  are  no  sources,  and  therefore  the  pressure 

is  everywhere  zero,  by  (16). 
The  pressure  in  the  bounding  surface  of  the  internal  medium  is  also  zero, 

and  there  is  no  resistance,  therefore  it  is  zero  throughout;  but  the  pressure  in 

the  third  case  is  the  difference  of  pressures  in  the  two  given  cases,  therefore 

these  are  equal,  and  there  is  only  one  distribution  of  pressure  which  is  possible, 

namely,  that  due  to  the  imaginary  distribution  of  sources  and  sinks. 

(25)  When  the  resistance  is  infinite  in  the  internal  medium,  there  can  be 

no  passage  of  fluid  through  it  or  into  it.  The  bounding  surface  may  therefore 
be  considered  as  impermeable  to  the  fluid,  and  the  tubes  of  fluid  motion  will 
run  along  it  without  cutting  it. 

If  by  assuming  any  arbitrary  distribution  of  sources  within  the  surface  in 
addition  to  the  given  sources  in  the  outer  medium,  and  by  calculating  the 

resulting  pressures  and  velocities  as  in  the  case  of  a  uniform  medium,  we  can 

fulfil  the  condition  of  there  being  no  velocity  across  the  surface,  the  system  of 

pressures  in  the  outer  medium  will  be  the  true  one.  For  since  no  fluid  passes 
through  the  surface,  the  tubes  in  the  interior  are  independent  of  those  outside, 

and  may  be  taken  away  without  altering  the  external  motion. 

(26)  If  the  extent  of  the  internal  medium  be  small,  and  if  the  difference 

of  resistance  in  the  two  media  be  also  small,  then  the  position  of  the  unit  tubes 
will  not  be  much  altered  from  what  it  would  be  if  the  external  medium  filled 

the  whole  space. 
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Oq  this  supposition  we  can  easily  calculate  the  kind  of  alteration  which 

the   introduction  of  the  internal  medium  will  produce ;   for  wherever  a  unit  tube 

enters   the   surface   we   must   conceive   a  source   producing   fluid   at   a  rate   -^^ , 

and   wherever   a  tube   leaves   it   we   must   place   a  sink   annihilating   fluid  at  the 
k'-k 

rate   — ^  ,    then   calculating   pressures   on   the  supposition  that   the  resistance  in 

both  media  is  k,  the  same  as  in  the  external  medium,  we  shall  obtain  the  true 

distribution  of  pressures  very  approximately,  and  we  may  get  a  better  result 
by  repeating  the  process  on  the  system  of  pressures  thus  obtained. 

(27)  If  instead  of  an  abrupt  change  from  one  coeflBcient  of  resistance  to 

another  we  take  a  case  in  which  the  resistance  varies  continuously  from  point 
to  point,  we  may  treat  the  medium  as  if  it  were  composed  of  thin  shells  each 

of  which  has  uniform  resistance.  By  properly  assuming  a  distribution  of  sources 

over  the  surfaces  of  separation  of  the  shells,  we  may  treat  the  case  as  if  the 

resistance  were  equal  to  unity  throughout,  as  in  (23).  The  sources  will  then 

be  distributed  continuously  throughout  the  whole  medium,  and  will  be  positive 
whenever  the  motion  is  from  places  of  less  to  places  of  greater  resistance,  and 
negative  when  in  the  contrary  direction. 

(28)  Hitherto  we  have  supposed  the  resistance  at  a  given  point  of  the 
medium  to  be  the  same  in  whatever  direction  the  motion  of  the  fluid  takes 

place ;  but  we  may  conceive  a  case  in  which  the  resistance  is  different  in 

different  directions.  In  such  cases  the  lines  of  motion  will  not  in  general  be 
perpendicular  to  the  surfaces  of  equal  pressure.  If  a,  6,  c  be  the  components 
of  the  velocity  at  any  point,  and  a,  yS,  y  the  components  of  the  resistance  at 

the  same  point,  these  quantities  will  be  connected  by  the  following  system  of 

linear  equations,  which  may  be  called  ''equations  of  conduction"  and  will  be 
referred  to  by  that  name. 

a^P,a  +  QS  +  R.y, 

h  =  Fj3+Q,y  +  EA, 

c  =  P,y+Q,a  +  JR,l3. 

In    these   equations   there   are   nine  independent   coefficients   of  conductivity.     In 
order  to  simplify  the  equations,  let  us  put 

Qt  +  Ji,  =  2S„     Q,-B,  =  2lT, 
  &c   &c. 

22—2 
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where  4^  =  «?,-i2,)'  +  (^»-^.)'  +  (^3-^s)', 
and  I,  m,  n  are  direction-cosines  of  a  certain  fixed  line  in  space. 

The  equations  then  become 

a  =  P,a  +  SJ3  +  S,y  +  (nfi  -my)  T, 

b=F^  +  S,y  +  S,a  +  {lY  -  na)  T, 

c  =  P,y  +  S,a  +  S^  +  {ma~  l^)  T. 

By    the    ordinary    transformation   of  co-ordinates    we    may   get    rid    of   the 
coeflBcients  marked  S.     The  equations  then  become 

a  =  P(a  +  (n'^-m'y)T, 

b  =  P:/3  +  {ry-n'a)T, 

c  =  P,y+{m'a-  Vfi)  T, 

where  I',  m,  n'  are  the  direction-cosines   of  the   fixed  line  with  reference  to  the 
new  axes.     If  we  make 

the  equation  of  continuity 

becomes 

%^-i'  -^-|. 
da     dh      c^c  _ 

dx     dy      dz       ' 

'  dx'^    '  dy'^^'  dz'     ̂' 

and  if  we  make  x  =  JP^^,     y^^fPT^],     z  =  JP^l, 

^'^^■^  3|+^  +  ?  =  °- 
the  ordinary  equation  of  conduction. 

It  appears  therefore  that  the  distribution  of  pressures  is  not  altered  by 
the  existence  of  the  coefficient  T.  Professor  Thomson  has  shewn  how  to 

conceive  a  substance  in  which  this  coefficient  determines  a  property  having 

reference  to  an  axis,  which  unlike  the  axes  of  P^,  P^,  P^  is  dipolar. 

For  further  information  on  the  equations  of  conduction,  see  Professor 

Stokes  On  the  Conduction  of  Heat  in  Crystals  {Cambridge  and  Dublin  Math. 

Journ.),  and  Professor  Thomson  On  the  Dynamical  Theory  of  Heat,  Part  v. 

{Transactions  of  Royal  Society  of  Edinburgh,  VoL  xxi.  Part  i.). 
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It  is  evident  that  all  that  has  been  proved  in  (14),  (15),  (16),  (17),  with 

respect  to  the  superposition  of  different  distributions  of  pressure,  and  there  being 

only  one  distribution  of  pressures  corresponding  to  a  given  distribution  of  sources, 

will  be  true  also  in  the  case  in  which  the  resistance  varies  from  point  to  point, 

and  the  resistance  at  the  same  point  is  different  in  different  directions.  For 

il'  we  examine  the  proof  we  shall  find  it  applicable  to  such  cases  as  well  as  to 
that  of  a  uniform  medium. 

(29)  We  now  are  prepared  to  prove  certain  general  propositions  which  are 

true  in  the  most  general  case  of  a  medium  whose  resistance  is  different  in 

different  directions  and  varies  from  point  to  point. 

We  may  by  the  method  of  (28),  when  the  distribution  of  pressures  is 

known,  construct  the  surfaces  of  equal  pressure,  the  tubes  of  fluid  motion,  and 
the  sources  and  sinks.  It  is  evident  that  since  in  each  cell  into  which  a  unit 

tube  is  divided  by  the  surfaces  of  equal  pressure  unity  of  fluid  passes  from 

pressure  p  to  pressure  (p  — 1)  in  unit  of  time,  unity  of  work  is  done  by  the 
fluid  in  each  cell  in  overcoming  resistance. 

The  number  of  cells  in  each  unit  tube  is  determined  by  the  number  of 

surfaces  of  equal  pressure  through  which  it  passes.  If  the  pressure  at  the 

beginning  of  the  tube  be  p  and  at  the  end  p\,  then  the  number  of  cells  in 

it  will  be  p—p-  Now  if  the  tube  had  extended  from  the  source  to  a  place 

where  the  pressure  is  zero,  the  number  of  cells  would  have  been  p,  and  if 

the  tube  had  come  from  the  sink  to  zero,  the  number  would  have  been  p\ 
and  the  true  number  is  the  difference  of  these. 

Therefore  if  we  find  the  pressure  at  a  source  S  from  which  S  tubes 

proceed  to  be  p,  Sp  \s.  the  number  of  cells  due  to  the  source  S ;  but  if  iS'  of 
the  tubes  terminate  in  a  sink  at  a  pressure  p\  then  we  must  cut  off  S  p  cells 

from  the  number  previously  obtained.  Now  if  we  denote  the  source  of  S 

tubes  by  S,  the  sink  of  S  tubes  may  be  written  -S,  sinks  always  being 
reckoned  negative,  and  the  general  expression  for  the  number  of  cells  in  the 

system  will  be  S  (5p). 

(30)  The  same  conclusion  may  be  arrived  at  by  observing  that  unity  of 
work  is  done  on  each  cell.  Now  in  each  source  S,  S  units  of  fluid  are 

expelled  against  a  pressure  p,  so  that  the  work  done  by  the  fluid  in  over- 

coming resistance  is  Sj?.  At  each  sink  in  which  S'  tubes  terminate,  S'  units 

of  fluid   sink    into  nothing  under  pressure  p' ;   the  work  done  upon   the  fluid  by 
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the  pressure  is  therefore  S' p\  The  whole  work  done  by  the  fluid  may  there- 
fore  be   expressed   by 

W  =  tSp^tS'p, 
or  more  concisely,  considering  sinks  as  negative  sources, W  =  t(Sp). 

(31)  Let  S  represent  the  rate  of  production  of  a  source  in  any  medium, 
and  let  p  be  the  pressure  at  any  given  point  due  to  that  source.  Then  if  we 

superpose  on  this  another  equal  source,  every  pressure  will  be  doubled,  and 

thus  by  successive  superposition  we  find  that  a  source  nS  would  produce  a 

pressure  np,  or  more  generally  the  pressure  at  any  point  due  to  a  given 
source  varies  as  the  rate  of  production  of  the  source.  This  may  be  expressed 

by  the   equation 

p  =  RS, 

where  R  is  a,  coefficient  depending  on  the  nature  of  the  medium  and  on  the 

positions  of  the  source  and  the  given  point.  In  a  uniform  medium  whose 
resistance  is  measured  by  k, 

R  may  be  called  the  coefficient  of  resistance  of  the  medium  between  the  source 

and  the  given  point.     By  combining  any  number  of  sources  we  have  generally 

p  =  %{RS), 

(32)     In  a  uniform  medium  the  pressure  due  to  a  source  S 
k    S 

At  another  source   S'  at  a  distance  r  we  shall  have 

a,        k    SS'     CI  f 

if  2^'  he  the  pressure  at  S  due  to  S\  If  therefore  there  be  two  systems  of 

sources  X{S)  and  %{S'),  and  if  the  pressures  due  to  the  first  be  p  and  to  the 
second  p',  then 

2(S»  =  2{S/). 

For  every  term  S'p  has  a  term  Sp'  equal  to  it. 
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(33)  Suppose  that  in  a  uniform  medium  the  motion  of  the  fluid  is  every- 
where parallel  to  one  plane,  then  the  surfaces  of  equal  pressure  will  be 

perpendicular  to  this  plane.  If  we  take  two  parallel  planes  at  a  distance  equal 
to  k  from  each  other,  we  can  divide  the  space  between  these  planes  into  unit 

tubes  by  means  of  cylindric  surfaces  perpendicular  to  the  planes,  and  these 
together  with  the  surfaces  of  equal  pressure  will  divide  the  space  into  cells  of 

which  the  length  is  equal  to  the  breadth.  For  if  h  be  the  distance  between 
consecutive  surfaces  of  equal  pressure  and  s  the  section  of  the  unit  tube,  we 

have  by   (13)   s  =  kh. 
But  s  is  the  product  of  the  breadth  and  depth ;  but  the  depth  is  k, 

therefore   the  breadth   is   h  and  equal  to  the  length. 

If  two  systems  of  plane  curves  cut  each  other  at  right  angles  so  as  to 

divide  the  plane  into  little  areas  of  which  the  length  and  breadth  are  equal, 

then  by  taking  another  plane  at  distance  k  from  the  first  and  erecting 
cyhndric  surfaces  on  the  plane  curves  as  bases,  a  system  of  cells  will  be 
formed  which  will  satisfy  the  conditions  whether  we  suppose  the  fluid  to  run 

along  the  first  set  of  cutting  lines  or  the  second*. 

Application  of  the  Idea  of  Lines  of  Force. 

I  have  now  to  shew  how  the  idea  of  lines  of  fluid  motion  as  described 

above  may  be  modified  so  as  to  be  apphcable  to  the  sciences  of  statical  elec- 
tricity, permanent  magnetism,  magnetism  of  induction,  and  uniform  galvanic 

currents,  reserving  the  laws  of  electro-magnetism  for  special  consideration. 

I  shall  assume  that  the  phenomena  of  statical  electricity  have  been  ah*eady 
explained  by  the  mutual  action  of  two  opposite  kinds  of  matter.  If  we  consider 

one  of  these  as  positive  electricity  and  the  other  as  negative,  then  any  two 
particles  of  electricity  repel  one  another  with  a  force  which  is  measured  by  the 

product  of  the  masses  of  the  particles  divided  by  the  square  of  their  distance. 

Now  we  found  in  (18)  that  the  velocity  of  our  imaginary  fluid  due  to  a 

source  *S  at  a  distance  r  varies  inversely  as  r".  Let  us  see  what  will  be  the 
effect  of  substituting  such  a  source  for  every  particle  of  positive  electricity.  The 

velocity  due  to  each  source  would  be  proportional  to  the  attraction  due  to  the 

corresponding  particle,   and  the   resultant  velocity   due   to   all    the  sources   would 

*  See  Cambridge  and  Dublin  MalJiematical  Jownal,  Vol.  in.  p.  286. 



176  ON  Faraday's  lines  of  force. 

be  proportional  to  the  resultant  attraction  of  all  the  particles.  Now  we  may  find 

the  resultant  pressure  at  any  point  by  adding  the  pressures  due  to  the  given 

sources,  and  therefore  we  may  find  the  resultant  velocity  in  a  given  direction 

from  the  rate  of  decrease  of  pressure  in  that  direction,  and  this  will  be 

proportional  to  the  resultant  attraction  of  the  particles  resolved  in  that  direction. 

Since  the  resultant  attraction  in  the  electrical  problem  is  proportional  to 

the  decrease  of  pressure  in  the  imaginary  problem,  and  since  we  may  select 

any  values  for  the  constants  in  the  imaginary  problem,  we  may  assume  that  the 

resultant  attraction  in  any  direction  is  numerically  equal  to  the  decrease  of 

pressure  in  that  direction,   or 

ax 

By  this  assumption  we  find  that  if  F  be  the  potential, 

dV=Xdx+  Ydy  +  Zdz=  -dp, 

or  since  at  an  infinite  distance   F=  0  and  p  =  0,    V=  —p. 

In  the  electrical  problem  we  have 

7.         Q 

In  the  fluid  p  =  S  [-   

^     r 

S=  -jr  dm. 

If  k  be   supposed  very  great,  the   amount  of  fluid  produced  by   each  source 

in  order  to  keep  up  the  pressures  will  be  very  small. 

The  potential  of  any  system  of  electricity  on  itself  will  be 

If  t  (dm),  X  (dm')  be  two  systems  of  electrical  particles  and  p,  p'  the  potentials 
due  to  them  respectively,  then  by  (32) 

or  the  potential  of  the  first  system  on  the  second  is  equal  to  that  of  the  second 

system  on  the  first. 
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So   that   in   the   ordinary   electrical   problems  the  analogy   in   fluid  motion  is 
of  this  kind  : V=-p, 

dm  =  -—  S, Ait 

whole  potential   of  a  system    =  -XVdm^—  W,  where   W  is  the   work  done  by 

the  fluid  in  overcoming  resistance. 

The    lines   of   forces   are  the  unit  tubes  of  fluid  motion,  and  they   may   be 
estimated  numerically  by  those  tubes. 

Theory  of  Dielectrics, 

The  electrical  induction  exercised  on  a  body  at  a  distance  depends  not 
only  on  the  distribution  of  electricity  in  the  inductric,  and  the  form  and  posi- 

tion of  the  inducteous  body,  but  on  the  nature  of  the  interposed  medium,  or 
dielectric.  Faraday*  expresses  this  by  the  conception  of  one  substance  having a  greater  inductive  capacity,  or  conducting  the  lines  of  inductive  action  more 
freely  than  another.  If  we  suppose  that  in  our  analogy  of  a  fluid  in  a  resisting 
medium  the  resistance  is  diflerent  in  difierent  media,  then  by  making  the 
resistance  less  we  obtain  the  analogue  to  a  dielectric  which  more  easily  conducts 
Faraday's  lines. 

It  is  evident  from  (23)  that  in  this  case  there  will  always  be  a:n  apparent 
distribution  of  electricity  on  the  surface  of  the  dielectric,  there  being  negative 
electricity  where  the  lines  enter  and  positive  electricity  where  they  emerge.  In 
the  case  of  the  fluid  there  are  no  real  sources  on  the  surface,  but  we  use 
them  merely  for  purposes  of  calculation.  In  the  dielectric  there  may  be  no 
real  charge  of  electricity,  but  only  an  apparent  electric  action  due  to  the  surface. 

If  the  dielectric  had  been  of  less  conductivity  than  the  surrounding  medium, 
we  should  have  had  precisely  opposite  eflects,  namely,  positive  electricity  where 
lines  enter,  and  negative  where  they  emerge. 

*  Series  xi. 

VOL.  I. 
23 
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If  the  conduction  of  the  dielectric  is  perfect  or  nearly  so  for  the  small 

quantities  of  electricity  with  which  we  have  to  do,  then  we  have  the  case  of 

(24).  The  dielectric  is  then  considered  as  a  conductor,  its  surface  is  a  surface 

of  equal  potential,  and  the  resultant  attraction  near  the  surface  itself  is  per- 
pendicular to  it. 

Theory  of  Permanent  Magnets. 

A  magnet  is  conceived  to  be  made  up  of  elementary  magnetized  particles, 

each  of  which  has  its  own  north  and  south  poles,  the  action  of  which  upon 

other  north  and  south  poles  is  governed  by  laws  mathematically  identical  with 

those  of  electricity.  Hence  the  same  application  of  the  idea  of  lines  of  force 

can  be  made  to  this  subject,  and  the  same  analogy  of  fluid  motion  can  be 

employed  to  illustrate  it. 

But  it  may  be  useful  to  examine  the  way  in  which  the  polarity  of  the 

elements  of  a  magnet  may  be  represented  by  the  unit  cells  in  fluid  motion. 

In  each  unit  cell  unity  of  fluid  enters  by  one  face  and  flows  out  by  the  opposite 

face,  so  that  the  first  face  becomes  a  unit  sink  and  the  second  a  unit  source 

with  respect  to  the  rest  of  the  fluid.  It  may  therefore  be  compared  to  an 

elementary  magnet,  having  an  equal  quantity  of  north  and  south  magnetic 

matter  distributed  over  two  of  its  faces.  If  we  now  consider  the  cell  as  forming 

part  of  a  system,  the  fluid  flowing  out  of  one  cell  will  flow  into  the  next,  and 

so  on,  so  that  the  source  will  be  transferred  from  the  end  of  the  cell  to  the 

end  of  the  unit  tube.  If  all  the  unit  tubes  begin  and  end  on  the  bounding 

surface,  the  sources  and  sinks  will  be  distributed  entirely  on  that  surface,  and  in 

the  case  of  a  magnet  which  has  what  has  been  called  a  solenoidal  or  tubular 

distribution  of  magnetism,  all  the  imaginary  magnetic  matter  will  be  on  the 

surface^". 

Theory  of  Paramagnetic  and  Diamagnetic  Induction. 

Faraday  t  has  shewn  that  the  effects  of  paramagnetic  and  diamagnetic  bodies 

in   the    magnetic    field   may   be   explained   by    supposing    paramagnetic   bodies   to 

*  See  Professor  Thomson  On  the  Matliematical  Theory  of  Magnetism,  Chapters  in.  and  v.  Ph^. 
Trans.  1851. 

t  Experimental  Researches  (3292). 
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conduct  the  lines  of  force  better,  and  diamagnetic  bodies  worse,  than  the 

surrounding  medium.  Bj  referring  to  (23)  and  (26),  and  supposing  sources  to 

represent  north  magnetic  matter,  and  sinks  south  magnetic  matter,  then  if  a 

paramagnetic  body  be  in  the  neighbourhood  of  a  north  pole,  the  lines  of  force 

on  entering  it  will  produce  south  magnetic  matter,  and  on  leaving  it  they  will 

produce  an  equal  amount  of  north  magnetic  matter.  Since  the  quantities  of 

magnetic  matter  on  the  whole  are  equal,  but  the  southern  matter  is  nearest 

to  the  north  pole,  the  result  will  be  attraction.  If  on  the  other  hand  the  body 

be  diamagnetic,  or  a  worse  conductor  of  lines  of  force  than  the  surrounding 

medium,  there  will  be  an  imaginary  distribution  of  northern  magnetic  matter 

where  the  lines  pass  into  the  worse  conductor,  and  of  southern  where  they  pass 

out,  so  that  on  the  whole  there  will  be  repulsion. 

"We  may  obtain  a  more  general  law  from  the  consideration  that  the  poten- 
tial of  the  whole  system  is  proportional  to  the  amount  of  work  done  by  the 

fluid  in  overcoming  resistance.  The  introduction  of  a  second  medium  increases 

or  diminishes  the  work  done  according  as  the  resistance  is  greater  or  less  than 

that  of  the  first  medium.  The  amount  of  this  increase  or  diminution  will  vary 

as  the  square  of  the  velocity  of  the  fluid. 

Now,  by  the  theory  of  potentials,  the  moving  force  in  any  direction  is 

measured  by  the  rate  of  decrease  of  the  potential  of  the  system  in  passing  along 

that  direction,  therefore  when  ¥,  the  resistance  within  the  second  medium,  is 

greater  than  k,  the  resistance  in  the  surrounding  medium,  there  is  a  force  tend- 

ing from  places  where  the  resultant  force  v  is  greater  to  where  it  is  less,  so 

that  a  diamagnetic  body  moves  from  greater  to  less  values  of  the  resultant 

force  *. 

In  paramagnetic  bodies  V  is  less  than  k,  so  that  the  force  is  now  from 

points  of  less  to  points  of  greater  resultant  magnetic  force.  Since  these  results 

depend  only  on  the  relative  values  of  k  and  k',  it  is  evident  that  by  changing 
the  surrounding  medium,  the  behaviour  of  a  body  may  be  changed  from  para- 

magnetic to  diamagnetic  at  pleasure. 
It  is  evident  that  we  should  obtain  the  same  mathematical  results  if  we 

had  supposed  that  the  magnetic  force  had  a  power  of  exciting  a  polarity  in 

bodies   which    is   in   the   same   direction   as  the  lines  in  paramagnetic  bodies,  and 

*  Experimental   Heaearchei   (2797),   (2798).       See   Thomson,    Canibridge   and    Dublin    Mathe)naticcU 
Journal,  May,   1847. 

23—2 
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in  the  reverse  direction  in  diamagnetic  bodies*.  '  In  fact  we  have  not  as  yet 
come  to  any  facts  which  would  lead  us  to  choose  any  one  out  of  these  three 
theories,  that  of  lines  of  force,  that  of  imaginary  magnetic  matter,  and  that  of 

induced  polarity.  As  the  theory  of  lines  of  force  admits  of  the  most  precise, 
and  at  the  same  time  least  theoretic  statement,  we  shall  allow  it  to  stand  for 

the  present. 

TJieory  of  Magnecrystallic  Induction. 

Ihe  theory  of  Faraday  t  with  respect  to  the  behaviour  of  crystals  in  the 

magnetic  field  may  be  thus  stated.  In  certain  crystals  and  other  substances  the 

lines  of  magnetic  force  are  conducted  with  difierent  facility  in  different  directions. 

The  body  when  suspended  in  a  uniform  magnetic  field  will  turn  or  tend  to  turn 

into  such  a  position  that  the  lines  of  force  shall  pass  through  it  with  least  resist- 
ance. It  is  not  difficult  by  means  of  the  principles  in  (28)  to  express  the  laws 

of  this  kind  of  action,  and  even  to  reduce  them  in  certain  cases  to  numerical 

formulae.  The  principles  of  induced  polarity  and  of  imaginary  magnetic  matter 
are  here  of  Httle  use;  but  the  theory  of  lines  of  force  is  capable  of  the  most 

perfect  adaptation  to  this  class  of  phenomena. 

Theory  of  the  Conduction  of  Current  Electricity. 

It  is  in  the  calculation  of  the  laws  of  constant  electric  currents  that  the 

theory  of  fluid  motion  which  we  have  laid  down  admits  of  the  most  direct  appU- 
cation.  In  addition  to  the  researches  of  Ohm  on  this  subject,  we  have  those 

of  M.  Kirchhoff,  Ann.  de  Chim.  xli.  496,  and  of  M.  Quincke,  XLvn.  203,  on  the 

Conduction  of  Electric  Currents  in  Plates.  According  to  the  received  opinions 

we  have  here  a  current  of  fluid  moving  uniformly  in  conducting  circuits,  which 

oppose  a  resistance  to  the  current  which  has  to  be  overcome  by  the  application 
of  an  electro-motive  force  at  some  part  of  the  circuit.  On  account  of  this 
resistance  to  the  motion  of  the  fluid  the  pressure  must  be  diflerent  at  difierent 

points  in  the  circuit.     This  pressure,  which  is  commonly  called  electrical  tension, 

♦  Uxp.   Ees.    (2429),   (3320).      See  Weber,   PoggendorflF,    lxxxvil   p.    H5.      Prof.   TyndaU,   Fhxi. 
Trans.  1856,  p.  237. 

t  Fxp.  Res.  (2836),  &c. 
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is  found  to  be  physically  identical  with  the  potential  in  statical  electricity,  and 

thus  we  have  the  means  of  connecting  the  two  sets  of  phenomena.  If  we  knew 

what  amount  of  electricity,  measured  statically,  passes  along  that  current  which 

we  assume  as  our  unit  of  current,  then  the  connexion  of  electricity  of  tension 

with  current  electricity  would  be  completed*.  This  has  as  yet  been  done  only 
approximately,  but  we  know  enough  to  be  certain  that  the  conducting  powers  of 

diflferent  substances  differ  only  in  degree,  and  that  the  difference  between  glass 

and  metal  is,  that  the  resistance  is  a  great  but  finite  quantity  in  glass,  and  a 

small  but  finite  quantity  in  metal.  Thus  the  analogy  between  statical  electricity 

and  fluid  motion  turns  out  more  perfect  than  we  might  have  supposed,  for  there 

the  induction  goes  on  by  conduction  just  as  in  current  electricity,  but  the  quan- 
tity conducted  is  insensible  owing  to  the  great  resistance  of  the  dielectricst. 

On  Electro-motive  Forces. 

When  a  uniform  current  exists  in  a  closed  circuit  it  is  evident  that  some 

other  forces  must  act  on  the  fluid  besides  the  pressures.  For  if  the  current 

were  due  to  difference  of  pressures,  then  it  would  flow  from  the  point  of 

greatest  pressure  in  both  directions  to  the  point  of  least  pressure,  whereas  in 
reahty  it  circulates  in  one  direction  constantly.  We  must  therefore  admit  the 

existence  of  certain  forces  capable  of  keeping  up  a  constant  current  in  a  closed 

circuit.  Of  these  the  most  remarkable  is  that  which  is  produced  by  chemical 

action.  A  cell  of  a  voltaic  battery,  or  rather  the  surface  of  separation  of  the 
fluid  of  the  ceU  and  the  zinc,  is  the  seat  of  an  electro-motive  force  which 

can  maintain  a  current  in  opposition  to  the  resistance  of  the  circuit.  If  we 

adopt  the  usual  convention  in  speaking  of  electric  currents,  the  positive  current 
is  from  the  fluid  through  the  platinum,  the  conducting  circuit,  and  the  zinc, 

back  to  the  fluid  again.  If  the  electro-motive  force  act  only  in  the  surface  of 
separation  of  the  fluid  and  zinc,  then  the  tension  of  electricity  in  the  fluid 
must  exceed  that  in  the  zinc  by  a  quantity  depending  on  the  nature  and 
length  of  the  circuit  and  on  the  strength  of  the  current  in  the  conductor. 

In  order  to  keep  up  this  difference  of  pressure  there  must  be  an  electro-motive 

force  whose  intensity  is  measured  by  that  difference  of  pressure.  If  F  be  the 

electro-motive  force,  /  the   quantity   of  the   current   or   the   number   of  electrical 

♦  See  Exp.  Ees.  (371).  t  Hxp.  Ret.  Vol  iii.  p.  513. 
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units   delivered   in   unit   of  time,   and   K  a    quEfntity    depending  on    the  length 

and  resistance  of  the  conducting   circuit,  then 

F=IK=p-p\ 

where  p   is   the   electric   tension   in  the  fluid  and  p'  in  the  zinc. 

If  the  circuit  be  broken  at  any  point,  then  since  there  is  no  current  the 

tension  of  the  part  which  remains  attached  to  the  platinum  will  be  p,  and 

that  of  the  other  will  be  p,  p-p  or  F  afibrds  a  measure  of  the  intensity 

of  the  current.  This  distinction  of  quantity  and  intensity  is  very  useful  *, 

but  must  be  distinctly  understood  to  mean  nothing  more  than  this : — The 

quantity  of  a  current  is  the  amount  of  electricity  which  it  transmits  in  unit 

of  time,  and  is  measured  by  /  the  number  of  unit  currents  which  it  contains. 

The  intensity  of  a  current  is  its  power  of  overcoming  resistance,  and  is 

measured  by   F  or   IK,  where   K  is   the   resistance   of  the   wliole  circuit. 

The   same   idea    of  quantity   and   intensity    may   be   applied   to   the  case   of 

magnetism  f.      The    quantity    of    magnetization    in    any    section    of    a    magnetic 

body  is  measured  by  the  number  of  lines  of  magnetic   force  which  pass  through 

it.     The    intensity    of    magnetization    in   the    section   depends    on    the    resisting 

power   of   the   section,   as   well   as   on   the   number    of  lines   which  pass   through 

it.     If  h  be  the  resisting  power  of  the  material,   and   S  the   area   of  the  section, 

and  /  the   number   of  lines   of  force   which    pass    through    it,    then    the    whole 

intensity   throughout  the   section 
h 

=  F=I- 

When  magnetization  is  produced  by  the  influence  of  other  magnets  only, 

we  may  put  p  for  the  magnetic  tension  at  any  point,  then  for  the  whole 

magnetic  solenoid 

F=l(^dx  =  IK=p-p, 

When  a  solenoidal  magnetized  circuit  returns  into  itself,  the  magnetization 

does  not  depend  on  difference  of  tensions  only,  but  on  some  magnetizing  force 

of  which   the  intensity   is   F. 

If  i  be  the  quantity  of  the  magnetization  at  any  point,  or  the  number  of 

lines   of  force  passing  through  unit   of  area  in   the   section  of  the  solenoid,   then 

*  Hxp.  Res.  Vol.  HI.  p.  519.  t  Exp.  Res.  (2870),  (3293). 
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the  total  quantity  of  magnetization  in  the  circuit  is  the  number  of  lines  which 

pass  through  any  section,  I=Xidydz,  where  dydz  is  the  element  of  the  section, 
and  the  summation   is  performed  over   the   whole   section. 

The  intensity  of  magnetization  at  any  point,  or  the  force  required  to 

keep  up  the  magnetization,  is  measured  by  Jci=f,  and  the  total  intensity  of 
magnetization  in  the  circuit  is  measured  by  the  sum  of  the  local  intensities  all 
round  the  circuit, 

F=t(fdx), 

where  dx  is  the  element  of  length  in  the  circuit,  and  the  summation  is  extended 
round  the  entire   circuit. 

In  the  same  circuit  we  have  always  F  =  IK,  where  K  is  the  total  resistance 
of  the  circuit,  and  depends  on  its  form  and  the  matter  of  which  it  is 

composed. 

On  the  Action  of  closed  Currents  at  a   Distance. 

The  mathematical  laws  of  the  attractions  and  repulsions  of  conductors  have 
been  most  ably  investigated  by  Ampere,  and  his  results  have  stood  the  test  of 
subsequent  experiments. 

From  the  single  assumption,  that  the  action  of  an  element  of  one  current 

upon  an  element  of  another  current  is  an  attractive  or  repulsive  force  acting 

in  the  direction  of  the  line  joining  the  two  elements,  he  has  determined  by 
the  simplest  experiments  the  mathematical  form  of  the  law  of  attraction,  and 

has  put  this  law  into  several  most  elegant  and  useful  forms.  We  must 

recollect  however  that  no  experiments  have  been  made  on  these  elements  of 

currents  except  under  the  form  of  closed  currents  either  in  rigid  conductors 

or  in  fluids,  and  that  the  laws  of  closed  currents  can  only  be  deduced  from 

such  experiments.  Hence  if  Ampere's  formulae  applied  to  closed  currents  give 
true  results,  their  truth  is  not  proved  for  elements  of  currents  unless  we 

assume  that  the  action  between  two  such  elements  must  be  along  the  line  which 

joms  them.  Although  this  assumption  is  most  warrantable  and  philosophical  in 
the  present  state  of  science,  it  wiQ  be  more  conducive  to  freedom  of  investi- 

gation if  we  endeavour  to  do  without  it,  and  to  assume  the  laws  of  closed  currents 

as  the  ultimate  datum  of  experiment. 
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Ampere  has  shewn  that  when  currents  are  combined  according  to  the  law 
of  the  parallelogram  of  forces,  the  force  due  to  the  resultant  current  is  the 
resultant  of  the  forces  due  to  the  component  currents,  and  that  equal  and 

opposite  currents  generate  equal  and  opposite  forces,  and  when  combined 
neutralize  each  other. 

He  has  also  shewn  that  a  closed  circuit  of  any  form  has  no  tendency  to 
turn  a  moveable  circular  conductor  about  a  fixed  axis  through  the  centre  of 

the  circle  perpendicular  to  its  plane,  and  that  therefore  the  forces  in  the  case 
of  a  closed  circuit  render  Xdx  +  Ydy  +  Zdz  a  complete  differential. 

Finally,  he  has  shewn  that  if  there  be  two  systems  of  circuits  similar 

and  similarly  situated,  the  quantity  of  electrical  current  in  corresponding 

conductors  being  the  same,  the  resultant  forces  are  equal,  whatever  be  the 
absolute  dimensions  of  the  systems,  which  proves  that  the  forces  are,  cceteris 

paribus,  inversely  as  the  square  of  the  distance. 
From  these  results  it  follows  that  the  mutual  action  of  two  closed  currents 

whose  areas  are  very  small  is  the  same  as  that  of  two  elementary  magnetic 

bars  magnetized  perpendicularly  to  the  plane  of  the  currents. 

The  direction  of  magnetization  of  the  equivalent  magnet  may  be  pre- 
dicted by  remembering  that  a  current  travelling  round  the  earth  from  east 

to  west  as  the  sun  appears  to  do,  would  be  equivalent  to  that  magnetization 
which  the  earth  actually  possesses,  and  therefore  in  the  reverse  direction  to 

that  of  a  magnetic  needle  when  pointing  freely. 
If  a  number  of  closed  unit  currents  in  contact  exist  on  a  surface,  then  at 

aU  points  in  which  two  currents  are  in  contact  there  will  be  two  equal  and 

opposite  currents  which  will  produce  no  effect,  but  all  round  the  boundary  of  the 
surfeice  occupied  by  the  currents  there  will  be  a  residual  current  not  neutralized 

by  any  other;  and  therefore  the  result  will  be  the  same  as  that  of  a  single 
unit   current  round  the  boundary  of  all  the   currents. 

From  this  it  appears  that  the  external  attractions  of  a  shell  uniformly 

magnetized  perpendicular  to  its  surface  are  the  same  as  those  due  to  a  current 
round  its  edge,  for  each  of  the  elementary  currents  in  the  former  case  has 
the  same  effect  as  an  element  of  the  magnetic  shell. 

If  we  examine  the  Unes  of  magnetic  force  produced  by  a  closed  current, 
we  shall  find  that  they  form  closed  curves  passing  round  the  current  and 

embracing  it,  and  that  the  total  intensity  of  the  magnetizing  force  all  along 
the   closed  line   of  force   depends   on   the  quantity  of  the  electric    current  only. 
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The  number  of  unit  lines*  of  magnetic  force  due  to  a  closed  current  depends 
on  the  form  as  well  as  the  quantity  of  the  current,  but  the  number  of  unit 

cells t  in  each  complete  line  of  force  is  measured  simply  by  the  number  of  unit 

currents  which  embrace  it.  The  unit  cells  in  this  case  are  portions  of  space  in 

which  unit  of  magnetic  quantity  is  produced  by  unity  of  magnetizing  force. 

The  length  of  a  cell  is  therefore  inversely  as  the  intensity  of  the  magnetizing 
force,  and  its  section  inversely  as  the  quantity  of  magnetic  induction  at  that 

point. 
The  whole  number  of  cells  due  to  a  given  current  is  therefore  proportional 

to  the  strength  of  the  current  multiplied  by  the  number  of  lines  of  force 

which  pass  through  it.  If  by  any  change  of  the  form  of  the  conductors  the 

number  of  cells  can  be  increased,  there  will  be  a  force  tending  to  produce  that 

change,  so  that  there  is  always  a  force  urging  a  conductor  transverse  to  the 

lines  of  magnetic  force,  so  as  to  cause  more  lines  of  force  to  pass  throuo-h  the 
closed   circuit   of   which  the   conductor   forms   a    part. 

The  number  of  cells  due  to  two  given  currents  is  got  by  multiplying 

the  number  of  lines  of  inductive  magnetic  action  which  pass  through  each  by 
the  quantity  of  the  currents  respectively.  Now  by  (9)  the  number  of  lines 
which  pass  through  the  first  current  is  the  sum  of  its  own  lines  and  those 

of  the  second  current  which  would  pass  through  the  first  if  the  second  current 

alone  were  in  action.  Hence  the  whole  number  of  cells  will  be  increased  by 
any  motion  which  causes  more  lines  of  force  to  pass  through  either  circuit, 
and  therefore  the  resultant  force  will  tend  to  produce  such  a  motion,  and  the 

work  done  by  this  force  during  the  motion  will  be  measured  by  the  number 
of  new  cells  produced.  All  the  actions  of  closed  conductors  on  each  other  may 
be  deduced  from  this  principle. 

On  Electric  Currents  prodiiced  by  Induction. 

Faraday  has  shewn|  that  when  a  conductor  moves  transversely  to  the  lines 

of  magnetic  force,  an  electro-motive  force  arises  in  the  conductor,  tending  to 
produce  a  current  in  it.  If  the  conductor  is  closed,  there  is  a  continuous 

current,  if  open,  tension  is  the  result.  If  a  closed  conductor  move  transversely 

to   the   lines    of  magnetic  induction,    then,    if  the    number    of   lines    which   pass 

♦  Hxp.  Rea.  (3122).     See  Art.  (6)  of  this  paper.  t  Art.  (13). 
X  Exp.  lies.  (3077),  &c. 
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through  it  does  not  change  during  the  motion,  the  electro-motive  forces  in  the 
circuit  will  be  in  equilibrium,  and  there  will  be  no  current.  Hence  the  electro- 

motive forces  depend  on  the  number  of  lines  which  are  cut  by  the  conductor 

during  the  motion.  If  the  motion  be  such  that  a  greater  number  of  lines  pass 
through  the  circuit  formed  by  the  conductor  after  than  before  the  motion, 

then  the  electro-motive  force  will  be  measured  by  the  increase  of  the  number 
of  lines,  and  will  generate  a  current  the  reverse  of  that  which  would  have 

produced  the  additional  Hnes.  When  the  number  of  lines  of  inductive  magnetic 
action  through  the  circuit  is  increased,  the  induced  current  will  tend  to  diminish 
the  number  of  lines,  and  when  the  number  is  diminished  the  induced  current 
will  tend  to  increase  them. 

That  this  is  the  true  expression  for  the  law  of  induced  currents  is  shewn 

from  the  fact  that,  in  whatever  way  the  number  of  lines  of  magnetic  induction 

passing  through  the  circuit  be  increased,  the  electro-motive  effect  is  the  same, 
whether  the  increase  take  place  by  the  motion  of  the  conductor  itself,  or  of  other 

conductors,  or  of  magnets,  or  by  the  change  of  intensity  of  other  currents,  or 

by  the  magnetization  or  demagnetization  of  neighbouring  magnetic  bodies,  or 
lastly  by  the  change  of  intensity  of  the   current  itself. 

In  all  these  cases  the  electro-motive  force  depends  on  the  change  in  the 

number  of  lines  of  inductive  magnetic   action  which  pass  through  the  circuit*. 

*  The  electro-magnetic  forces,  which  tend  to  produce  motion  of  the  material  conductor,  must  be 
carefully  distinguished  from  the  electro-motive  forces,  which  tend  to  produce  electric  currents. 

Let  an  electric  current  be  passed  through  a  mass  of  metal  of  any  form.  The  distribution  of 
the  currents  within  the  metal  will  be  determined  by  the  laws  of  conduction.  Now  let  a  constant 

electric  cuiTent  be  passed  through  another  conductor  near  the  first.  If  the  two  currents  are  in  the 
same  direction  the  two  conductors  will  be  attracted  towards  each  other,  and  would  come  nearer  if 

not  held  in  their  positions.  But  though  the  material  conductors  are  attracted,  the  currents  (which 

are  free  to  choose  any  course  within  the  metal)  will  not  alter  their  original  distribution,  or  incline 

towards  each  other.  For,  since  no  change  takes  place  in  the  system,  there  will  be  no  electro-motive 
forces  to  modify  the  original  distribution  of  currents. 

In  this  case  we  have  electro-magnetic  forces  acting  on  the  material  conductor,  without  any 

electi"o-motive  forces  tending  to  modify  the  current  which  it  can-ies. 
Let  us  take  as  another  example  the  case  of  a  linear  conductor,  not  forming  a  closed  circuit, 

and  let  it  be  made  to  traverse  the  lines  of  magnetic  force,  either  by  its  own  motion,  or  by  changes 

in  the  magnetic  field.  An  electro-motive  force  wiU  act  in  the  direction  of  the  conductor,  and,  as  it 

cannot  produce  a  current,  because  there  is  no  circuit,  it  will  produce  electric  tension  at  the  extremi- 
ties. There  will  be  no  electro-magnetic  attraction  on  the  material  conductor,  for  this  attraction 

depends  on  the  existence  of  the  cun-ent  within  it,  and  this  is  prevented  by  the  circuit  not  being  closed. 
Here  then  we  have  the  opposite  case  of  an  electro-motive  force  acting  on  the  electricity  in  the 

conductor,  but  no  attraction  on  its  material  particles. 
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It  is  natural  to  suppose  that  a  force  of  this  kind,  which  depends  on  a 
change  in  the  number  of  lines,  is  due  to  a  change  of  state  which  is  measured 

by  the  number  of  these  lines.  A  closed  conductor  in  a  magnetic  field  may- 
be supposed  to  be  in  a  certain  state  arising  from  the  magnetic  action. 

As  long  as  this  state  remains  unchanged  no  effect  takes  place,  but,  when  the 

state  changes,  electro-motive  forces  arise,  depending  as  to  their  intensity  and 
direction  on  this  change  of  state.  I  cannot  do  better  here  than  quote  a 

passage   from  the  first  series  of  Faraday's  Experimental  Researches,    Art.    (60). 
"While  the  wire  is  subject  to  either  volta-electric  or  magno-electric 

induction  it  appears  to  be  in  a  peculiar  state,  for  it  resists  the  formation  of 
an  electrical  current  in  it ;  whereas,  if  in  its  common  condition,  such  a  current 

would  be  produced;  and  when  left  uninfluenced  it  has  the  power  of  originating  a 
current,  a  power  which  the  wire  does  not  possess  under  ordinary  circumstances. 

This  electrical  condition  of  matter  has  not  hitherto  been  recognised,  but  it 

probably  exerts  a  very  important  influence  in  many  if  not  most  of  the  phe- 

nomena produced  by  currents  of  electricity.  For  reasons  which  will  immediately 
appear  (7)  I  have,  after  advising  with  several  learned  friends,  ventured  to 

designate  it  as  the  electro-tonic  state."  Finding  that  all  the  phenomena  could 
be  otherwise  explained  without  reference  to  the  electro-tonic  state,  Faraday  in 

his  second  series  rejected  it  as  not  necessary ;  but  in  his  recent  researches  ■'"' 
he  seems  still  to  think  that  there  may  be  some  physical  truth  in  his 
conjecture  about  this  new  state  of  bodies. 

The  conjecture  of  a  philosopher  so  familiar  with  nature  may  sometimes  be 

more  pregnant  with  truth  than  the  best  established  experimental  law  disco- 
vered by  empirical  inquirers,  and  though  not  bound  to  admit  it  as  a  physical 

truth,  we  may  accept  it  as  a  new  idea  by  which  our  mathematical  conceptions 
may  be  rendered  clearer. 

In  this  outline  of  Faraday's  electrical  theories,  as  they  appear  from  a 
mathematical  point  of  view,  I  can  do  no  more  than  simply  state  the  mathe- 

matical methods  by  which  I  believe  that  electrical  phenomena  can  be  best 
comprehended  and  reduced  to  calculation,  and  my  aim  has  been  to  present  the 
mathematical  ideas  to  the  mind  in  an  embodied  form,  as  systems  of  lines  or 

surfaces,  and  not  as  mere  symbols,  which  neither  convey  the  same  ideas,  nor 

readily  adapt  themselves  to  the  phenomena  to  be  explained.  The  idea  of  the 

electro-tonic  state,    however,    has    not  yet   presented   itself  to  my  mind  in  such  a 
*  (3172)  (3269). 
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form  that  its  nature  and  properties  may  be  clearly  explained  witliout  reference 

to  mere  symbols,  and  therefore  I  propose  in  the  following  investigation  to  use 

symbols  freely,  and  to  take  for  granted  the  ordinary  mathematical  operations. 
By  a  careful  study  of  the  laws  of  elastic  solids  and  of  the  motions  of  viscous 

fluids,  I  hope  to  discover  a  method  of  forming  a  mechanical  conception  of  this 

electro- tonic  state  adapted  to  general  reasoning*. 

Part  II. 

On  Faraday's   " Electro^tonic  State" 

When  a  conductor  moves  in  the  neighbourhood  of  a  current  of  electricity, 

or  of  a  magnet,  or  when  a  current  or  magnet  near  the  conductor  is  moved,  or 

altered  in  intensity,  then  a  force  acts  on  the  conductor  and  produces  electric 
tension,  or  a  continuous  current,  according  as  the  circuit  is  open  or  closed.  This 

current  is  produced  only  by  changes  of  the  electric  or  magnetic  phenomena  sur- 
rounding the  conductor,  and  as  long  as  these  are  constant  there  is  no  observed 

effect  on  the  conductor.  Still  the  conductor  is  in  different  states  when  near-  a 

current  or  magnet,  and  when  away  from  its  influence,  since  the  removal  or 
destruction  of  the  current  or  magnet  occasions  a  current,  which  would  not  have 

existed  if  the   magnet   or   current  had  not  been  previously  in  action. 
  Considerations    of    this    kind    led    Professor    Faraday   to   connect    with    his 

discovery  of  the  induction  of  electric  currents  the  conception  of  a  state  into 

which  all  bodies  are  thrown  by  the  presence  of  magnets  and  currents.  This 

state  does  not  manifest  itself  by  any  known  phenomena  as  long  as  it  is  undis- 

turbed, but  any  change  in  this  state  is  indicated  by  a  current  or  tendency 

towards  a  current.  To  this  state  he  gave  the  name  of  the  "  Electro-tonic 

State,"  and  although  he  afterwards  succeeded  in  explaining  the  phenomena 
which  suggested  it  by  means  of  less  hypothetical  conceptions,  he  has  on  several 

occasions  hinted  at  the  probability  that  some  phenomena  might  be  discovered 

which  would  render  the  electro-tonic  state  an  object  of  legitimate  induction. 
These  speculations,  into  which  Faraday  had  been  led  by  the  study  of  laws 

which  he  has  well  established,  and  which  he  abandoned  only  for  want  of  experi- 

*  See   Pro£    W.   Thomson   On  a  Mechanical  Representation   of  Electric,   Magnetic    and   Galvanic 
Forces.     Camvb.  and  Dub.  Math.  Jour.     Jan.  1847. 
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mental  data  for  the  direct  proof  of  the  unknown  state,  have  not,  I  think,  been 

made  the  subject  of  mathematical  investigation.  Perhaps  it  may  be  thought 

that  the  quantitative  determinations  of  the  various  phenomena  are  not  suffi- 
ciently rigorous  to  be  made  the  basis  of  a  mathematical  theory ;  Faraday, 

however,  has  not  contented  himself  with  simply  stating  the  numerical  results  of 

his  experiments  and  leaving  the  law  to  be  discovered  by  calculation.  Where 
he  has  perceived  a  law  he  has  at  once  stated  it,  in  terms  as  unambiguous  as 

those  of  pure  mathematics ;  and  if  the  mathematician,  receiving  this  as  a  physical 

truth,  deduces  from  it  other  laws  capable  of  being  tested  by  experiment,  he 

has  merely  assisted  the  physicist  in  arranging  his  own  ideas,  which  is  con- 
fessedly  a   necessary   step   in   scientific  induction. 

In  the  following  investigation,  therefore,  the  laws  established  by  Faraday 
will  be  assumed  aa  true,  and  it  will  be  shewn  that  by  following  out  his 

speculations  other  and  more  general  laws  can  be  deduced  from  them.  If  it 

should  then  appear  that  these  laws,  originally  devised  to  include  one  set  of 

phenomena,  may  be  generalized  so  as  to  extend  to  phenomena  of  a  different 

class,  these  mathematical  connexions  may  suggest  to  physicists  the  means  of 

establishing  physical  connexions;  and  thus  mere  speculation  may  be  turned  to 

account   in   experimental  science. 

On   Quantity  and  Intensity  as  Properties   of  Electric    Currents. 

It  is  found  that  certain  effects  of  an  electric  current  are  equal  at  what- 
ever part  of  the  circuit  they  are  estimated.  The  quantities  of  water  or  of 

any  other  electrolyte  decomposed  at  two  different  sections  of  the  same  circuit, 

are  always  found  to  be  equal  or  equivalent,  however  different  the  material  and 

form  of  the  circuit  may  be  at  the  two  sections.  The  magnetic  effect  of  a 

conducting  wire  is  also  found  to  be  independent  of  the  form  or  material  of 
the  wire  in  the  same  circuit.  There  is  therefore  an  electrical  effect  which  is 

equal  at  every  section  of  the  circuit.  If  we  conceive  of  the  conductor  as  the 

channel  along  which  a  fluid  is  constrained  to  move,  then  the  quantity  of  fluid 
transmitted  by  each  section  will  be  the  same,  and  we  may  define  the  quantity 

of  an  electric  current  to  be  the  quantity  of  electricity  which  passes  across  a 

complete  section  of  the  current  in  unit  of  time.  We  may  for  the  present 

measure  quantity  of  electricity  by  the  quantity  of  water  which  it  would  decom- 
pose in  unit  of  time. 



190  ON    FABADAYS    LINES    OF    FORCE. 

In  order  to  express  mathematically  the  electrical  currents  in  any  conductor, 

we  must  have  a  definition,  not  only  of  the  entire  flow  across  a  complete  section, 
but  also  of  the  flow  at  a  given  point  in  a  given  direction. 

Def.  The  quantity  of  a  current  at  a  given  point  and  in  a  given  direction 

is  measured,  when  uniform,  by  the  quantity  of  electricity  which  flows  across 

unit  of  area  taken  at  that  point  perpendicular  to  the  given  direction,  and  when 
variable  by  the  quantity  which  would  flow  across  this  area,  supposing  the  flow 
uniformly  the  same  as  at  the  given  point. 

In  the  following  investigation,  the  quantity  of  electric  current  at  the  point 
(xyz)  estimated  in  the  directions  of  the  axes  x,  y,  z  respectively  will  be  denoted 
by  Oj,  5j,  C3. 

The  quantity  of  electricity  which  flows  in  unit  of  time  through  the  ele- 
mentary area  dS 

=  dS  (la^  +  ?nZ)2  +  nc^), 

where  I,  m,  n  are  the  direction-cosines  of  the  normal  to  dS. 

This  flow  of  electricity  at  any  point  of  a  conductor  is  due  to  the  electro- 
motive forces  which  act  at  that  point.     These  may  be  either  external  or  internal. 

External  electro- motive  forces  arise  either  from  the  relative  motion  of  currents 

and  magnets,  or  from  changes  in  their  intensity,  or  from  other  causes  acting 
at   a   distance. 

Internal  electro-motive  forces  arise  principally  from  diSerence  of  electric 
tension  at  points  of  the  conductor  in  the  immediate  neighbourhood  of  the  point 

in  question.  The  other  causes  are  variations  of  chemical  composition  or  of  tem- 
perature in  contiguous  parts  of  the  conductor. 

Let  Pi  represent  the  electric  tension  at  any  point,  and  X^,  F,,  Z,  the  sums 

of  the  parts  of  all  the  electro-motive  forces  arising  from  other  causes  resolved 

parallel  to  the  co-ordinate  axes,  then  if  Og,  ySj,  y^  be  the  efiective  electro-motive 
forces 

"^-^^'dx dp, 

^'-^'"dy dp, 

y^^^'^-d^ 

(A). 
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Now  the  quantity  of  the  current  depends  on  the  electro-motive  force  and 
on  the  resistance  of  the  medium.  If  the  resistance  of  the  medium  be  uniform 

in  all  directions  and  equal  to  k^, 

a^  =  Jc,a„         ̂ ,  =  kK         y2  =  Kc2   (B), 

but  if  the  resistance  be  different  in  different  directions,  the  law  will  be  more 
complicated. 

These  quantities  Oj,  /3j,  y.,  may  be  considered  as  representing  the  intensity 
of  the  electric  action  in  the  directions  of  x,  y,  z. 

The  intensity  measured  along  an  element  da  of  a  curve  is  given  by 
€  =  Za  +  mji  +  ny, 

where  Z,  m,  n  are  the  direction-cosines  of  the  tangent. 

The  integral  JecZcr  taken  with  respect  to  a  given  portion  of  a  curve  line, 
represents  the  total  intensity  along  that  line.  If  the  curve  is  a  closed  one,  it 

represents  the  total  intensity  of  the  electro-motive  force  in  the  closed  curve. 

Substituting  the  values  of  a,  /8,  y  from  equations  (A) 

l^da-  =  l{Xdx  +  Ydy  +  Zdz)  -p  +  a 

If  therefore  {Xdx+  Ydy  +  Zdz)  is  a  complete  differential,  the  value  of  Jedo-  for 
a  closed  curve  will  vanish,  and  in  all  closed  curves 

leda-  =  l{Xdx+Ydy  +  Zdz), 

the  integration  being  effected  along  the  curve,  so  that  in  a  closed  curve  the 

total  intensity  of  the  effective  electro- motive  force  is  equal  to  the  total  intensity 
of  the  impressed  electro-motive  force. 

The  total  quantity  of  conduction  through  any  surface  is  expressed  by 

\edS, where 

e  =  la  +  mh  +  nc, 

I,  m,  n  being  the  direction- cosines  of  the  normal, 

.  •.    \edS  =  l\adydz  +  ̂bdzdx  +  \\cdxdy, 

the  integrations  being  effected  over  the  given  surface.  AVhen  the  surface  is  a 

closed  one,  then  we  may  find  by  integration  by  parts 

w.=///(:- 7a     dh      dc\  ,    ,    , 
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If  we  make 

da     dh   ̂   d.c  /^v 

Tx  +  dy+di^^^P   (^)' 
\edS=  iirlWpdxdydz, 

where  the  integration  on  the  right  side  of  the  equation  is  effected  over  every 

part  of  space  within  the  surface.  In  a  large  class  of  phenomena,  including  all 

cases  of  uniform  currents,  the  quantity  p  disappears. 

Magnetic  Quantity  and  Intensity. 

From  his  study  of  the  lines  of  magnetic  force,  Faraday  has  been  led  to 

the  conclusion  that  in  the  tubular  surface  ■'''  formed  by  a  system  of  such  lines, 
the  quantity  of  magnetic  induction  across  any  section  of  the  tube  is  constant, 

and  that  the  alteration  of  the  character  of  these  lines  in  passing  from  one 

substance  to  another,  is  to  be  explained  by  a  difference  of  inductive  capacity 

in  the  two  substances,  which  is  analogous  to  conductive  power  in  the  theory 
of  electric  currents. 

In  the  following  investigation  we  shall  have  occasion  to  treat  of  magnetic 

quantity  and  intensity  in  connection  with  electric.  In  such  cases  the  magnetic 

symbols  wiU  be  distinguished  by  the  sufiix  1,  and  the  electric  by  the  suffix  2. 

The  equations  connecting  a,  h,  c,  h,  a,  /8,  y,  p,  and  p,  are  the  same  in  form  as 

those  which  we  have  just  given,  a,  6,  c  are  the  symbols  of  magnetic  induction 

with  respect  to  quantity ;  k  denotes  the  resistance  to  magnetic  induction,  and 

may  be  different  in  different  directions ;  a,  /8,  y,  are  the  effective  magnetiang 

forces,  connected  with  a,  h,  c,  by  equations  (B) ;  p  is  the  magnetic  tension  or 

potential  which  will  be  afterwards  explained ;  p  denotes  the  density  of  real 

magnetic  matter  and  is  connected  with  a,  h,  c  by  equations  (C).  As  all  the 

details  of  magnetic  calculations  will  be  more  intelligible  after  the  exposition  of  the 

connexion  of  magnetism  with  electricity,  it  will  be  sufficient  here  to  say  that 

all  the  definitions  of  total  quantity,  with  respect  to  a  surface,  the  total  intensity 

to  a  curve,  apply  to  the  case  of  magnetism  as  well  as  to  that  of  electricity. 

*  Exp.  Res.  3271,  definition  of  "  Sphondyloid." 
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Electro-magnetism. 

Ampere  has  proved  the  following  laws  of  the  attractions  and  repulsions  of 
electric  currents  : 

I.  Equal  and  opposite  currents  generate  equal  and  opposite  forces. 

II.  A  crooked  current  is  equivalent  to  a  straight  one,  provided  the  two 
currents  nearly  coincide  throughout  their  whole  length. 

IIL  Equal  currents  traversing  similar  and  similarly  situated  closed  curves 
act  with  equal  forces,  whatever  be  the  linear  dimensions  of  the  circuits. 

IV.  A  closed  current  exerts  no  force  tending  to  turn  a  circular  conductor 
about  its  centre. 

It  is  to  be  observed,  that  the  currents  with  which  Ampere  worked  were  constant 

and  therefore  re-entering.  All  his  results  are  therefore  deduced  from  experiments 
on  closed  currents,  and  his  expressions  for  the  mutual  action  of  the  elements 

of  a  current  involve  the  assumption  that  this  action  is  exerted  in  the  direction 

of  the  line  joining  those  elements.  This  assumption  is  no  doubt  warranted  by  the 
universal  consent  of  men  of  science  in  treating  of  attractive  forces  considered 

as  due  to  the  mutual  action  of  particles ;  but  at  present  we  are  proceeding 

on  a  different  principle,  and  searching  for  the  explanation  of  the  phenomena, 
not  in  the  currents  alone,  but  also  in  the  surrounding  medium. 

The  first  and  second  laws  shew  that  currents  are  to  be  combined  like 
velocities  or  forces. 

The  third  law  is  the  expression  of  a  property  of  all  attractions  which  may 

be  conceived  of  as  depending  on  the  inverse  square  of  the  distance  from  a  fixed 

system  of  points ;  and  the  fourth  shews  that  the  electro-magnetic  forces  may 
always  be  reduced  to  the  attractions  and  repulsions  of  imaginary  matter  properly 
distributed. 

In  fact,  the  action  of  a  very  small  electric  circuit  on  a  point  in  its  neigh- 
bourhood is  identical  with  that  of  a  small  magnetic  element  on  a  point  outside 

it.  If  we  divide  any  given  portion  of  a  surface  into  elementary  areas,  and 

cause  equal  currents  to  flow  in  the  same  direction  round  all  these  Httle  areas, 
the  effect  on  a  point  not  in  the  surface  will  be  the  same  as  that  of  a  shell 

coinciding  with  the  surface,  and  uniformly  magnetized  normal  to  its  surface. 
But    by   the   first   law   all    the   currents   forming   the    little    circuits   will   destroy 

VOL.  L  25 
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one  another,  and  leave  a  single  current  running  round  the  bounding  line.  So 

that  the  magnetic  effect  of  a  uniformly  magnetized  shell  is  equivalent  to  that 

of  an  electric  current  round  the  edge  of  the  shell.  If  the  direction  of  the  current 

coincide  with  that  of  the  apparent  motion  of  the  sun,  then  the  direction  of 

magnetization  of  the  imaginary  shell  will  be  the  same  as  that  of  the  real  mag- 
netization of  the  earth*. 

The  total  intensity  of  magnetizing  force  in  a  closed  curve  passing  through 

and  embracing  the  closed  current  is  constant,  and  may  therefore  be  made  a 

measure  of  the  quantity  of  the  current.  As  this  intensity  is  independent  of  the 

form  of  the  closed  curve  and  depends  only  on  the  quantity  of  the  current  which 

passes  through  it,  we  may  consider  the  elementary  case  of  the  current  which 

Hows  through  the  elementary  area  dydz. 

Let  the  axis  of  x  point  towards  the  west,  z  towards  the  south,  and  y 

upwards.  Let  x,  y,  z  be  the  coordinates  of  a  point  in  the  middle  of  the  area 

dydz,  then  the  total  intensity  measured  round  the  four  sides  of  tlie  element  is 

(A*Si)* 

('■
* 

t'  1')  *. dy     2j 

{*-
 

■ff)^^. 

('
- 

■tf)<'^- 

[dz 

-©''^*- 
Total  intensity  = 

The  quantity  of  electricity  conducted  through  the  elementary  area  dydz  is 

adydz,  and  therefore  if  we  define  the  measure  of  an  electric  current  to  be  the 

total  intensity  of  magnetizing  force  in  a  closed  curve  embracing  it,  we  shall  have 

^^^dl,_dy, 
'      dz       dy  ' 

h,. 

dy^      dai 
dx       dz 

_da,_d£, 
'      dy      dx 

-■  See  Experimental  Researches  (3265)  for  the  relations  between  the  electrical  and  magnetic  circuit, 
considered  as  mutiudly  embracing  curves. 
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These  equations  enable  us  to  deduce  the  distribution  of  the  currents  of 

electricity  whenever  we  know  the  values  of  a,  y3,  y,  the  magnetic  intensities. 

If  a,  /3,  y  be  exact  differentials  of  a  function  of  x,  y,  z  with  respect  to  x,  y 

and  2  respectively,  then  the  values  of  a,,  h^,  c,  disappear;  and  we  know  that  the 

magnetism  is  not  produced  by  electric  currents  in  that  part  of  the  field  which 

we  are  investigating.  It  is  due  either  to  the  presence  of  permanent  magnetism 

within  the  field,  or  to  magnetising  forces  due  to  external  causes. 

We  may  observe  that  the  above  equations  give  by  differentiation 

^  +  ̂'4.^^  =  0 
dx      dy      dz       * 

which  is  the  equation  of  continuity  for  closed  currents.  Our  investigations  are 

therefore  for  the  present  limited  to  closed  currents ;  and  we  know  little  of  the 

magnetic  effects  of  any  currents  which  are  not  closed. 

Before  entering  on  the  calculation  of  these  electric  and  magnetic  states  it 

may  be  advantageous  to  state  certain  general  theorems,  the  truth  of  which  may 

be  established  analytically. 

Theorem  I. 

The  equation 
d'V     d^V     d'V     ̂          ̂  

d^-^W'^^'^  ̂ ^^  ' 
(where  V  and  p  are  functions  of  x,  y,  z  never  infinite,  and  vanishing  for  all  points 

at  an  infinite  distance),  can  be  satisfied  by  one,  and  only  one,  value  of  V.  See 

Art.  (17)  above. 

Theorem  II. 

The   value  of   V    which   will   satisfy  the  above  conditions  is   found  by   inte- 
grating the  expression 

pdxdydz ///, 

where  the  limits  of  x,  3/,  2  are  such   as   to  include  every  point  of  space   where  /> 
is  finite. 

25—2 
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The  proofs  of  these  theorems  may  be   found  in  any  work   on   attractions  or 

electricity,  and  in  particular  in  Green's  Essay  on  the  Application  of  Mathematics 
to   Electricity.     See  Arts.    18,    19  of  this  paper.  See  also  Gauss,   on   Attractions^ 

translated  in  Taylor's  Scientijtc  Memoirs. 

Theorem  III. 

Let  U  and   V  be  two  functions  of  x,  y,  z,  then 

d'U     d'U     d'-U\  J.,    ,    , 

where   the   integrations  are   supposed   to   extend   over   all   the   space   in   which   U 

and   V  have  values  differing  from  0. — (Green,  p.  10.) 

This  theorem  shews  that  if  there  be  two  attracting  systems  the  actions 

between  them  are  equal  and  opposite.  And  by  making  U=  V  we  find  that 

the  potential  of  a  system  on  itself  is  proportional  to  the  integral  of  the  square 

of  the  resultant  attraction  through  all  space ;  a  result  deducible  from  Art.  (30), 

since  the  volume  of  each  cell  is  inversely  as  the  square  of  the  velocity  (Arts. 

12,  13),  and  therefore  the  number  of  cells  in  a  given  space  is  directly  as  the 

square  of  the  velocity. 

Theorem  IV. 

Let  a,  /8,  y,  p  be  quantities  finite  through  a  certain  space  and  vanishing 

in  the  space  beyond,  and  let  k  be  given  for  all  parts  of  space  as  a  continuous 

or  discontinuous  function  of  x,  y,  z,  then  the  equation  in  p 

has   one,   and   only   one   solution,    in    which    p   is   always   finite    and    vanishes   at 
an  infinite  distance. 

The  proof  of  this  theorem,  by  Prof  W.  Thomson,  may  be  found  in  the 

Cambridge  and  Dublin  Mathematical  Journal,  Jan.  1848. 
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If  a,  /3,  y  be  the  electro-motive  forces,  p  the  electric  tension,  and  Ic  the 

coefficient  of  resistance,  tlien  the  above  equation  is  identical  with  the  equation 
of  continuity 

da^  ,dh,dc, 

ax      dy      dz  r        ' 

and  the  theorem  shews  that  when  the  electro-motive  forces  and  the  rate  of 

production  of  electricity  at  every  part  of  space  are  given,  the  value  of  the 
electric  tension  is  determinate. 

Since  the  mathematical  laws  of  magnetism  are  identical  with  those  of  elec- 

tricity, as  far  as  we  now  consider  them,  we  may  regard  a,  /8,  y  as  magnetizing 

forces,  p  as  magnetic  tension,  and  p  as  real  magnetic  density,  k  being  the 
coefficient  of  resistance  to  magnetic  induction. 

The   proof  of  this   theorem  rests  on  the  determination  of  the  minimum  value 

where   V  is  got  from  the  equation 

d'V     d'V     d'V     , 

and  p  has  to  be  determined. 

The  meaning  of  this  integral  in  electrical  language  may  be  thus  brought 

out.  If  the  presence  of  the  media  in  which  k  has  various  values  did  not 

affect   the   distribution   of  forces,    then  the   '^quantity"    resolved   in   x   would   be 

simply  -7—  and  the   intensity   k  -^ .     But   the  actual  quantity  and   intensity  are 

J-  (a  —  j-j  and  a— ^,  and  the  parts  due  to  the  distribution  of  media  alone 
are  therefore 

1  /       dp\      dV       ,         dp     ,  dV 
T  {°'-~ji  — 7-  and  a  —  ~  —  k  -i-  . fc  \      ax)      dx  dx        dx 

Now  the  product  of  these  represents  the  work  done  on  account  of  this 

distribution  of  media,  the  distribution  of  sources  being  determined,  and  taking 

in   the   terms   in   y  and   z   we   get   the   expression    Q   for   the    total    work     done 
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by   that   part   of  the   whole   effect   at   any  point  which  is  due  to  the  distribution 
of  conducting  media,  and  not  directly  to  the  presence  of  the  sources. 

This   quantity    Q   is   rendered   a   minimum   by   one   and  only  one  value  of  p, 

namely,  that  which  satisfies  the  original  equation. 

Theorem  V. 

If  a,  h,  c  be  three  functions  of  x,  y,  %  satisfying  the  equation 
da     db     ̂   _r. 

dx     dy     dz~   ' it  is  always  possible  to  find  three  functions  a,  /3,  y  which  shall  satisfy  the  equa- 
tions 

dz      dy       ' 

i- 

da 

-h, 

da 

dfi 

-Tx'- 

=  c. 

Let  A  =  Icdy,  where  the  integration  is  to  be  performed  upon  c  considered 

as  a  function  of  y,  treating  x  and  z  as  constants.  Let  B='\adz,  C^\hdx, 

A'  =  \hdz,  R  =  \cdx,  C'  =  \ady,  integrated  in  the  same  way. 
Then 

will  satisfy  the  given  equations ;    for 

d§^_dy^fda^^^fdc^^__fdb^^_^fda  , 
dz      dy     J  dy  J  dz  Jdy  J  dy    ̂' 

and  0=\--j-dx+\-f-  dx+  l-j-  dx; 

d3     dy      (da  ,        (da  ,        (da  , =  a. 
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In  the  same  way  it  may  be  shewn  that  the  values  of  a,  ̂ ,  y  satisfy 

the  other  given  equations.  The  function  i/;  may  be  considered  at  present  as 

perfectly  indeterminate. 

The  method  here  given  is  taken  from  Prof.  W.  Thomson's  memoir  on 
Magnetism  {Phil   Trans.   1851,  p.  283). 

As  we  cannot  perform  the  required  integrations  when  a,  h,  c  are  discon- 
tinuous functions  of  x,  y,  z,  the  following  method,  which  is  perfectly  general 

though  more  compUcated,  may  indicate  more  clearly  the  truth  of  the  proposition. 

Let  A,  B,  C  be  determined  from  the  equations 

d'A     d'A     d'A 

^  +  ̂̂   +  £^  +  6  =  0 

dor       dy^       dz'  ' d'Cd'Ccr-c^     ^ 

by  the   methods   of  Theorems   I.   and   II.,   so   that   A,    B,    C  are  never  infinite, 
and  vanish  when  x,  y,  or  z  is  infinite. 

Also  let 

then 

a  = 

dB 

-dz' 

dC 
-dy- 

d^ 

^dx' 

0- 

dC 

~  dx' 

dA 

"dz' 

dy 

7- 

dA 

-dy- 

dB ~dx' 

drP 

^Tz' 

^ 
dB -dy' 

dC\      fd'A     d'A 
-  dz)      W  "^  clf  "^ 

d"-A 

dz\ 

d^/dA     dB     dC\,^ 
dx\dx      dy      dzj dx\dx      dy 

If  we  find  similar  equations  in  y  and  z,  and  differentiate  the  first  by  x, 

the  second  by  y,  and  the  third  by  z,  remembering  the  equation  between 
a,  b,  c,  we  shall  have 

/c?^       d^      dr\fdA      dB     cZC\ 

\dxr     dif'     dz^]\dx      dy       dz 
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and   since   A,   B,    C    are    always    finite   and   vanish   at   an   ir finite   distance,    the 

only  solution  of  this  equation  is 
dA     dB     dC^^ 

dx      dy      dz       * 
and  we  have  finally 

d§  _dY_ 

dz      dy~   ' with  two  similar  equations,  shewing  that  a,  /9,  y  have  been  rightly  determined. 

The  function  i/»  is  to  be  determined  from  the  condition 

dx^  dy^  dz~  [dx"  '^dy'^  dz')  ̂ ' 

if  the  left-hand  side  of  this  equation  be  always  zero,  xp  must  be  zero  also. 

Theorem  YI, 

Let   a,    h,    c   he  any   three  functions  of  x,  y,  z,  it  is  possible  to  find  three 
functions  a,  /8,  y  and  a  fourth   V,  so  that 

dx     dy      dz       ' 

and  =^_^     ̂  

dz      dy     dx  ' 

,_dy^dadV 
dx     dz      dy  ' 

dy     dx      dz 
Let 

da     dh     dc 

di  +  Ty  +  dz^-^^'
P' and  let   V  be  found  from  the  equation 

d^V    d'V    d'V 
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then 

a'^a- dV 

dx' 

h'  =  h- dV 

c=c- 
dV 

da'
 

-dbc
 

dh' 

dc     ̂  

dz 

satisfy  the  condition 

and  therefore  we  can  find  three  tunctions  A,  B,  C,  and  from  these  a,  ̂ ,  y,  so  as 

to  satisfy  the  given  equations. 

Theorem  VIL 

The  integral  throughout  infinity 

Q  =  jjj  (a,a,  +  hfi,  +  c^y,)  dxdydz, 

where  a}>fi^,  a^{y^  are  any  functions  whatsoever,  is  capable  of  transformation  into 

Q=+  lll{^n>P^  -  (^o«2  +  A^2  +  roC,)}  dxdydz, 

in  which  the  quantities  are  found  from  the  equations 

dcL      dh,      d€< 

^■'dy^fz^'^P^-''^ 

ojSoyo^  axe  determined  from  ap^c^  by  the  last  theorem,  so  that 

^      dz       dy      dx  ' 

a}>/:^  are  found  from  cgSiyi  by  the  equations 

and  p  is  found  from  the  equation 

d'p     d'pd'p^^      ,     . 

vol.  l  26 
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For,  if  we  put  a,  in  the  form 

dz       dy      dx  ' 

and   treat   h^   and  c,   similarly,   then   we   have   by  integration    by   parts    through 

infinity,  remembering  that  all  the  functions  vanish  at  the  limits, 

or  <?  =  +  ///{(47r  V)  -  (aA  +  A&.  +  y.c,)]  dxdydz, 

and  by  Theorem  III. 

Ill  Vp  dxdydz  =  lUppdxdydz, 
so  that  finally 

Q  =  lll{^7rpp  -  (a„a,  +  A^2  +  y«cj}  dxdydz. 

If  afi^c^  represent  the  components  of  magnetic  quantity,  and  a^iyi  those 

of  magnetic  intensity,  then  p  will  represent  the  real  magnetic  density,  and  p 

the  magnetic  potential  or  tension.  aJ)iCi  will  be  the  components  of  quantity 

of  electric  currents,  and  a^^.y^  will  be  three  functions  deduced  from  afi^c^, 

which  will  be  found  to  be  the  mathematical  expression  for  Faraday's  Electro- 
tonic  state. 

Let  us  now  consider  the  bearing  of  these  analytical  theorems  on  the 

theory  of  magnetism.  Whenever  we  deal  with  quantities  relating  to  magnetism, 

we  shall  distinguish  them  by  the  suffix  d).  Thus  aj^iC,  are  the  components 

resolved  in  the  directions  of  x,  y,  z  of  the  quantity  of  magnetic  induction  acting 

through  a  given  point,  and  aJS^yi  are  the  resolved  intensities  of  magnetization 

at  the  same  point,  or,  what  is  the  same  thing,  the  components  of  the  force 

which  would  be  exerted  on  a  unit  south  pole  of  a  magnet  placed  at  that 

point  without  disturbing  the  distribution  of  magnetism. 

The  electric  currents  are  found  from  the  magnetic  intensities  by  the  equations 
djB,      dy,  , 
dz       dy 

When  there  are  no  electric  currents,  then 

a^dx  +  P^dy  -f  y^dz  =  dp, , 
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a  perfect  differential  of  a  function  of  x,  y,  z.     On   the    principle    of   analogy    we 
may  call  jo,  the  magnetic  tension. 

The  forces  which  act  on  a  mass  m  of  south  magnetism   at  any  point  are 

in   the   direction   of  the    axes,    and   therefore    the    whob    work   done   during   any 

displacement  of  a  magnetic  system  is  equal  to  the  decrement  of  the  integral 

Q  =  ll\p,p4xdydz 
throughout  the  system. 

Let  us  now  call  Q  the  total  potential  of  the  system  on  itself.  The  increase 

or  decrease  of  Q  will  measure  the  work  lost  or  gained  by  any  displacement 

of  any  part  of  the  system,  and  will  therefore  enable  us  to  determine  the 

forces  acting  on  that  part  of  the  system. 

By  Theorem  III.  Q  may  be  put  under  the  form 

Q  =  +  ̂   j    I  (ctio,  +  hSi  +  c,y,)  dxdydz 

in  which  a^iji  are  the  differential  coefficients  of  p^  with  respect  to  x,  y,  z 
respectively. 

If  we  now  assume  that  this  expression  for  Q  is  true  whatever  be  the 

values  of  Oj,  )8„  yi,  we  pass  from  the  consideration  of  the  magnetism  of  permanent 
magnets  to  that  of  the  magnetic  effects  of  electric  currents,  and  we  have  then 
by  Theorem  VII. 

So  that  in  the  case  of  electric  currents,  the  components  of  the  currents  have 

to  be  multiplied  by  the  functions  a„,  ySj,  yo  respectively,  and  the  summations  of 

all  such  products  throughout  the  system  gives  us  the  part  of  Q  due  to  those 
currents. 

We  have  now  obtained  in  the  functions  a,,,  Aj  yo  the  means  of  avoiding 

the  consideration  of  the  quantity  of  magnetic  induction  which  passes  through 
the  circuit.  Instead  of  this  artificial  method  we  have  the  natural  one  of  con- 

sidering the  current  with  reference  to  quantities  existing  in  the  same  space 

with  the  current  itself.  To  these  I  give  the  name  of  Electro-tonic  functions,  or 
components  of  the  Electro-tonic  intensity. 

2G— 2 
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Let  us  now  consider  the  conditions  of  the  conduction  of  the  electric 

currents  within  the  medium  during  changes  in  the  electro-tonic  state.  The 

method  which  we  shall  adopt  is  an  appHcation  of  that  given  by  Helmholtz  in 

his  memoir  on  the  Conservation  of  Force*. 

Let  there  be  some  external  source  of  electric  currents  which  would  generate 

in  the  conducting  mass  currents  whose  quantity  is  measured  by  a^,  h^,  c,  and 

their  intensity  by  cu,,  /Sa,  y^. 

Then  the  amount  of  work  due  to  this  cause  in  the  time  dt  is 

dt  lll{a^(h  +  hS^  +  c^y^  dxdydz 

in  the  form  of  resistance  overcome,  and 

^  ̂  J  j  J  (^2^0  4-  6  A  +  c,yo)  dxdy
dz 

in  the  form  of  work  done  mechanically  by  the  electro-magnetic  action  of  these 

currents.  If  there  be  no  external  cause  producing  currents,  then  the  quantity 

representing  the  whole  work  done  by  the  external  cause  must  vanish,  and  we 
have 

dt  \\  \(a,a^  +  hS,  +  c.y,)  dxdydz  +  4^  ̂   I  I  I  («**o  +  ̂So  +  c^Jo)  dxdydz, 

where  the  integrals  are  taken  through  any  arbitrary  space.  We  must  therefore 
have 

for  every  point  of  space ;  and  it  must  be  remembered  that  the  variation  of 

Q  is  supposed  due  to  variations  of  a^,  ySo,  y^,  and  not  of  a^,  \,  c^.  We  must 

therefore  treat   a^,  63,  c^  as  constants,  and  the  equation  becomes 

In  order  that  this  equation  may  be  independent  of  the  values  of  a^,  b^,  Cj, 

each  of  these  coefficients  must  =  0 ;  and  therefore  we  have  the  following 

expressions  for  the  electro-motive  forces  due  to  the  action  of  magnets  and 
currents  at  a  distance  in  terms  of  the  electro-tonic  functions, 

°^~      ATrdt'  ̂ ^~      Andt'         '^'~      An  dt  ' 

*  Translated  in  Taylor's  N'ew  Scientific  Memoirs,  Part  11. 
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It   appears   from   experiment  that   the   expression   -jj   refers    to    the    change 

of    electro-tonic    state    of    a    given    particle    of   the    conductor,    whether   due   to 

change  in  the  electro-tonic  functions  themselves  or  to  the  motion  of  the  particle. 

If  Oo  be  expressed  as  a  function  of  x,  y,  z  and  t,  and  \£  x,  y,  z  be  the 

co-ordinates  of  a  moving  particle,  then  the  electro-motive  force  measured  in  the 
direction  of  a;  is 

_  _  Jl  (^'  dx     da^dy     da,dz     doA 
°^~      477  \dx  dt      dy  dt      dz  dt      dtj 

The  expressions  for  the  electro-motive  forces  in  y  and  z  are  similar.  The 

distribution  of  currents  due  to  these  forces  depends  on  the  form  and  arrange- 

ment of  the  conducting  media  and  on  the  resultant  electric  tension  at  any 

point. 

The  discussion  of  these  functions  would  involve  us  in  mathematical  formulae, 

of  which  this  paper  is  already  too  full.  It  is  only  on  account  of  their  physical 

importance  as  the  mathematical  expression  of  one  of  Faraday's  conjectures  that  I 
have  been  induced  to  exhibit  them  at  all  in  their  present  form.  By  a  more 

patient  consideration  of  their  relations,  and  with  the  help  of  those  who  are 

engaged  in  physical  inquiries  both  in  this  subject  and  in  others  not  obviously 

connected  with  it,  I  hope  to  exhibit  the  theory  of  the  electro-tonic  state  in  a 

form  in  which  all  its  relations  may  be  distinctly  conceived  without  reference  to 

analytical  calculations. 

Summary  of  the  Theory  of  the  Electro-tonic  State. 

We  may  conceive  of  the  electro-tonic  state  at  any  point  of  space  as  a 

quantity  determinate  in  magnitude  and  direction,  and  we  may  represent  the 

electro-tonic  condition  of  a  portion  of  space  by  any  mechanical  system  which 

has  at  every  point  some  quantity,  which  may  be  a  velocity,  a  displacement,  or 

a  force,  whose  direction  and  magnitude  correspond  to  those  of  the  supposed 

electro-tonic  state.  This  representation  involves  no  physical  theory,  it  is  only 

a  kind  of  artificial  notation.  In  analytical  investigations  we  make  use  of  the 

three  components  of  the  electro-tonic  state,  and  call  them  electro-tonic  functions. 

We   take    the   resolved    part   of    the  electro-tonic   intensity   at    every  point   of  a 
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closed  curve,  and  find  by  integration  what  we  may  caU  the  entire  el
ectro-tonic 

intensity  round  the  curve. 

Prop.  I.  If  on  any  surface  a  closed  curve  be  drawn,  and  if  the  surface 

within  it  he  divided  into  small  areas,  then  the  entire  intensity  round  the  close
d 

curve  is  equal  to  the  sum  of  the  intensities  round  each  of  the  small  areas,  all 

estimated   in   the   same   direction. 

For,  in  going  round  the  small  areas,  every  boundary  line  between  two  of 

them  is  passed  along  twice  in  opposite  directions,  and  the  intensity  gained  in 

the  one  case  is  lost  in  the  other.  Every  eflfect  of  passing  along  the  interior 

divisions  is  therefore  neutraUzed,  and  the  whole  efiect  is  that  due  to  the 

exterior  closed   curve. 

Law  I.  The  entire  dectro-tonic  intensity  round  the  boundary  of  an  element  of 

surface  measures  the  quantity  of  magnetic  induction  which  passes  through  that 

surface,  or,  in  other  words,  the  number  of  lines  of  magnetic  force  which  pass 
through   that   surface. 

By  Prop.  I.  it  appears  that  what  is  true  of  elementary  surfaces  is  true  also 

of  surfaces  of  finite  magnitude,  and  therefore  any  two  surfaces  which  are 

bounded  by  the  same  closed  curve  will  have  the  same  quantity  of  magnetic 

induction  through  them. 

Law  II.  The  magnetic  intensity  at  any  point  is  connected  with  the  quantity 

of  magnetic  induction  by  a  set  of  linear  equations,  called  the  equations  of  con- 
duction*. 

Law  III.  The  entire  magnetic  intensity  round  the  boundary  of  any  surface 

measures  the  quantity  of  electric  current  which  passes  through  that  surface. 

Law  IV.  The  quantity  and  intensity  of  electric  currents  are  connected  by  a 

system  of  equations  of  conduction. 

By  these  four  laws  the  magnetic  and  electric  quantity  and  intensity  may  be 

deduced  from  the  values  of  the  electro-tonic  functions.  I  have  not  discussed 

the  values  of  the  units,  as  that  will  be  better  done  with  reference  to  actual 

experiments.  We  come  next  to  the  attraction  of  conductors  of  currents,  and  to 
the  induction  of  currents  within  conductors. 

*  See  Art.  (28). 
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Law  v.  The  total  electro-magnetic  potential  of  a  closed  current  is  measxired 
by  the  product  of  the  quantity  of  the  current  multiplied  by  the  entire  electro-tonic 
intensity  estimated  in  t/ie  same  direction  round  the  circuit. 

Any  displacement  of  the  conductors  which  would  cause  an  increase  in  the 

potential  will  be  assisted  by  a  force  measured  by  the  rate  of  increase  of  the 

potential,  so  that  the  mechanical  work  done  during  the  displacement  will  be 
measured  by  the  increase  of  potential. 

Although  in  certain  cases  a  displacement  in  direction  or  alteration  of  inten- 

sity of  the  current  might  increase  the  potential,  such  an  alteration  would  not 

itself  produce  work,  and  there  will  be  no  tendency  towards  this  displacement, 
for  alterations  in  the  current  are  due  to  electro-motive  force,  not  to  electro- 

magnetic attractions,  which  can  only  act  on  the  conductor. 

Law  VI.  The  electro-motive  force  on  any  element  of  a  conductor  is  measured 

by  the  instantaneous  rate  of  change  of  the  electro-tonic  intensity  on  that  element, 
whether  in  magnitude  or  direction. 

The  electro-motive  force  in  a  closed  conductor  is  measured  by  the  rate  of 
change  of  the  entire  electro-tonic  intensity  round  the  circuit  referred  to  unit 
of  time.  It  is  independent  of  the  nature  of  the  conductor,  though  the  current 
produced  varies  inversely  as  the  resistance ;  and  it  is  the  same  in  whatever 

way  the  change  of  electro-tonic  intensity  has  been  produced,  whether  by  motion 
of  the  conductor  or  by  alterations  in  the  external  circumstances. 

In  these  six  laws  I  have  endeavoured  to  express  the  idea  which  I  believe  to 

be  the  mathematical  foundation  of  the  modes  of  thought  indicated  in  the  Ex- 
perimental Researches.  I  do  not  think  that  it  contains  even  the  shadow  of  a 

true  physical  theory;  in  fact,  its  chief  merit  as  a  temporary  instrument  of 

research  is  that  it  does  not,  even  in  appearance,  account  for  anything. 

There  exists  however  a  professedly  physical  theory  of  electro-dynamics,  which 
is  so  elegant,  so  mathematical,  and  so  entirely  different  from  anything  in  this 

paper,  that  I  must  state  its  axioms,  at  the  risk  of  repeating  what  ought  to 

be  well  known.  It  is  contained  in  M.  W.  Weber's  Electro-dynamic  Measure- 
ments, and  may  be  found  in  the  Transactions  of  the  Leibnitz  Society,  and  of  the 

Royal  Society  of  Sciences  of  Saxony*.     The  assumptions  are, 

*  When  this  was  written,  I  was  not  aware  that  part  of  M.  Weber's  Memoir  is  translated  in 

Taylor's  Scientific  Memoirs,  VoL  v.  Art.  xiv.  The  value  of  his  researches,  both  experimental  and 
theoretical,  renders  the  study  of  his  theory  necessary  to  every  electrician. 



208  ON   Faraday's   lines   of  force. 

(1)  That  two  particles  of  electricity  when  in  motion  do  not  repel  each  other 

with  the  same  force  as  when  at  rest,  but  that  the  force  is  altered  by  a  quantity 

depending  on  the  relative  motion  of  the  two  particles,  so  that  the  expression  for 
the   repulsion   at   distance   r   is 

eeV,        dr 

(2)  That  when  electricity  is  moving  in  a  conductor,  the  velocity  of  the 

positive  fluid  relatively  to  the  matter  of  the  conductor  is  equal  and  opposite  to 

that  of  the  negative  fluid. 

(3)  The  total  action  of  one  conducting  element  on  another  is  the  resultant 

of  the  mutual  actions  of  the  masses  of  electricity  of  both  kinds  which  are 
in   each. 

(4)  The  electro-motive  force  at  any  point  is  the  difference  of  the  forces 
acting   on   the   positive   and   negative   fluids. 

From  these  axioms  are  deducible  Ampere's  laws  of  the  attraction  of 
conductors,  and  those  of  Neumann  and  others,  for  the  induction  of  currents. 

Here  then  is  a  really  physical  theory,  satisfying  the  required  conditions  better 

perhaps  than  any  yet  invented,  and  put  forth  by  a  philosopher  whose  experi- 

mental researches  form  an  ample  foundation  for  his  mathematical  investigations. 

What  is  the  use  then  of  imagining  an  electro-tonic  state  of  which  we  have 

no  distinctly  physical  conception,  instead  of  a  formula  of  attraction  which  we 

can  readily  understand  ?  I  would  answer,  that  it  is  a  good  thing  to  have 

two  ways  of  looking  at  a  subject,  and  to  admit  that  there  are  two  ways  of 

looking  at  it.  Besides,  I  do  not  think  that  we  have  any  right  at  present  to 

understand  the  action  of  electricity,  and  I  hold  that  the  chief  merit  of  a 

temporary  theory  is,  that  it  shall  guide  experiment,  without  impeding  the 

progress  of  the  true  theory  when  it  appears.  There  are  also  objections  to 

making  any  ultimate  forces  in  nature  depend  on  the  velocity  of  the  bodies 

between  which  they  act.  If  the  forces  in  nature  are  to  be  reduced  to  forces 

acting  between  particles,  the  principle  of  the  Conservation  of  Force  requires 

that  these  forces  should  be  in  the  line  joining  the  particles  and  functions  of 

the  distance  only.  The  experiments  of  M.  Weber  on  the  reverse  polarity  of 

diaraagnetics,  which  have  been  recently  repeated  by  Professor  Tyndall,  establish 

a  fact  which  is  equally  a  consequence  of  M.  Weber's  theory  of  electricity  and 
of  the   theory  of  lines   of  fcH-ce. 
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With  respect  to  the  history  of  the  present  theory,  I  may  state  that  the 

recognition  of  certain  mathematical  functions  as  expressing  the  "electro-tonic 

state "  of  Faraday,  and  the  use  of  them  in  determining  electro-dynamic 
potentials  and  electro-motive  forces  is,  as  far  as  I  am  aware,  original ;  but  the 
distinct  conception  of  the  possibility  of  the  mathematical  expressions  arose  in 

my  mind  from  the  perusal  of  Prof  W.  Thomson's  papers  "On  a  Mechanical 

Representation  of  Electric,  Magnetic  and  Galvanic  Forces,"  Cambridge  and 
Dublin  Mathematical  Journal,  January,  1847,  and  his  "Mathematical  Theory  of 

Magnetism,"  Philosophical  Transactions,  Part  I.  1851,  Art.  78,  &c.  As  an 
instance  of  the  help  which  may  be  derived  from  other  physical  investigations, 

I  may  state  that  after  I  had  investigated  the  Theorems  of  this  paper 

Professor  Stokes  pointed  out  to  me  the  use  which  he  had  made  of  similar 

expressions  in  his  "Dynamical  Theory  of  Diffraction,"  Section  1,  Camhndge 
Transactions,  Vol.  ix.  Part  1.  Whether  the  theory  of  these  functions,  consi- 

dered with  reference  to  electricity,  may  lead  to  new  mathematical  ideas  to  be 

employed  in  physical  research,  remains  to  be  seen.  I  propose  in  the  rest  of 

this  paper  to  discuss  a  few  electrical  and  magnetic  problems  with  reference  to 

spheres.  These  are  intended  merely  as  concrete  examples  of  the  methods  of 
which  the  theory  has  been  given ;  I  reserve  the  detailed  investigation  of  cases 

chosen  with  special  reference  to  experiment  till  I  have  the  means  of  testing 
their  results. 

Examples. 

I.     Theory  of  Electrical  Images. 

The  method  of  Electrical  Images,  due  to  Prof  W.  Thomson"",  by  whicli 
the  theory  of  spherical  conductors  has  been  reduced  to  great  geometrical  sim- 

plicity, becomes  even  more  simple  when  we  see  its  connexion  with  the  methods 

of  this  paper.  We  have  seen  that  the  pressure  at  any  point  in  a  uniform 

medium,    due    to   a   spherical   shell    (radius  =  a)    giving   out    fluid   at    the   rate   of 
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where  r  is  the  distance  of  the  point  from  the  centre  of  the  shell. 

*  See   a   series   of  papers    "On   the   Mathematical   Theory  of  Electricity,"  in   the   Cambridge  and 
Dublin  Math.  Jour.,  beginning  March,  1848. 
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If  there  be  two  shells,  one  giving  out  fluid  at  a  rate  inPa\  and  the 

other  absorbing  at  the  rate  of  iirFa\  then  the  expression  for  the  pressure  will 

be,  outside  the  shells, 

J^  r  r 

where  r  and  /  are  the  distances   from  the  centres   of  the  two  shells.     Equating 

this  expression  to  zero  we  have,  as  the  surface  of  no  pressure,  that  for  which 

/  _  Fa''
 

r  ~  Pa' 

Now  the   surface,   for  which  the  distances  to  two  fixed  points  hav^e  a  given 

ratio,  is   a   sphere   of  which  the  centre  0   is  in   the  line  joining  the   centres   of 

the  shells  CC   produced,  so  that 

and  its  radius  ^  ̂ 

Pa'lt-F^' 
If  at  the  centre  of  this  sphere  we  place  another  source  of  the  fluid,  then 

the  pressure  due  to  this  source  must  be  added  to  that  due  to  the  other  two
; 

and  since  this  additional  pressure  depends  only  on  the  distance  from  the  centre, 

it  will  be  constant  at  the  surface  of  the  sphere,  where  the  pressure  due  to 

the  two  other  sources  is  zero. 

We  have  now  the  means  of  arranging  a  system  of  sources  within  a  given 

sphere,  so  that  when  combined  with  a  given  system  of  sources  out
side  the 

sphere,  they  shall  produce  a  given  constant  pressure  at  the  surface  of  th
e  sphere. 

Let  a  be  the  radius  of  the  sphere,  and  p  the  given  pressure,  and  let  the 

given  sources  be  at  distances  6„  h„  &c.  from  the  centre,  and  let  their  rat
es  of 

production  be  4.TrP„.  47rP„  &c. 

Then  if  at  distances  ̂  ,  ?- ,  &c.  (measured  in  the  same  direction  as  h„  \,  &c. 

from  the  centre)  we  place  negative  sources  whose  rates  are 

-47rP,?,     -477P,^,  &c., 
0,  Oj 
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the  pressure  at  the  surface  r  =  a  will  be  reduced  to  zero.  Now  placing  a  source 

477-^  at  the  centre,  the  pressure  at  the  surface  will  be  uniform  and  equal  to  />. 

The  whole  amount  of  fluid  emitted  by  the  surface  r  =  a  may  be  found  by 

adding  the  rates  of  production  of  the  sources  within  it.     The  result  is 

To  apply  this  result  to  the  case  of  a  conducting  sphere,  let  us  suppose 
the  external  sources  inP^,  AnP^  to  be  small  electrified  bodies,  containing  e„  e, 

of  positive  electricity.  Let  us  also  suppose  that  the  whole  charge  of  the  con- 
ducting sphere  is  =E  previous  to  the  action  of  the  external  points.  Then  all 

that  is  required  for  the  complete  solution  of  the  problem  is,  that  the  surface 

of  the  sphere  shall  be  a  surface  of  equal  potential,  and  that  the  total  charge 
of  the  surface  shall  be  E. 

If  by  any  distribution  of  imaginary  sources  within  the  spherical  surface  we 
can  effect  this,  the  value  of  the  corresponding  potential  outside  the  sphere  is 

the  true  and  only  one.  The  potential  inside  the  sphere  must  really  be  constant 

and  equal  to  that  at  the  surface. 

We  must  therefore  find  the  images  of  the  external  electrified  points,  that 

is,   for  every   point   at  distance    b   from   the   centre  we  must  find  a  point  on  the 

same  radius  at  a  distance  j- ,  and  at  that  point  we  must  place  a  quantity 

=  —  e  ,    of  imaginary  electricity. 

At  the  centre  we  must  put  a  quantity  E'  such  that 

K  =  E  +  e,^  +  e,^-  +  kc.; 

then  if  i^  be  the  distance  from  the  centre,  r„  r^,  &c.  the  distances  from  the 

electrified  points,  and  r\,  r\,  &c.  the  distances  from  their  images  at  any  point 

outside  the  sphere,  the  potential  at  that  point  will  be 

E     e,  ( a      \      ci\      e,  /a      b,      a\  ,  . 
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This   is   the   value   of  the   potential   outside   the  sphere.     At  the  surface  we 
have 

K  =  a  and  —  =  -7- ,        —  =  -7- ,   ac. 

so  that  at  the  surface 

and  this  must  also  be  the  value  oi  p  for  any  point  within  the  sphere. 

For  the  application  of  the  principle  of  electrical  images  the  reader  is  referred 

to   Prof   Thomson's  papers  in  the   Cambridge  and  Dublin  Mathematical  Journal. 

The   only   case  which  we   shall  consider  is   that  in   which  A  =  /,  and   b^  is  infi- 

nitely distant  along  the  axis  of  x,  and  j&=0. 

The  value  p  outside  the  sphere  becomes  then 

and  inside  ̂   =  0. 

II.     On  the  effect  of  a  paramagnetic  or  diam/xgnetic  sphere  in  a  uniform  field  oj 

magnetic  force'^. 

The  expression  for  the  potential  of  a  small  magnet  placed  at  the  origin  of 
co-ordinates  in  the  direction  of  the  axis  of  x  is 

dx  \rj~
 

i:^i'-]=-lm^ 

The  eflPect  of  the  sphere  in  disturbing  the  lines  of  force  may  be  supposed 

as  a  first  hypothesis  to  be  similar  to  that  of  a  small  magnet  at  the  origin, 

whose  strength  is  to  be  determined.     (We  shall  find  this  to  be  accurately  true.) 

*  See  Prof.  Thomson,  on  the  Theory  of  Magnetic  Induction,  PhiL  Mag.  March,  1851.     The  induc- 
tive capadiy  of  the  sphere,  according  to  that  paper,  is  the  ratio  of  the  qv/iTiiUy  of  magnetic  induction 

(not  the  intensity)  within  the  sphere  to  that  without     It  is  therefore  equal  to  j^T  =  2k    k'  ̂^^^^' 
ing  to  our  notation. 



ON  Faraday's  lines  of  force.  213 

Let  the  value  of  the  potential  undisturbed  by  the  presence  of  the  sphere  be 

'p  =  Ix. 

Let  the  sphere  produce  an  additional  potential,  which  for  external  points  is 

,      .  a' 

and  let  the  potential  within  the  sphere  be 

Pi  =  Bx. 
Let  k'  be  the  coefficient  of  resistance  outside,  and  k  inside  the  bphere,  then 

the  conditions  to  be  fulfilled  are,  that  the  interior  and  exterior  potentials  should 

coincide  at  the  surface,  and  that  the  induction  through  the  surface  should  be  the 
same  whether  deduced  from  the  external  or  the  internal  potential.  Putting 

a;  =  rcos^,  we  have  for  the  external  potential 

P  =  //r  +  ̂ ^')cos^, and  for  the  internal 

p^  =  Brco%dy 

and  these  must  be  identical  when  r  =  a,  or 

I+A  =  B. 

The  induction  through  the  surface  in  the  external  medium  is 

and  that  through  the  interior  surface  is 

and  .•.  i(7-2^)  =  i£. 

These  equations  give 

A  =  ̂^f^J,  B=     ̂ ^ 2k  +  k'    '  ik  +  k' 

The    effect    outside   the   sphere  is   equal   to   that   of   a   little   magnet   whose 
length  is  I  and  moment  ml,  provided 
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Suppose  this  uniform  field  to  be  that  due  to  terrestrial  magnetism,  then, 

if  k  is  less  than  k'  as  in  paramagnetic  bodies,  the  marked  end  of  the  equi- 

valent magnet  will  be  turned  to  the  north.  If  A;  is  greater  than  F  as  in 

diamagnetic  bodies,  the  unmarked  end  of  the  equivalent  magnet  would  be  turned 
to  the  north. 

III.     Magnetic  Jield  of  variable  Intensity. 

Now  suppose  the  intensity  in  the  undisturbed  magnetic  field  to  vary  in 

magnitude  and  direction  from  one  point  to  another,  and  that  its  components 

in  X,  y,  z  are  represented  by  a,  /8,  y,  then,  if  as  a  first  approximation  we  re- 

gard the  intensity  within  the  sphere  as  sensibly  equal  to  that  at  the  centre, 

the  change  of  potential  outside  the  sphere  arising  from  the  presence  of  the 

sphere,  disturbing  the  lines  of  force,  will  be  the  same  as  that  due  to  three 

small  magnets  at  the  centre,  with  their  axes  parallel  to  x,  y,  and  z,  and  their 

moments  equal  to 

k-k'     3  k-k'     5^  k-k' 

2kTk'^^'       2FFF^^'        2FfF"^- 

The  actual  distribution  of  potential  within  and  without  the  sphere  may  be 

conceived  as  the  result  of  a  distribution  of  imaginary  magnetic  matter  on  the 

surface  of  the  sphere  ;  but  since  the  external  effect  of  this  superficial  magnetism 

is  exactly  the  same  as  that  of  the  three  small  magnets  at  the  centre,  the 

mechanical  effect  of  external  attractions  will  be  the  same  as  if  the  three  ma^ets 

really  existed. 

Now  let  three  small  magnets  whose  lengths  are  l^,  k,  k,  and  strengths 

m„  m^,  m„  exist  at  the  point  x,  y,  z  with  their  axes  parallel  to  the  axes  of 

then  resolving  the  forces  on  the  three  magnets  in  the  direction  of  X,  we X,  y,  z 
have 

X  =  'm^ 

da  Zi 

•a  + da  l^ 

dx  2 

Y  +'in.-{ 

a  + 

a  + 

da  I, 

dy  2 da  It 

dy2\ 

■+«i. 

da  /g" 

a  + da  Zj 

dz  2. 

J  da  T  da  ,  da 
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Substituting  the  values  of  the  moments  of  the  imaginary  magnets 

J    da     ̂ (IB        dy\       k-k'   a'    d   ,  ,     r>^  ,     2\ 

2k +  k' 
The  force  impelling  the  sphere  in  the  direction  of  x  is  therefore  dependent 

on  the  variation  of  the  square  of  the  intensity  or  (a'  +  ̂   +  y),  as  we  move  along 

the  direction  of  x,  and  the  same  is  true  for  y  and  z,  so  that  the  law  is,  that 

the  force  acting  on  diamagnetic  spheres  is  from  places  of  greater  to  places  of 

less  intensity  of  magnetic  force,  and  that  in  similar  distributions  of  magnetic 

force  it  varies  as  the  mass  of  the  sphere  and  the  square  of  the  intensity. 

It  is  easy  by  means  of  Laplace's  CoeflBcients  to  extend  the  approximation 

to  the  value  of  the  potential  as  far  as  we  please,  and  to  calculate  the  attrac- 

tion. For  instance,  if  a  north  or  south  magnetic  pole  whose  strength  is  M,  be 

placed  at  a  distance  b  from  a  diamagnetic  sphere,  radius  a,  the  repulsion  will  be 

When  r  is  small,  the  first  term  gives  a  sufficient  approximation.     The  repul- 0 

sion  is  then  as  the  square  of  the  strength  of  the  pole,  and  the  mass  of  the 

sphere  directly  and  the  fifth  power  of  the  distance  inversely,  considering  the 

pole  as  a  point. 

IV.     Tivo  Spheres  in  uniform  jield. 

Let  two  spheres  of  radius  a  be  connected  together  so  that  their  centres  are 

kept  at  a  distance  h,  and  let  them  be  suspended  in  a  uniform  magnetic  field, 

then,  although  each  sphere  by  itself  would  have  been  in  equilibrium  at  any  part 

of  the  field,  the  disturbance  of  the  field  will  produce  forces  tending  to  make  the 

balls  set  in  a  particular  direction. 

Let  the  centre  of  one  of  the  spheres  be  taken  as  origin,  then  the  undis- 

turbed potential  is 

p  =  Ir  cos  dy  ■ 
and  the  potential  due  to  the  sphere  is 

^  k  —  k'   a?        a 
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The  whole  potential  is  therefore  equal  to 

l(r  + 
'2jc  +  k' 

dp 

dr 

,^003  0=  p.. 

dp 

dr \ldp 

Idp 

rdS 

1 

dp\ 

|=«
- 

T^^m'Bdi 

^'{i+^'^*(i-3-«''')+i5r^'(i+3-''')} 
This  is  the  value  of  the  square  of  the  intensity  at  any  point.  The  moment 

of  the  couple  tending  to  turn  the  combination  of  balls  in  the  direction  of  the 
original  force 

L  =  l^a^i7;fn?<n  when  r  =  h, 
dd    \2k  +  k' 

L^^P 

k-k' 
2k-\-k' 

k  —  k'  a\   .    ̂ ^ 

This  expression,  which  must  be  positive,  since  h  is  greater  than  a,  gives  the 

moment  of  a  force  tending  to  turn  the  line  joining  the  centres  of  the  spheres 
towards  the  original  lines  of  force. 

Whether  the  spheres  are  magnetic  or  diamagnetic  they  tend  to  set  in  the 
axial  direction,  and  that  without  distinction  of  north  and  south.  If,  however, 

one  sphere  be  magnetic  and  the  other  diamagnetic,  the  line  of  centres  will  set 

equatoreally.  The  magnitude  of  the  force  depends  on  the  square  of  (k  —  k'),  and 
is  therefore  quite  insensible  except  in  iron*. 

V.     Two  Spheres  between  the  poles  of  a  Magnet. 

Let  us  next  take  the  case  of  the  same  balls  placed  not  in  a  uniform  field 

but  between  a  north  and  a  south  pole,  ±M,  distant  2c  from  each  other  in  the 
direction  of  x. 

*  See  Prof.  Thomson  in  Phil.  Mag.  March,  1851. 
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The  expression  for  the  potential,  the  middle  of  the  line  joining  the  poles 

being  the  origin,  is 

p=m(,  '  —,   '   )■ Wc*  +  i^-2crcos0     Vc'  +  ?-'  +  2crcos^/ 

From  this  we  find  as  the  value  of  P, 

P  =  i^7l_3!:+9^,cos-<^): c*     \  C^  &  ] 

.'.  I~=  -  18  ̂ ^V sin  2^. 

and  the  moment  to  turn  a  pair  of  spheres  (radius  a,  distance  2h)  in  the 
direction  in  which  0  is  increased  is 

-^'wvk'-^''''^^' 
This  force,  which  tends  to  turn  the  line  of  centres  equatoreally  for  diamagnetic 

and  axially  for  magnetic  spheres,  varies  directly  as  the  square  of  the  strength  of 

the  magnet,  the  cube  of  the  radius  of  the  spheres  and  the  square  of  the  dis- 
tance of  their  centres,  and  inversely  as  the  sixth  power  of  the  distance  of  the 

poles  of  the  magnet,  considered  as  points.  As  long  as  these  poles  are  near  each 
other  this  action  of  the  poles  will  be  much  stronger  than  the  mutual  action  of 

the  spheres,  so  that  as  a  general  rule  we  may  say  that  elongated  bodies  set 

axially  or  equatoreally  between  the  poles  of  a  magnet  according  as  they  are  mag- 
netic or  diamagnetic.  If,  instead  of  being  placed  between  two  poles  very  near 

to  each  other,  they  had  been  placed  in  a  uniform  field  such  as  that  of  terrestrial 

magnetism  or  that  produced  by  a  spherical  electro-magnet  (see  Ex.  viii.),  an 
elongated  body  would  set  axially  whether  magnetic  or  diamagnetic. 

In  all  these  cases  the  phenomena  depend  on  k  —  k',  so  that  the  sphere  con- 
ducts itself  magnetically  or  diamagnetically  according  as  it  is  more  or  less 

magnetic,  or  less  or  more  diamagnetic  than  the  medium  in  which  it  is  placed. 

VI.     On  the  Magnetic  Phenomena  of  a  Sphere  cut  from  a  substance  whose 

coefficient  of  resistance  is  diffierent  in  different  directions. 

Let   the  axes  of  magnetic  resistance  be  parallel  throughout  the  sphere,  and 
let   them   be  taken  for  the  axes  of  x,  y,  z.     Let   K,  k„  k„  be  the  coefficients  of 

resistance   in  these  three  directions,  and  let  k'  be  that  of  the  external  medium, 
VOL.  I.  28 
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and  a  the  radius  of  the  sphere.  Let  /  be  the  undisturbed  magnetic  intensity 

of  the  field  into  which  the  sphere  is  introduced,  and  let  its  direction- cosines 
be  I,  m,  n. 

Let  us  now  take  the  case  of  a  homogeneous  sphere  whose  coefficient  is  ̂ , 

placed  in  a  uniform  magnetic  field  whose  intensity  is  II  in  the  direction  of  x. 
The  resultant  potential  outside  the  sphere  would  be 

and  for  internal  points 

So  that  in  the  interior  of  the  sphere  the  magnetization  is  entirely  in  the  direc- 
tion of  X.  It  is  therefore  quite  independent  of  the  coefficients  of  resistance  in 

the  directions  of  x  and  y,  which  may  be  changed  from  X\  into  k^  and  ̂ 3  with- 
out disturbing  this  distribution  of  magnetism.  We  may  therefore  treat  the  sphere 

as  homogeneous  for  each  of  the  three  components  of  /,  but  we  must  use  a 
different  coefficient  for  each.     We  find  for  external  points 

and  for  internal  points 

The  external  effect  is  the  same  as  that  which  would  have  been  produced 

if  the  small  magnet  whose  moments  are 

te§'^"''    ̂ ™^"''    te^'"-^"*' 
had  been  placed  at  the  origin  with  their  directions  coinciding  with  the  axes  of 

Xy  y,  z.  The  effect  of  the  original  force  /  in  turning  the  sphere  about  the  axis 

of  x  may  be  found  by  taking  the  moments  of  the  components  of  that  force 

on  these  equivalent  magnets.  The  moment  of  the  force  in  the  direction  of  y 
acting  on  the  third  magnet  is 

and  that  of  the  force  in  z  on  the  second  magnet  is 

2k^-\-k 
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The  whole  couple  about  the  axis  of  a;  is  therefore 

tending  to  turn  the  sphere  round  from  the  axis  of  y  towards  that  of  z.  Sup- 
pose the  sphere  to  be  suspended  so  that  the  axis  of  x  is  vertical,  and  let  / 

be  horizontal,  then  if  6  be  the  angle  which  the  axis  of  y  makes  with  the 

direction   of  /,  m  =  cos  6,  n=  —  sin  0,  and  the  expression  for  the   moment  becomes 

f  TT^T^hT}?    i'\  ̂'«'  sin  2d, 

tending  to  increase  0.  The  axis  of  least  resistance  therefore  sets  axially,  but 

with  either  end  indifferently  towards  the  north. 

Since  in  all  bodies,  except  iron,  the  values  of  k  are  nearly  the  same  as  in 

a  vacuum,  the  coefficient  of  this  quantity  can  be  but  little  altered  by  changing 

the  value  of  k'  to  k,  the  value  in  space.     The  expression  then  becomes 

i^^^/Vsin2(9, 

independent  of  the  external  medium'". 

VII.     Permanent  magnetism  in  a  spherical  shell. 

The  case  of  a  homogeneous  shell  of  a  diamagnetic  or  paramagnetic  substance 

presents  no  difficulty.  The  intensity  within  the  shell  is  less  than  what  it  would 

have  been  if  the  shell  were  away,  whether  the  substance  of  the  shell  be  dia- 
magnetic or  paramagnetic.  When  the  resistance  of  the  shell  is  infinite,  and  when 

it  vanishes,  the  intensity  within  the  sheU  is  zero. 

In  the  case  of  no  resistance  the  entire  effect  of  the  shell  on  any  point, 

internal   or   external,   may   be   represented   by  supposing   a   superficial   stratum   of 

♦  Taking  the  more  general  case  of  magnetic  induction  referred  to  in  Art.  (28),  we  find,  in  the 
expression  for  the  moment  of  the  magnetic  forces,  a  constant  term  depending  on  T,  besides  those 
terms  which  dejjend  on  sines  and  cosines  of  6.  The  result  is,  that  in  every  complete  revolution  in 

the  negative  direction  round  the  axis  of  T,  a  certain  jMJsitive  amount  of  work  is  gained ;  but,  since 

no  inexhaustible  source  of  work  can  exist  in  nature,  we  must  admit  that  T-0  in  all  substances, 
with  resf>ect  to  magnetic  induction.  This  argument  does  not  hold  in  the  case  of  electric  conduction, 

or  in  the  case  of  a  body  through  which  heat  or  electricity  is  passing,  for  such  states  are  main- 
tained by  the  continual  expenditure  of  work.     See  Prof  Thomson,  Phil.  Mag.  March,  1851,  p.   186. 

28—2 
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magnetic  matter  spread  over  the  outer  surface,  the  density  being  given  by  the 

equation 

p  =  3/  cos  d. 
Suppose  the   shell  now   to   be   converted   into   a   permanent  magnet,  so  that  the 

distribution  of  imaginary  magnetic   matter  is  invariable,  then  the  external  poten- 
tial due  to  the  shell  will  be 

p  =  —I—CO3  0, 

and  the  internal  potential  Pi—  ~ ^*' ^^^ 0. 

Now  let  us  investigate  the  eflfect  of  filling  up  the  shell  with  some  substance 

of  which  the  resistance  is  k,  the  resistance  in  the  external  medium  being  k". 
The  thickness  of  the  magnetized  shell  may  be  neglected.  Let  the  magnetic 

moment  of  the  permanent  magnetism  be  la^,  and  that  of  the  imaginary  super- 
ficial distribution  due  to  the  medium  k  =  Aa\     Then  the  potentials  are 

external  p'  =  {I-\-A)~  cos  6,        internal  ̂ ,  =  (/+  ̂  )  r  cos  0. 

The  distribution  of  real  magnetism  is  the  same  before  and  after  the  introduc- 
tion of  the  medium  k,  so  that 

l/+|/=i(/+4)+|(/+^), 

The  external  efiect  of  the  magnetized  shell  is  increased  or  diminished  according 

as  A;  is  greater  or  less  than  k'.  It  is  therefore  increased  by  filling  up  the  shell 
with  diamagnetic  matter,  and  diminished  by  filling  it  with  paramagnetic  matter, 
such  as  iron. 

VIII.     Electro-magnetic   spherical  shell. 

Let  us  take  as  an  example  of  the  magnetic  effects  of  electric  currents, 

an  electro-magnet  in  the  form  of  a  thin  spherical  sheU.  Let  its  radius  be  a, 
and  its  thickness  t,  and  let  its  external  effect  be  that  of  a  magnet  whose 

moment  is  /a*.  Both  within  and  without  the  shell  the  magnetic  effect  may  be 
represented  by   a  potential,   but   within   the   substance   of  the  shell,  where  there 
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are  electric  currents,  the  magnetic  effects  cannot  be  represented  by  a  potential. 

Let  p',  pi  be  the  external  and  internal  potentials, 

p'  =  1  -^cosd,        p^  =  Ar  cos  0, 

and  since  there  is  no  permanent  magnetism,  -^  =  -^- ,  when  r  =  a, 

A=-2L 

If  we  draw  any  closed  curve  cutting  the  shell  at  the  equator,  and  at  some 

other  point  for  which  0  is  known,  then  the  total  magnetic  intensity  round  this 
curve  will  be  Sla  cos  0,  and  as  this  is  a  measure  of  the  total  electric  current  which 

flows  through  it,  the  quantity  of  the  current  at  any  point  may  be  found  by 

differentiation.  The  quantity  which  flows  through  the  element  tcW  is  —  3/a  sin  0d0, 
so  that  the  quantity  of  the  current  referred  to  unit  of  area  of  section  is 

-3l^sm0. t 

If  the  shell  be  composed  of  a  wire  coiled  round  the  sphere  so  that  the  number 
of  coils  to  the  inch  varies  as  the  sine  of  0,  then  the  external  effect  will  be 

nearly  the  same  as  if  the  shell  had  been  made  of  a  uniform  conducting  sub- 
stance, and  the  currents  had  been  distributed  according  to  the  law  we  have  just 

given. 

If  a  wire  conducting  a  current  of  strength  /,  be  wound  round  a  sphere 
of  radius    a  so   that   the   distance   between  successive   coUs   measured  along  the 

2a 
axis  of  cc  is  — ,   then   there  wiU  be  n  coils   altogether,  and   the  value  of  /,  for 

the  resulting  electro-magnet  will  be 

The  potentials,  external  and  internal,  will  be 

P=I,Q^  003  0,  p,=  ■ 

The  interior  of  the  shell  is  therefore  a  uniform  magnetic  field. 

P  =I,Q  ̂   cos^,         p,=  -21,-  -cos^. 
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IX.    Effect  of  the  core  of  the  electro-magnet. 

Now  let  us  suppose  a  sphere  of  diamagnetic  or  paramagnetic  matter  intro- 

duced into  the  electro-magnetic  coil.  The  result  may  be  obtained  as  in  the 
last  case,  and  the  potentials  become 

.,     J  n     Zk'     a?        ̂   .J.  n      Sk      r 

The  external  effect  is  greater  or  less  than  before,  according  as  yfc'  is  greater 
or  less  than  k,  that  is,  according  as  the  interior  of  the  sphere  is  magnetic  or 
diamagnetic  with  respect  to  the  external  medium,  and  the  internal  effect  is 

altered  in  the  opposite  direction,  being  greatest  for  a  diamagnetic  medium. 

This  investigation  explains  the  effect  of  introducing  an  iron  core  into  an 

electro-magnet.  If  the  value  of  k  for  the  core  were  to  vanish  altogether,  the 
effect  of  the  electro-magnet  would  be  three  times  that  which  it  has  without 
the  core.     As  k  has  always  a  finite  value,  the  effect  of  the  core  is  less  than  this. 

In  the  interior  of  the  electro-magnet  we  have  a  uniform  field  of  magnetic 
force,  the  intensity  of  which  may  be  increased  by  surrounding  the  coil  with  a 

shell  of  iron.  If  k'  =  0,  and  the  shell  infinitely  thick,  the  effect  on  internal  points would  be  tripled. 

The  effect  of  the  core  is  greater  in  the  case  of  a  cylindric  magnet,  and 
greatest  of  aU  when  the  core  is  a  ring  of  soft  iron. 

X.    Electro-tonic  functions  in  spherical  dectro-magnet. 

Let  us  now  find  the  electro-tonic  functions  due  to  this  electro-magnet. 

They  will  be  of  the  form 

ao  =  0,  ^^  —  oiZ,  y^=  —<»y, 

where   tu   is  some  function  of  r.     Where  there  are  no  electric  currents,  we  must 

have  ttj,  6j,  Cj  each  =  0,  and  this  implies 
d    /_     .      doi\     ̂  

the  solution  of  which  is 
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Within   the   shell    co  cannot  become  infinite ;  therefore   oi  =  C^  is  the  solution, 
and  outside  a  must  vanish  at  an  infinite  distance,  so  that 

is  the  solution  outside.     The  magnetic  quantity  within  the  shell  is  found  by  last 
article  to  be 

therefore  within  the  sphere 
Ln       1 

*  2a  3^  +  ̂ " 

Outside  the  sphere  we  must  determine  w  so  as  to  coincide  at  the  surface 
with  the  internal  value.     The  external  value  is  therefore 

=  _:?>        1       a' ^         2a  3k  +  k'  r' ' 

where   the   shell   containing  the   currents  is   made   up   of    n    coils   of   wire,    con- 
ducting a  current  of  total  quantity  /j. 

Let  another  wire  be  coiled  round  the  shell  according  to  the  same  law,  and 

let  the  total  number  of  coils  be  n  ;  then  the  total  electro-tonic  intensity  EI^ 
round  the  second  coil  is  found  by  integrating 

EI^  =  I    (oa  sin  6ds, 

-i: 

along  the  whole  length  of  the  wire.     The  equation  of  the  wire  is 

/,      <^ 
cos  0  =  -y-  . 

nv 

where  n'  is  a  large  number;   and  therefore 
ds  =  a  sin  6d<^, 

=  —  ariTT  sin-  Odd, 

T?T      ̂ '"'       2  /  27r         ,j       1 .*.  EI^=  -—  (oan  =  — —  ann  1 3  """  ""       3  '"""^  3k  +  k" 

E  may  be  called  the  electro-tonic  coeflBcient  for  the  particular  wire. 
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XI.     Spherical  electro-magnetic  CoU-Machine. 

We  have  now  obtained  the  electro-tonic  function  which  defines  the  action 

of  the  one  coil  on  the  other.  The  action  of  each  coil  on  itself  is  found  by- 

putting  n*  or  n*  for  nn\  Let  the  first  coil  be  connected  with  an  apparatus 
producing  a  variable  electro-motive  force  F.  Let  us  find  the  efiects  on  both 

wires,  supposing  their  total  resistances  to  be  i2  and  R,  and  the  quantity  of 
the  currents  /  and  /'. 

Let    N    stand    for    -^  (sk+k") '   *^^^  *^®   electro-motive  force   of   the  first 
wire  on  the  second  is 

dl 

That  of  the  second  on  itself  is 

Nnn    ,  . 
at 

-^<- 

The  equation  of  the  current  in  the  second  wire  is  therefore 

-iyr„n'f-iyr«-f=ij'i'   (i). 
The  equation  of  the  current  in  the  first  wire  is 

-Nn'^^^-Nnn'§  +  F=RI.   (2). 

EHminating  the  differential  coefficients,  we  get 

n        n'      ~  n* 

^^   ̂ [r^r]  di  +  ̂-E^^RW   (^)' 
from  which  to  find  /  and  F.    For  this   purpose   we   require  to  know  the  value 
of  i^  in  terms  of  t. 

Let  us  first  take  the  case  in  which  F  is  constant  and  /  and  T  initially  =  0. 

This  is  the  case  of  an  electro-magnetic  coil-machine  at  the  moment  when  the 
connexion  is  made  with  the  galvanic  trough. 
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Putting  ̂ T  for  ̂   [ji  + j^J  "^^  ̂ ^ 

The  primary  current  increases  very  rapidly  from  0  to  >, ,  and  the  secondary 

commences  at  --jy  —  and  speedily  vanishes,  owing  to  the  value  of  t  being 

generally  very  small 

The  whole  work  done  by  either  current  in  heating  the  wire  or  in  any  other 
kind  of  action  is  found  from  the  expression 

PRdt. 

The  total  quantity  of  current  is 

^  Idt. 

f. 
For  the  secondary  current  we  find 

/; 
'-"-S;.       f."-m'r 

The   work   done  and  the   quantity   of  the  current  are  therefore  the   same  as 

if  a  current  of  quantity  F  =  —jrr-  had  passed  through  the  wire  for  a  time  t,  where 

--(^a- 
This  method  of  considering  a  variable  current  of  short  duration  is  due  to 

Weber,  whose  experimental  methods  render  the  determination  of  the  equivalent 
current  a  matter  of  great  precision. 

Now  let  the  electro-motive  force  F  suddenly  cease  while  the  current  in  the 

primary  wire  is  /<,  and  in  the  secondary  =  0.  Then  we  shall  have  for  the  subse- 
quent time 

,     .  -^  „     /„    Rn    -f 
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R  n 

The  equivalent  currents  are  ̂ I^  and  ̂ I^  -^  — ,  and  their  duration  is  t. 

When  the  communication  with  the  source  of  the  current  is  cut  off,  there 

will  be  a  change  of  E.  This  will  produce  a  change  in  the  value  of  t,  so  that 

if  i2  be  suddenly  increased,  the  strength  of  the  secondary  current  will  be  increased, 

and  its  duration  diminished.  This  is  the  case  in  the  ordiaaiy  coU-machines.  The 
quantity  N  depends  on  the  form  of  the  machine,  and  may  be  determined  by 
experiment  for  a  machine  of  any  shape. 

XII.    Spherical  shell  revolving  in  magnetic  field. 

Let  us  next  take  the  case  of  a  revolving  shell  of  conducting  matter  under 

the  influence  of  a  uniform  field  of  magnetic  force.  The  phenomena  are  explained 

by  Faraday  in  his  Experimental  Researches,  Series  ii.,  and  references  are  there 

given  to  previous  experiments. 

Let  the  axis  of  z  be  the  axis  of  revolution,  and  let  the  angular  velocity 

be  6).  Let  the  magnetism  of  the  field  be  represented  in  quantity  by  /,  inclined 

at  an  angle  6  to  the  direction  of  z,  in  the  plane  of  zx. 

Let  R  be  the  radius  of  the  spherical  sheU,  and  T  the  thickness.  Let  the 

quantities  Oj,  ̂ o*  yoj.he  the  electro-tonic  functions  at  any  point  of  space;  a^,  \,  c„ 
«i»  Aj  7i  symbols  of  magnetic  quantity  and  intensity;  a^,  h^,  c„  a,,  13,,  y,  of 
electric  quantity  and  intensity.     Let  p,  be  the  electric  tension  at  any  point, 

^'+*a.l 

(1). 
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The  expressions  for  a,,  ̂ „  y,  due  to  the  magnetifim  of  the  field  are 

^,  =  5,  +  2  (2  Bin  ̂   -  a;  cos  ̂ ), 

A^,  B,,  Co  being  constants;   and  the   velocities   of  the  particles  of  the  revolving 

sphere  are 
dx  dy  dz     ̂  

We  have  therefore  for  the  electro-motive  forces 

An  dt  4iT  2 a>=-7Z-^=--  7^008^0)0;, 

_  1    d^o  I     I  n 
$,=   P  =  —  -:—  7T  cos  uayy, 
^*         47r  dt  An  2  ^' 

1    /  . 

'  4n  dt  An  2 

Returning  to  equations  (1),  we  get 

^db,     dct\     dfii     <^y» 
j^  (db^  _dc,\d§,  _dy,^^ 

\dz      dy)      dz      dy       ' 

\dx      dz  I      dx      dz      An  2 

^  /da,  _  dbA  ̂   ̂  _  ̂̂   ̂  q 

dy      dx)       '  ' 
^dy      dx)      dy      dx 

From  which  with  equation  (2)  we  find 

11/.. 
ttj  =  -  7-  -7-  -7  sin  C/a>; k  An  A 

h,  =  0, 

I    1    I   .    a 
C,  =  T  T-  T  Sin  U(OX, k  An  A 

p,  =  -  — -  loi  {(x*  +  2/*)  cos  ̂   -  a:s  sin  $]. 
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These  expressions  would  determine  completely  the  motion  of  electricity  in 
a  revolving  sphere  if  we  neglect  the  action  of  these  currents  on  themselves. 

They  express  a  system  of  circular  currents  about  the  axis  of  y,  the  quantity 
of  current  at  any  point  being  proportional  to  the  distance  from  that  axis. 
The   external   magnetic    effect    will    be   that    of  a    small  magnet   whose   moment 

is  jx—i    w/sin  6,  with  its  direction  along  the  axis  of  y,  so  that  the  magnetism  of 

the  field  would   tend  to  turn   it   back  to  the   axis   of  x*. 

The  existence  of  these  currents  will  of  course  alter  the  distribution  of 

the  electro-tonic  functions,  and  so  they  will  react  on  themselves.  Let  the 
final  result  of  this  action  be  a  system  of  currents  about  an  axis  in  the  plane 
of  xy  inclined  to  the  axis  of  x  at  an  angle  ̂   and  producing  an  external  effect 

equal  to   that   of  a  magnet   whose   moment  is  FR^. 
The  magnetic  inductive  components  within  the  shell  are 

/i  sin  ̂   —  2/' cos  ̂   in  x, 
—  21'  sm(f>  in.  y, 

/i  cos  6  in  2, 

Each  of  these  would  produce  its  own  system  of  currents  when  the  sphere 
is  in  motion,  and  these  would  give  rise  to  new  distributions  of  magnetism, 

which,  when  the  velocity  is  uniform,  must  be  the  same  as  the  original  distri- 
bution, 

(Ii  sin  6  —  21'  cos  <l>)  in  x  produces  2  t^— r  ot  {I^  sin  6  —  2  J'  cos  (f>)  in  y, 
T 

(  —  2T  sin  <^)  in  y  produces  2         ,  m  (21'  sin  ̂ )  in  x  ; 

IiQoad  in  z  produces  no  currents. 

We  must  therefore  have   the  following  equations,    since    the   state   of  the   shell 

is  the  same  at  every  instant, 
T 

Lam 6- 2r  cos <f)  =  /,  sin ^ -^  — — y  (o2T sin 6 

T 
-  2/  sin  <^  =  -— T  oj  (/,  sin  ̂ -  2r  cos  <^), 

*  The  expression  for  p^  indicates  a  variable  electric  tension  in  the  shell,  so  that  cuirents  might 
be  collected  by  wires  touching  it  at  the  equator  and  poles. 
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-hence  cot  <^  =  -        j  w,     /  =  ̂      ,   5-,^^     /i  sin  6. 

7-©" 
To  understand  the  meanmg  of  these  expressions  let  us  take  a  particular  case. 

Let  the  axis  of  the  revolving  shell  be  vertical,  and  let  the  revolution  be 

from  north  to  west.  Let  /  be  the  total  intensity  of  the  terrestrial  magnetism, 
and  let  the  dip  be  d,  then  Ico3$  is  the  horizontal  component  in  the  direction 
of  magnetic  north. 

The   result   of   the   rotation   is   to    produce   currents   in   the   shell    about   an 
T 

axis  inclined  at   a  small   angle  =  tan"* ——rco  to  the   south  of  magnetic  west,  and 

the   external    effect   of  these    currents    is   the    same    as   that  of  a  magnet  whose 
moment  is 

i    ,        ̂ "^  i?7cos  d. 

The  moment  of  the  couple  due  to  terrestrial  magnetism  tending  to  stop  the 
rotation  is 

2i7rk  To) 

2       24tTrkY  +  Tq}* 
i?Pc08'^, 

and  the  loss  of  work  due  to  this  in  unit  of  time  is 

24:Trk  T(o' 

2       247r^?+Pa>' 
i?P  cos'  d. 

This  loss  of  work  is  made  up  by  an  evolution  of  heat  in  the  substance  of 

the  shell,  as  is  proved  by  a  recent  experiment  of  M.  Foucault  (see  Coniptefi 
Rendus,  XLi.  p.  450). 



[From  the  Transacti&M  of  the  Royal  Scottish  Society  of  Arts,  VoL  iv.  Part  rv.] 

IX.     Description  of  a  New  Form   of  the  Platometer,  an  Instrument  for 

measuring  the  Areas  of  Plane  Figures  drawn  on  Paper*. 

1.  The  measurement  of  the  area  of  a  plane  figure  on  a  map  or  plan  is  an 

operation  so  frequently  occurring  in  practice,  that  any  method  by  which  it  may 

be  easily  and  quickly  performed  is  deserving  of  attention.  A  very  able  expo- 
sition of  the  principle  of  such  instruments  will  be  found  in  the  article  on 

Planimeters  in  the   Reports   of  the   Juries  of  the  Great  Exhibition,   1851. 

2.  In  considering  the  principle  of  instruments  of  this  kind,  it  will  be  most 

convenient  to  suppose  the  area  of  the  figure  measured  by  an  imaginary  straight 
line,  which,  by  moving  parallel  to  itself,  and  at  the  same 

time   altering  in   length  to   suit    the    form    of    the    area, 

accurately  sweeps  it  out. 
Let  AZ  be  a  fixed  vertical  line,  APQZ  the  boundary 

of  the  area,  and  let  a  variable  horizontal  line  move 

parallel  to  itself  firom  A  to  Z,  so  as  to  have  its  extremi- 
ties, P,  M,  in  the  curve  and  in  the  fixed  straight  line. 

Now,  suppose  the  horizontal  line  (which  we  shall  caU  the 

generating  line)  to  move  from  the  position  PM  to  QNy 

MN  being  some  small  quantity,  say  one  inch  for  distinct- 
ness. During  this  movement,  the  generating  line  will 

have  swept  out  the  narrow  strip  of  the  surface,  PMNQ, 

which  exceeds  the  portion  PMNp  by  the  smaU  triangle  PQp, 

But  since  MN,  the  breadth  of  the  strip,  is  one  inch,  the  strip  will  contain 

as  many  square  inches  as  PM  is  inches   long;    so   that,   when    the    generating 

♦  Bead  to  the  Society,  22nd  Jan.  1855. 
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line  descends  one  inch,  it  sweeps  out  a  number  of  square  inches  equal  to  the 

number  of  linear  inches  in  its  length. 

Therefore,  if  we  have  a  machine  with  an  index  of  any  kind,  which,  while 

the  generating  line  moves  one  inch  downwards,  moves  forward  as  many  degrees 

as  the  generating  line  is  inches  long,  and  if  the  generating  line  be  alternately 

moved  an  inch  and  altered  in  length,  the  index  will  mark 

the  number  of  square  inches  swept  over  during  the  whole 

operation.  By  the  ordinary  method  of  limits,  it  may  be 
shown  that,  if  these  changes  be  made  continuous  instead 
of  sudden,  the  index  will  still  measure  the  area  of  the 

curve  traced  by  the  extremity  of  the  generating  line. 

3.  When  the  area  is  bounded  by  a  closed  curve,  as 

ABDC,  then  to  determine  the  area  we  must  carry  the  tra- 

cing point  from  some  point  A  of  the  curve,  completely  round 
the  circumference  to  A  again.  Then,  while  the  tracing  point 

moves  from  A  to  C,  the  index  will  go  forward  and  mea- 
sure the  number  of  square  inches  in  ACRP,  and,  while  it 

moves  from  C  to  D,  the  index  will  measure  backwards  the 

square    inches    in    CRPD,  so  that  it  will   now  indicate    the 

square  inches  in  ACD.  Similarly,  during  the  other  part  of  the  motion  from 

D  to  B,  and  from  B  to  D,  the  part  DBA  will  be  measured;  so  that  when 

the  tracing  point  returns  to  D,  the  instrument  will  have  measured  the  area 
ACDB.  It  is  evident  that  the  whole  area  will  appear  positive  or  negative 

according  as  the  tracing  point  is  carried  round  in  the  direction  ACDB  or  ABDC. 

4.  We  have  next  to  consider  the  various  methods  of  communicating  the 

required  motion  to  the  index.  The  first  is  by  means  of  two  discs,  the  first 
having  a  flat  horizontal  rough  surface,  turning  on  a  vertical 

axis,  OQ,  and  the  second  vertical,  with  its  circumference  rest- 
ing on  the  flat  surface  of  the  first  at  P,  so  as  to  be  driven 

round  by  the  motion  of  the  first  disc.  The  velocity  of  the 

second  disc  will  depend  on  OP,  the  distance  of  the  point  of 
contact  from  the  centre  of  the  first  disc;  so  that  if  OP  be 

made  always  equal  to  the  generating  line,  the  conditions  of  the  instrument  will 
be  fulfilled. 

This  is   accomplished   by  causing   the   index-disc   to   slip  along  the  radius  of 
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the  horizontal  disc ;  so  that  in  working  the  instrument,  the  motion  of  the  index- 

disc  is  compounded  of  a  rolling  motion  due  to  the  rotation  of  the  first  disc, 

and  a  slipping  motion  due  to  the  variation  of  the  generating  line. 

5.  In  the  instrument  presented  by  Mr  Sang  to  the  Society,  the  first  disc  is 

replaced  by  a  cone,  and  the  action  of  the  instrument  corresponds  to  a  mathe- 

matical valuation  of  the  area  by  the  use  of  oblique  co-ordinates.  As  he  has 

himself  explained  it  very  completely,  it  will  be  enough  here  to  say,  that  the 
index-wheel  has  still  a  motion  of  slipping  as  well  as  of  rolling. 

6.  Now,  suppose  a  wheel  rolling  on  a  surface,  and  pressing  on  it  with  a 

weight  of  a  pound;  then  suppose  the  coefficient  of  friction  to  be  |,  it  will 

require  a  force  of  2  oz.  at  least  to  produce  shpping  at  all,  so  that  even  if  the 
resistance  of  the  axis,  &c.,  amounted  to  1  oz.,  the  rolling  would  be  perfect.  But 

if  the  wheel  were  forcibly  pulled  sideways,  so  as  to  slide  along  in  the  direction 

of  the  axis,  then,  if  the  friction  of  the  axis,  &c.,  opposed  no  resistance  to  the 

turning  of  the  wheel,  the  rotation  would  still  be  that  due  to  the  forward  motion ; 

but  if  there  were  any  resistance,  however  small,  it  would  produce  its  effect  in 
diminishing  the  amount  of  rotation. 

The  case  is  that  of  a  mass  resting  on  a  rough  surface,  which  requires  a 

great  force  to  produce  the  shghtest  motion;  but  when  some  other  force  acts 

on  it  and  keeps  it  in  motion,  the  very  smallest  force  is  sufficient  to  alter  that 
motion  in  direction. 

7.  This  effect  of  the  combination  of  slipping  and  rolling  has  not  escaped 

the  observation  of  Mr  Sang,  who  has  both  measured  its  amount,  and  shown  how 
to  eliminate  its  effect.  In  the  improved  instrument  as  constructed  by  him,  I 

believe  that  the  greatest  error  introduced  in  this  way  does  not  equal  the  ordi- 
nary errors  of  measurement  by  the  old  process  of  triangulation.  This  accuracy, 

however,  is  a  proof  of  the  excellence  of  the  workmanship,  and  the  smoothness 

of  the  action  of  the  instrument;  for  if  any  considerable  resistance  had  to  be 

overcome,  it  would  display  itself  in  the  results. 

8.  Having  seen  and  admired  these  instruments  at  the  Great  Exhibition  in 

1851,  and  being  convinced  that  the  combination  of  shpping  and  roUing  was  a 

drawback  on  the  perfection  of  the  instrument,  I  began  to  search  for  some 

arrangement  by  which  the  motion  should  be  that  of   perfect   rolling    in    every 
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motion  of  which  the  instrument  is  capable.  The  forms  of  the  rolUng  parts  which 
I  considered  were — 

1.  Two  equal  spheres. 

2.  Two  spheres,  the  diameters  being  as  1  to  2. 

3.  A  cone  and  cylinder,  axes  at  right  angles. 

Of  these,  the  first  combination  only  suited  my  purpose.  I  devised  several  modes 

of  mounting  the  spheres  so  as  to  make  the  principle  available.  That  which  I 

adopted  is  borrowed,  as  to  many  details,  from  the  instruments  already  con- 

structed, so  that  the  originality  of  the  device  may  be  reduced  to  this  principle — 
The  abolition  of  sUpping  by  the  use  of  two  equal  spheres. 

9.  The  instrument  (Fig.  1)  is  mounted  on  a  frame,  which  rolls  on  the  two 

connected  wheels,  MM,  and  is  thus  constrained  to  travel  up  and  down  the 

paper,  moving  parallel  to  itself 

CH  is  a  horizontal  axis,  passing  through  two  supports  attached  to  the 

frame,  and  carrying  the  wheel  K  and  the  hemisphere  LAP.  The  wheel  K  rolls 

on  the  plane  on  which  the  instrument  travels,  and  communicates  its  motion  to 

the  hemisphere,  which  therefore  revolves  about  the  axis  AH  with  a  velocity 

proportional  to  that  with  which  the  instrument  moves  backwards  or  forwards. 

FCO  is  a  framework  (better  seen  in  the  other  figures)  capable  of  revolving 

about  a  vertical  axis,  Cc,  being  joined  at  C  and  c  to  the  frame  of  the  instru- 
ment. The  parts  CF  and  CO  are  at  right  angles  to  each  other  and  horizontal. 

The  part  CO  carries  with  it  a  ring,  SOS,  which  turns  about  a  vertical  axis  Oo. 

This  ring  supports  the  index-.sphere  Bh  by  the  extremities  of  its  axis  Ss,  just 
as  the  meridian  circle  carries  a  terrestrial  globe.  By  this  arrangement,  it  will 

be  seen  that  the  axis  of  the  sphere  is  kept  always  horizontal,  while  its  centre 

moves  so  as  to  be  always  at  a  constant  distance  from  that  of  the  hemisphere. 

This  distance  must  be  adjusted  so  that  the  spheres  may  always  remain  in  con- 

tact, and  the  pressure  at  the  point  of  contact  may  be  regulated  by  means  of 

springs  or  compresses  at  0  and  o  acting  in  the  direction  OC,  oc.  In  this  way 

the  rotation  of  the  hemisphere  is  made  to  drive  the  index-sphere. 

10.  Now,  let  us  consider  the  working  of  the  instrument.  Suppose  the  arm 

CE  placed  so  as  to  coincide  with  CD,  then  0,  the  centre  of  the  index-sphere 

will  be  in  the  prolongation  of  the  axis  HA.  Suppose  also  that,  when  in  this 

position,  the  equator  hB  of  the  index-sphere  is  in  contact  with  the  pole  A  of 

the   hemisphere.     Now,  let   the   arch   be   turned   into  the  position   CE  as  in  the 



234  ON    A    NEW    FORM    OF    THE    PLATOMETER. 

figure,  then  the  rest  of  the  framework  will  be  turned  through  an  equal  angle, 

and  the  index-sphere  will  roll  on  the  hemisphere  till  it  come  into  the  position 
represented  in  the  figure.  Then,  if  there  be  no  slipping,  the  arc  AP  =  BP,  and 
the  angle  ACF  =  BOP. 

Next,  let  the  instrument  be  moved  backwards  or  forwards,  so  as  to  turn 

the  wheel  Kk  and  the  hemisphere  LI,  then  the  index-sphere  will  be  turned 
about  its  axis  Ss  by  the  action  of  the  hemisphere,  but  the  ratio  of  their  veloci- 

ties will  depend  on  their  relative  positions.  If  we  draw  PQ,  PR,  perpendiculars 
from  the  point  of  contact  on  the  two  axes,  then  the  angular  motion  of  the 

index-sphere  will  be  to  that  of  the  hemisphere,  as  PQ  is  to  PR;  that  is,  as 
PQ  is  to  QC,  by  the  equal  triangles  POQ,  PQC ;  that  is,  as  ED  is  to  DC, 
by  the  similar  triangles  CQP,  CDE. 

Therefore  the  ratio  of  the  angular  velocities  is  as  ED  to  DC,  but  since 

DC  is  constant,  this  ratio  varies  as  ED.  We  have  now  only  to  contrive  some 

way  of  making  ED  act  as  the  generating  line,  and  the  machine  is  complete 
(see  art.  2). 

11.  The  arm  CF  is  moved  in  the  following  manner: — Tt  is  a  rectangular 
metal  beam,  fixed  to  the  frame  of  the  instrument,  and  parallel  to  the  axis  AH. 
cEe  is  a  little  carriage  which  rolls  along  it,  having  two  rollers  on  one  side  and 
one  on  the  other,  which  is  pressed  against  the  beam  by  a  spring.  This  carriage 

carries  a  vertical  pin,  E,  turning  in  its  socket,  and  having  a  collar  above, 

through  which  the  arm  CF  works  smoothly.  The  tracing  point  G  is  attached 

to  the  carriage  by  a  jointed  frame  eGe,  which  is  so  arranged  that  the  point 
may  not  bear  too  heavily  on  the  paper. 

12.  When  the  machine  is  in  action,  the  tracing  point  is  placed  on  a  point 
in  the  boundary  of  the  figure,  and  made  to  move  round  it  always  in  one 

direction  till  it  arrives  at  the  same  point  again.  The  up-and-down  motion  of 
the  tracing  point  moves  the  whole  instrument  over  the  paper,  turns  the  wheel 

K,  the  hemisphere  LI,  and  the  index-sphere  Bh ;  while  the  lateral  motion  of 
the  tracing  point  moves  the  carriage  E  on  the  beam  Tt,  and  so  works  the  arm 
CF  and  the  framework  CO;  and  so  changes  the  relative  velocities  of  the  two 

spheres,  as  has  been  explained, 

13.  In  this  way  the  instrument  works  by  a  perfect  rolling  motion,  in  what- 
ever direction  the  tracing  point  is  moved;  but  since  the  accuracy  of  the  result 

depends   on  the  equality  of  the  arcs  AP  and  BP,  and  since  the  smallest  error 
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of  adjustment  would,  in  the  course  of  time,  produce  a  considerable  deviation 

from  this  equality,  some  contrivance  is  necessary  to  secure  it.  For  this  purpose 
a  wheel  is  fixed  on  the  same  axis  with  the  ring  SOs,  and  another  of  the  same 
size  is  fixed  to  the  frame  of  the  instrument,  with  its  centre  coinciding  with  the 

vertical  axis  through  C.  These  wheels  are  connected  by  two  pieces  of  watch- 
spring,  which  are  arranged  so  as  to  apply  closely  to  the  edges  of  the  wheels. 
The  first  is  firmly  attached  to  the  nearer  side  of  the  fixed  wheel,  and  to  the 
farther  side  of  the  moveable  wheel,  and  the  second  to  the  farther  side  of  the 

fixed  wheel,  and  the  nearer  side  of  the  moveable  wheel,  crossing  beneath  the 

first  steel  band.  In  this  way  the  spheres  are  maintained  in  their  proper  relative 

position;  but  since  no  instrument  can  be  perfect,  the  wheels,  by  preventing 

dei-angement,  must  cause  some  slight  slipping,  depending  on  the  errors  of  work- 
manship. This,  however,  does  not  ruin  the  pretensions  of  the  instrument,  for  it 

may  be  shown  that  the  error  introduced  by  slipping  depends  on  the  distance 

through  which  the  lateral  slipping  takes  place ;  and  since  in  this  case  it  must 

be  very  small  compared  with  its  necessarily  large  amount  in  the  other  instru- 
ments, the  error  introduced  by  it  must  be  diminished  in  the  same  proportion. 

14.  I  have  shewn  how  the  rotation  of  the  index-sphere  is  proportional  to 

the  area  of  the  figure  traced  by  the  tracing  point.  This  rotation  must  be 

measured  by  means  of  a  graduated  circle  attached  to  the  sphere,  and  read  oti" 
by  means  of  a  vernier.  The  result,  as  measured  in  degrees,  may  be  interpreted 

in  the  following  manner : — 

Suppose  the  instrument  to  be  placed  with  the  arm  CF  coinciding  with  CD, 

the  equator  Bh  of  the  index-sphere  touching  the  pole  A  of  the  hemisphere,  and 

the  index  of  the  vernier  at  zero :   then  let  these  four  operations  be   performed : — 

(1)  Let  the  tracing  point  be  moved  to  the  right  till  DE  =  DC,  and  there- 
fore DCE,  ACP,  and  F0B  =  A5\ 

(2)  Let  the  instrument  be  rolled  upwards  till  the  wheel  K  has  made  a 

complete  revolution,  carrying  the  hemisphere  with  it ;  then,  on  account  of  the 

equality  of  the  angles  SOP,  PC  A,  the  index-sphere  will  also  make  a  complete 
revolution. 

(3)  Let  the  arm  CF  be  brought  back  again  till  F  coincides  with  D. 

(4)  Let  the  instrument  be  rolled  back  again  through  a  complete  revolution 

of  the  wheel  K.  The  index-sphere  will  not  rotate,  because  the  point  of  contact 
is  at  the  pole  of  the  hemisphere. 
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The  tracing  point  has  now  traversed  the  boundary  of  a  rectangle,  whose 

length  is  the  circumference  of  the  wheel  A",  and  its  breadth  is  equal  to  CD; 
and  during  this  operation,  the  index-sphere  has  made  a  complete  revolution, 

360"  on  the  sphere,  therefore,  correspond  to  an  area  equal  to  the  rectangle  con- 
tained by  the  circumference  of  the  wheel  and  the  distance  CD.  The  size  of 

the  wheel  K  being  known,  different  values  may  be  given  to  CD,  so  as  to  make 
the  instrument  measure  according  to  any  required  scale.  This  may  be  done, 

either  by  shifting  the  position  of  the  beam  Tt,  or  by  having  several  sockets 

in  the  carriage  E  for  the  pin  which  directs  the  arm  to  work  in. 

15.  If  I  have  been  too  prolix  in  describing  the  action  of  an  instrument 
which  has  never  been  constructed,  it  is  because  I  have  myself  derived  great 

satisfaction  from  following  out  the  mechanical  consequences  of  the  mathematical 
theorem  on  which  the  truth  of  this  method  depends.  Among  the  other  forms 

of  apparatus  by  which  the  action  of  the  two  spheres  may  be  rendered  available, 

is  one  which  might  be  found  practicable  in  cases  to  which  that  here  given 
would  not  apply.  In  this  instrument  (Fig.  4)  the  areas  are  swept  out  by  a 

radius- vector  of  variable  length,  turning  round  a  fixed  point  in  the  plane.  The 
area  is  thus  swept  out  with  a  velocity  varying  as  the  angular  velocity  of  the 

radius-vector  and  the  square  of  its  length  conjointly,  and  the  construction  of  the 

machine  is  adapted  to  the  case  as  follows : — 

The  hemisphere  is  fixed  on  the  top  of  a  vertical  pillar,  about  which  the  rest 

of  the  instrument  turns.  The  index-sphere  is  supported  as  before  by  a  ring  and 
framework.  This  framework  turns  about  the  vertical  pillar  along  with  the  tra- 

cing point,  but  has  also  a  motion  in  a  vertical  plane,  which  is  communicated  to 

it  by  a  curved  slide  connected  with  the  tracing  point,  and  which,  by  means  of  a 

prolonged  arm,  moves  the  framework  as  the  tracing  point  is  moved  to  and  from 
the  pillar. 

The  form  of  the  curved  slide  is  such,  that  the  tangent  of  the  angle  of 

inclination  of  the  line  joining  the  centres  of  the  spheres  with  the  vertical  is 

proportional  to  the  square  of  the  distance  of  the  tracing  point  from  the  vertical 
axis  of  the  instrument.  The  curve  which  fulfils  this  condition  is  an  hyperbola, 

one  of  whose  asymptotes  is  vertical,  and  passes  through  the  tracing  point,  and 
the  other  horizontal  through  the  centre  of  the  hemisphere. 

The  other  parts  of  this  instrument  are  identical  with  those  belonging  to 
that  alreadv  described. 
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When  the  tracing  point  is  made  to  traverse  the  boundary  of  a  plane  figure, 

there  is  a  continued  rotation  of  the  radius-vector  combined  with  a  change  of 

length.  The  rotation  causes  the  index-sphere  to  roll  on  the  fixed  hemisphere, 

while  the  length  of  the  radius-vector  determines  the  rate  of  its  motion  about  its 

axis,  so  that  its  whole  motion  measures  the  area  swept  out  by  the  radius-vector 

during  the  motion  of  the  tracing  point. 

The  areas  measured  by  this  instrument  may  either  lie  on  one  side  of  the 

pillar,  or  they  may  extend  all  round  it.  In  either  case  the  action  of  the 

instrument  is  the  same  as  in  the  ordinary  case.  In  this  form  of  the  instrument 

we  have  the  advantages  of  a  fixed  stand,  and  a  simple  motion  of  the  tracing 

point;  but  there  seem  to  be  difficulties  in  the  way  of  supporting  the  spheres 

and  arranging  the  shde ;  and  even  then  the  instrument  would  require  a  tall 

pillar,  in  order  to  take  in  a  large  area. 

16.  It  will  be  observed  that  I  have  said  little  or  nothing  about  the  prac- 

tical details  of  these  instruments.  Many  useful  hints  will  be  found  in  the  large 

work  on  Platometers,  by  Professor  T.  Gonnellu,  who  has  given  us  an  account 
of  the  difficulties,  as  well  as  the  results,  of  the  construction  of  his  most 

elaborate  instrument.  He  has  also  given  some  very  interesting  investio-ations 
into  the  errors  produced  by  various  irregularities  of  construction,  although,  as 

far  as  I  am  aware,  he  has  not  even  suspected  the  error  which  the  sliding  of 

the  index-wheel  over  the  disc  must  necessarily  introduce.  With  respect  to  this, 
and  other  points  relating  to  the  working  of  the  instrument,  the  memoir  of 

Mr  Sang,  in  the  Transactions  of  this  Society,  is  the  most  complete  that  I 

have  met  with.  It  may,  however,  be  as  well  to  state,  that  at  the  time  when 

I  devised  the  improvements  here  suggested,  I  had  not  seen  that  paper,  though 
I  had  seen  the  instrument  standing  at  rest  in  the  Crystal  Palace. 

Edinburgh,  30th  January,  1855, 

Note. — Since  the  design  of  the  above  instrument  was  submitted  to  the  Society  of  Arts, 
I  have  met  with  a  description  of  an  instrument  combining  simplicity  of  construction  with 
the  power  of  adaptation  to  designs  of  any  size,  and  at  the  same  time  more  portable  than 
any  other  instrument  of  the  kind.  Althougli  it  does  not  act  by  perfect  rolling,  and  there- 

fore belongs  to  a  different  class  of  instruments  from  that  described  in  this  paper,  I  think 
that  its  simplicity,  and  the  beauty  of  the  principle  on  which  it  acts,  render  it  worth  the 
attention  of  engineers  and  mechanists,  whether  practical  or  theoretical.  A  full  account  of 

this  instrument  is  to  be  found  in  Moigno's  "  Cosmos,"  5th  year,  Vol.  viii.,  Part  viii.,  p.  213, 
published  20th  February  1856.  Description  et  Theorie  du  planiniHre  polaire,  invents  par 
J.  Amsler,  de  Schaffuuse  en  Suisse. 

Cambridge,  30th  April,  1856. 



[From  the  Cambridge  Philosophical  Society  Proceedings,  Vol.  i.  pp.  173 — 175.] 

X.      0?i  the  Elementary  TJieory  of  Optical  Instruments. 

The  object  of  this  communication  was  to  shew  how  the  magnitude  and 

position  of  the  image  of  any  object  seen  through  an  optical  instrument  could 
be  ascertained  without  knowing  the  construction  of  the  instrument,  by  means 

of  data  derived  from  two  experiments  on  the  instrument.  Optical  questions 

are  generally  treated  of  with  respect  to  the  pencils  of  rays  which  pass  through 
the  instrument.  A  pencil  is  a  collection  of  rays  which  have  passed  through  one 

point,  and  may  again  do  so,  by  some  optical  contrivance.  Now  if  we  suppose 
all  the  points  of  a  plane  luminous,  each  will  give  out  a  pencil  of  rays,  and 

that  collection  of  pencils  which  passes  through  the  instrument  may  be  treated 
as  a  beam  of  hght.  In  a  pencil  only  one  ray  passes  through  any  point  of 
space,  unless  that  point  be  the  focus.  In  a  beam  an  infinite  number  of  rays, 

corresponding  each  to  some  point  in  the  luminous  plane,  passes  through  any 

point;  and  we  may,  if  we  choose,  treat  this  collection  of  rays  as  a  pencil 

proceeding  from  that  point.  Hence  the  same  beam  of  light  may  be  decomposed 
into  pencils  in  an  infinite  variety  of  ways;  and  yet,  since  we  regard  it  as  the 
same  collection  of  rays,  we  may  study  its  properties  as  a  beam  independently 

of  the  particular  way  in  which  we  conceive  it  analysed  into  pencils. 

Now  in  any  instrument  the  incident  and  emergent  beams  are  composed 

of  the  same  light,  and  therefore  every  ray  in  the  incident  beam  has  a 

corresponding  ray  in  the  emergent  beam.  We  do  not  know  their  path  within 
the  instrument,  but  before  incidence  and  after  emergence  they  are  straight 

lines,  and  therefore  any  two  points  serve  to  determine  the  direction  of  each. 

Let  us  suppose  the  instrument  such  that  it  forms  an  accurate  image  of  a 

plane  object  in  a  given  position.     Then  every  ray  which  passes  through  a  given 
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point  of  the  object  before  incidence  passes  through  the  corresponding  point  of 
the  image  after  emergence,  and  this  determines  one  point  of  the  emergent  ray. 

If  at  any  other  distance  from  the  instrument  a  plane  object  has  an  accurate 

image,  then  there  will  be  two  other  corresponding  points  given  in  the  incident 

and  emergent  rays.  Hence  if  we  know  the  points  in  which  an  incident  ray 

meets  the  planes  of  the  two  objects,  we  may  find  the  incident  ray  by  joining 

the  points  of  the  two  images  corresponding  to  them. 

It  was  then  shewn,  that  if  the  image  of  a  plane  object  be  distinct,  flat,  and 

similar  to  the  object  for  two  different  distances  of  the  object,  the  image  of  any 

other  plane  object  perpendicular  to  the  axis  will  be  distinct,  flat  and  similar 

to  the  object. 

When  the  object  is  at  an  infinite  distance,  the  plane  of  its  image  is  the 

principal  focal  plane,  and  the  point  where  it  cuts  the  axis  is  the  piincipal 

focus.  The  line  joining  any  point  in  the  object  to  the  corresponding  point  of 
the  image  cuts  the  axis  at  a  fixed  point  called  the  focal  centre.  The  distance 

of  the  principal  focus  from  the  focal  centre  is  called  the  principal  focal  length, 

or  simply  the  focal  length. 

There  are  two  principal  foci,  etc.,  formed  by  incident  parallel  rays  passing 

in  opposite  directions  through  the  instrument.  If  we  suppose  light  always  to 
pass  in  the  same  direction  through  the  instrument,  then  the  focus  of  incident 

rays  when  the  emergent  rays  are  parallel  is  the  Jirst  principal  focus,  and  the 

focus  of  emergent  rays  when  the  incident  rays  are  parallel  is  the  second 
principal  focus. 

Corresponding  to  these  we  have  first  and  second  focal  centres  and  focal 

lengths. 

Now  let  Q,  be  the  focus  of  incident  rays,  P^  the  foot  of  the  perpendicular 

from  ̂ 1  on  the  axis,  Q,  the  focus  of  emergent  rays,  P,  the  foot  of  the  corre- 
sponding perpendicular,  F^F^  the  first  and  second  principal  foci,  A^A^  the  first  and 

second  focal  centres,  then 

F\F\  _PjQr_FJP, 

A^Frp.QrFA.' 
lines  being  positive  when  measured  in  the  direction  of  the  light.  Therefore 

the  position  and  magnitude  of  the  image  of  any  object  is  found  by  a  simple 

proportion. 
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In  one  important  class  of  instruments  there  are  no  principal  foci  or  focal 

centres.  A  telescope  in  which  parallel  rays  emerge  parallel  is  an  instance.  In 
such  instruments,  if  m  be  the   angular  magnifying  power,   the   linear  dimensions 

of  the  image  are   —  of  the  object,  and  the  distance  of  the  image  of  the  object 

from   the   image   of  the   object-glass  is   —^   of    the   distance    of   the    object    from 

the  object-glass.  Rules  were  then  laid  down  for  the  composition  of  instruments, 
and  suggestions  for  the  adaptation  of  this  method  to  second  approximations,  and 
the  method  itself  was  considered  with  reference  to  the  labours  of  Cotes,  Smith, 

Euler,  Lagrange,  and  Gauss  on  the  same  subject. 



[From  the  Report  of  the  British  Association,  1856.] 

XI.     On  a  Method  of  Drawing  the  Theoi-etical  Forms  of  Faraday  s  Lines  of 
Force  without  Calculation. 

The  method  applies  more  particularly  to  those  cases  in  which  the  lines 
are  entirely  parallel  to  one  plane,  such  as  the  lines  of  electric  currents  in  a 

thin  plate,  or  those  round  a  system  of  parallel  electric  currents.  In  such  cases, 
if  we  know  the  forms  of  the  lines  of  force  in  any  two  cases,  we  may  combine 

them  by  simple  addition  of  the  functions  on  which  the  equations  of  the  lines 

depend.  Thus  the  system  of  lines  in  a  uniform  magnetic  field  is  a  series  of 

parallel  straight  lines  at  equal  intervals,  and  that  for  an  infinite  straight  electric 
current  perpendicular  to  the  paper  is  a  series  of  concentric  circles  whose  radii 

are  in  geometric  progression.  Having  drawn  these  two  sets  of  lines  on  two 

separate  sheets  of  paper,  and  laid  a  third  piece  above,  draw  a  third  set  of  lines 

through  the  intersections  of  the  first  and  second  sets.  This  will  be  the  system 

of  lines  in  a  uniform  field  disturbed  by  an  electric  current.  The  most  interesting 
cases  are  those  of  uniform  fields  disturbed  by  a  small  magnet.  If  %ve  draw  a 

circle  of  any  diameter  with  the  magnet  for  centre,  and  join  those  points  in  which 

the  circle  cuts  the  lines  of  force,  the  straight  lines  so  drawn  will  be  parallel  and 

equidistant;  and  it  is  easily  shown  that  they  represent  the  actual  lines  of 

force  in  a  paramagnetic,  diamagnetic,  or  crystallized  body,  according  to  the 

nature  of  the  original  lines,  the  size  of  the  circle,  &c.  No  one  can  study 

Faraday's  researches  without  wishing  to  see  the  forms  of  the  Hnes  of  force. 
This  method,  therefore,  by  which  they  may  be  easily  drawn,  is  recommended 
to  the  notice  of  electrical  students. 
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XII.     On  the   Unequal  Sensibility  of  the  Foramen  Centrale  to  Light  of 

different  Colours. 

When  observing  tlie  spectrum  formed  by  looking  at  a  long  vertical  slit 

through  a  simple  prism,  I  noticed  an  elongated  dark  spot  running  up  and  down 

in  the  blue,  and  following  the  motion  of  the  eye  as  it  moved  up  and  down 

the  spectrum,  but  refusing  to  pass  out  of  the  blue  into  the  other  colours.  It 

was  plain  that  the  spot  belonged  both  to  the  eye  and  to  the  blue  part  of  the 

spectrum.  The  result  to  which  I  have  come  is,  that  the  appearance  is  due  to 

the  yellow  spot  on  the  retina,  commonly  called  the  Foramen  Centrale  of  Soem- 
mering. The  most  convenient  method  of  observing  the  spot  is  by  presenting 

to  the  eye  in  not  too  rapid  succession,  blue  and  yellow  glasses,  or,  still  better, 

allowing  blue  and  yellow  papers  to  revolve  slowly  before  the  eye.  In  this  way 

the  spot  is  seen  in  the  blue.  It  fades  rapidly,  but  is  renewed  every  time  the 

yellow  comes  in  to  relieve  the  effect  of  the  blue.  By  using  a  Nicol's  prism 
along  with  this  apparatus,  the  brushes  of  Haidinger  are  well  seen  in  connexion 

with  the  spot,  and  the  fact  of  the  brushes  being  the  spot  analysed  by  polarized 

light  becomes  evident.  If  we  look  steadily  at  an  object  behind  a  series  of  bright 

bars  which  move  in  front  of  it,  we  shall  see  a  curious  bending  of  the  bars  as 

they  come  up  to  the  place  of  the  yellow  spot.  The  part  which  comes  over  the 

spot  seems  to  start  in  advance  of  the  rest  of  the  bar,  and  this  would  seem  to 

indicate  a  greater  rapidity  of  sensation  at  the  yellow  spot  than  in  the  surround- 

ing retina.  But  I  find  the  experiment  diflScult,  and  I  hope  for  better  results 
from  more  accurate  observers. 



[From  the  Report  of  the  British  Association,  1856.] 

XIII.     On  the  TJieory  of  Compound  Colours  with  reference  to  Mixtures  of  Blue 

and  Yellow  Light. 

When  we  mix  together  blue  and  yellow  paint,  we  obtain  green  paint.  This 

fact  is  well  known  to  all  who  have  handled  colours ;  and  it  is  universally 

admitted  that  blue  and  yellow  make  green.  Red,  yellow,  and  blue,  being  the 

primary  colours  among  painters,  green  is  regarded  as  a  secondary  colour,  arising 

from  the  mixture  of  blue  and  yellow.  Newton,  however,  found  that  the  green 

of  the  spectrum  was  not  the  same  thing  as  the  mixture  of  two  colours  of  the 

spectrum,  for  such  a  mixture  could  be  separated  by  the  prism,  while  the  green 

of  the  specti-um  resisted  further  decomposition.  But  still  it  was  believed  that 
yellow  and  blue  would  make  a  green,  though  not  that  of  the  spectrum.  As 

far  as  I  am  aware,  the  first  experiment  on  the  subject  is  that  of  M.  Plateau, 

who,  before  1819,  made  a  disc  with  alternate  sectors  of  prussian  blue  and  gam- 

boge, and  observed  that,  when  spinning,  the  resultant  tint  was  not  green,  but 

a  neutral  gray,  inclining  sometimes  to  yellow  or  blue,  but  never  to  green.  Prof 

J.  D,  Forbes  of  Edinburgh  made  similar  experiments  in  1849,  with  the  same 

result.  Prof  Helmholtz  of  Konigsberg,  to  whom  we  owe  the  most  complete 

investigation  on  visible  colour,  has  given  the  true  explanation  of  this  phaenomenon. 

The  result  of  mixing  two  coloured  powders  is  not  by  any  means  the  same  as 

mixing  the  beams  of  light  which  flow  from  each  separately.  In  the  latter  case 

we  receive  all  the  light  which  comes  either  from  the  one  powder  or  the  other. 

In  the  former,  much  of  the  light  coming  from  one  powder  falls  on  particles  of 

the  other,  and  we  receive  only  that  portion  which  has  escaped  absorption  by  one 

or  other.  Thus  the  light  coming  from  a  mixture  of  blue  and  yellow  powder, 

consists  partly  of  light  coming  directly  from  blue  particles  or  yellow  particles, 

and  partly  of  light  acted  on  by  both  blue  and  yellow  particles.  This  latter  light 

is  green,   since  the  blue  stops  the  red,  yellow,  and  orange,  and  the  yellow  stops 
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the  blue  and  violet  I  have  made  experiments  on  the  mixture  of  blue  and 

vellow  light — by  rapid  rotation,  by  con\bined  reflexion  and  transmission,  by  view- 
ing them  out  of  focus,  in  stripes,  at  a  gre;it  distiince,  by  throwing  the  colours 

of  the  spectrum  on  a  screen,  and  by  receiving  them  into  the  eye  directly  ;  and 

I  have  arranged  a  portable  apparatus  by  which  any  one  may  see  the  result  of 

this  or  any  other  mLxture  of  the  colours  of  the  spectrum.  In  all  these  cases 

blue  and  yellow  do  not  make  green.  I  have  also  made  experiments  on  the 

mixture  of  coloured  powders.  Those  which  I  used  principally  were  "mineral 

blue"  (from  copper)  and  "chrome-yellow."  Other  blue  and  yellow  pigments  gave 
curious  results,  but  it  was  more  difficult  to  make  the  mixtures,  and  the  greens 

were  less  uniform  in  tint.  The  mixtures  of  these  colours  were  made  by  weight, 

and  were  painted  on  discs  of  paper,  which  were  afterwards  treated  in  the  manner 

described  in  my  paper  "  On  Colour  as  perceived  by  the  Eye,"  in  the  Transactions 
of  the  Boyal  Soi.'icti/  of  Edinburgh,  Vol.  xxi.  Part  2.  The  \'isible  effect  of  the 
colour  is  estimated  in  terms  of  the  standard-coloured  papers : — vermilion  (V), 

ultramarine  (U),  and  emerald-green  (E).  The  accmucy  of  the  results,  and  their 
sijjnificance,  can  be  best  understood  by  referring  to  the  paper  before  mentioned. 

I  shall  denote  mineral  blue  by  B,  and  chrome-yellow  by  Y ;  and  B,  Y,  means 
a  mixture  of  three  parts  blue  and  five  parts  yellow. 

Given  Colour.  Standard  Colours.               Coefficient 

V.        U.  E.               of  brightness. 

B,           ,  100  =       2       36  7        45 

B-     Y,  ,  100  =       1       18  17        37 

B.     Y,  ,  100  =      4       11  34        49 

B,    Y,  ,  100  =9         5  40        54 

B,     Y.  ,  100  =     15         1  40        56 

B,     Y,  ,  100  =     22   -    2  44        64 
B,    Y.  ,  100  =    35-10  51        76 

B,     Y,  ,  100  =     64-19  64     109 
Y,  ,  100  =  180  -27  124     277 

The  columns  Y,  U,  E  give  the  proportions  of  the  standard  colours  which 

are  equivalent,  to  100  of  the  given  colour;  and  the  sum  of  V,  U,  E  gives  a  co- 
efficient, which  gives  a  general  idea  of  the  brightness.  It  will  be  seen  that  the 

tirst  admixture  of  yellow  diminishes  the  brightness  of  the  blue.  The  negative 
vidues  of  U  indicate  that  a  mixture  of  Y,  U,  and  E  cannot  be  made  equivalent 

to  the  given  colour.     The  experiments  from  which   these  results  were  taken   had 
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the  negative  values  tran-sferred  to  the  other  side  of  the  equation.  They  were 

all  made  by  means  of  the  colour-top,  and  were  verified  by  repetition  at  different 
times.  It  may  be  necessary  to  remark,  in  conclusion,  with  reference  to  the  mode 
of  registering  visible  colours  in  terms  of  three  arbitrary  standard  colours,  that  it 

proceeds  upon  that  theory  of  three  primary  elements  in  the  sensation  of  colour, 
which  treats  the  investigation  of  the  laws  of  visible  colour  as  a  bmnch  of  human 

physiology,  incapable  of  being  deduced  from  the  laws  of  light  itself,  as  set  forth 

in  physical  optics.  It  takes  advantage  of  the  methods  of  optics  to  study  vision 

itself;  and  its  appeal  is  not  to  physical  principles,  but  to  our  consciousness  of 
our  own  sensations. 



[From  the  Report  of  ike  British  Association,  1856.] 

XIV.     On  an  Instrument  to  illxLstrate  Poinsdt's  Theory  of  Rotation. 

In  studying  the  rotation  of  a  solid  body  according  to  Poinsdt's  method,  we 
have  to  consider  the  successive  positions  of  the  instantaneous  axis  of  rotation 

with  reference  both  to  directions  fixed  in  space  and  axes  assumed  in  the  moving 

body.  The  paths  traced  out  by  the  pole  of  this  axis  on  the  invariable  plane  and 

on  the  central  ellipsoid  form  interesting  subjects  of  mathematical  investigation. 

But  when  we  attempt  to  follow  with  our  eye  the  motion  of  a  rotating  body, 

we  find  it  difficult  to  determine  through  what  point  of  the  body  the  instantaneous 

axis  passes  at  any  time, — and  to  determine  its  path  must  be  still  more  difficult. 
I  have  endeavoured  to  render  visible  the  path  of  the  instantaneous  axis,  and  to 

vary  the  circumstances  of  motion,  by  means  of  a  top  of  the  same  kind  as  that 

used  by  Mr  Elliot,  to  illustrate  precession^'.  The  body  of  the  instrument  is  a 
hoUow  cone  of  wood,  rising  from  a  ring,  7  inches  in  diameter  and  1  inch  thick. 

An  iron  axis,  8  inches  long,  screws  into  the  vertex  of  the  cone.  The  lower 

extremity  has  a  point  of  hard  steel,  which  rests  in  an  agate  cup,  and  forms  the 

support  of  the  instrument.  An  iron  nut,  three  ounces  in  weight,  is  made  to 

screw  on  the  axis,  and  to  be  fixed  at  any  point;  and  in  the  wooden  ring  are 

screwed  four  bolts,  of  three  ounces,  working  horizontally,  and  four  bolts,  of  one 

ounce,  working  vertically.  On  the  upper  part  of  the  axis  is  placed  a  disc  of 

card,  on  which  are  drawn  four  concentric  rings.  Each  ring  is  divided  into  four 

quadrants,  which  are  coloured  red,  yellow,  green,  and  blue.  The  spaces  between 

the  rings  are  white.  When  the  top  is  in  motion,  it  is  easy  to  see  in  which  quad- 

rant the  instantaneous  axis  is  at  any  moment  and  the  distance  between  it  and 

the  axis  of  the  instrument;  and  we  observe, — 1st.  That  the  instantaneous  axis 

travels  in  a  closed  curve,  and  returns  to  its  original  position  in  the  body.     2ndly. 

*  Transactions  of  the  Royal  Scottish  Society  of  Arts,  1855. 
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That  by  working  the  vertical  bolts,  we  can  make  the  axis  of  the  instrument 

the  centre  of  this  closed  curve.  It  will  then  be  one  of  the  principal  axes  of 
inertia.  3rdly.  That,  by  working  the  nut  on  the  axis,  we  can  make  the  order 

of  colours  either  red,  yellow,  green,  blue,  or  the  reverse.  When  the  order  of 
colours  is  in  the  same  direction  as  the  rotation,  it  indicates  that  the  axis  of  the 

instrument  is  that  of  greatest  moment  of  inertia.  4thly.  That  if  we  screw  the 
two  pairs  of  opposite  horizontal  bolts  to  different  distances  from  the  axis,  the 

path  of  the  instantaneous  pole  will  no  longer  be  equidistant  from  the  axis,  but 
will  describe  an  ellipse,  whose  longer  axis  is  in  the  direction  of  the  mean  axis 
of  the  instrument.  5thly.  That  if  we  now  make  one  of  the  two  horizontal  axes 

less  and  the  other  greater  than  the  vertical  axis,  the  instantaneous  pole  will 
separate  from  the  axis  of  the  instrument,  and  the  axis  will  incline  more  and  more 

till  the  spinning  can  no  longer  go  on,  on  account  of  the  obliquity.  It  is  easy 

to  see  that,  by  attending  to  the  laws  of  motion,  we  may  produce  any  of  the 

above  effects  at  pleasure,  and  illustrate  many  different  propositions  by  means  of 
the  same  instrument. 



[From  the  Transactions  of  the  Royal  Society  of  Edinburgh,  Vol.  xxi.  Part  iv.] 

XV.  On  a  Dynamical  Top,  for  exhibiting  the  phenomena  of  the  motion  of  a 

system  of  invariable  form  about  a  fixed  point,  with  some  suggestions  as  to 

the  Earth's  mx)tion. 

(Read  20th  April,  1857.) 

To  those  who  study  the  progress  of  exact  science,  the  common  spinning-top 
is  a  symbol  of  the  labours  and  the  perplexities  of  men  who  had  successfully 
threaded  the  mazes  of  the  planetary  motions.  The  mathematicians  of  the  last 

age,  searching  through  nature  for  problems  worthy  of  their  analysis,  foimd  in 
this  toy  of  their  youth,  ample  occupation  for  their  highest  mathematical  powers. 

No  illustration  of  astronomical  precession  can  be  devised  more  perfect  than 

that  presented  by  a  properly  balanced  top,  but  yet  the  motion  of  rotation  has 
intricacies  far  exceeding  those  of  the  theory  of  precession. 

Accordingly,  we  find  Euler  and  D'Alembert  devoting  their  talent  and  their 
patience  to  the  estabhshment  of  the  laws  of  the  rotation  of  solid  bodies. 

Lagrange  has  incorporated  his  own  analysis  of  the  problem  with  his  general 
treatment  of  mechanics,  and  since  his  time  M.  Poins6t  has  brought  the  subject 

under  the  power  of  a  more  searching  analysis  than  that  of  the  calculus,  in 
which  ideas  take  the  place  of  symbols,  and  intelligible  propositions  supersede 

equations. 
In  the  practical  department  of  the  subject,  we  must  notice  the  rotatory 

machine  of  Bohnenberger,  and  the  nautical  top  of  Troughton.  In  the  first  of 

these  instruments  we  have  the  model  of  the  Gyroscope,  by  which  Foucault  has 

been  able  to  render  visible  the  effects  of  the  earth's  rotation.  The  beautiful 
experiments  by  which  Mr  J.  EUiot  has  made  the  ideas  of  precession  so  familiar 

to  us  are  performed  with  a  top,  similar  in  some  respects  to  Troughton's,  though 
not  borrowed  from  his. 
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The  top  which  I  have  the  honour  to  spin  before  the  Society,  differs  from 

that  of  Mr  Elliot  in  having  more  adjustments,  and  in  being  designed  to  exhibit 
far  more  complicated  phenomena. 

The  arrangement  of  these  adjustments,  so  as  to  produce  the  desired  effects, 

depends  on  the  mathematical  theory  of  rotation.  The  method  of  exhibiting  the 
motion  of  the  axis  of  rotation,  by  means  of  a  coloured  disc,  is  essential  to  the 

success  of  these  adjustments.  This  optical  contrivance  for  rendering  visible  the 

nature  of  the  rapid  motion  of  the  top,  and  the  practical  methods  of  applying 
the  theory  of  rotation  to  such  an  instrument  as  the  one  before  us,  are  the 

grounds  on  which  I  bring  my  instrument  and  experiments  before  the  Society 
as  my  own. 

I  propose,  therefore,  in  the  first  place,  to  give  a  brief  outline  of  such  parts 

of  the  theory  of  rotation  as  are  necessary  for  the  explanation  of  the  phenomena 
of  the  top. 

I  shall  then  describe  the  instrument  with  its  adjustments,  and  the  effect  of 

each,  the  mode  of  observing  of  the  coloured  disc  when  the  top  is  in  motion,  and 

the  use  of  the  top  in  illustrating  the  mathematical  theory,  with  the  method  of 
making  the  different  experiments. 

Lastly,  I  shall  attempt  to  explain  the  nature  of  a  possible  variation  in  the 

earth's  axis  due  to  its  figure.  This  variation,  if  it  exists,  must  cause  a  periodic 
inequality  in  the  latitude  of  every  place  on  the  earth's  surface,  going  through  its 
period  in  about  eleven  months.  The  amount  of  variation  must  be  very  small, 
but  its  character  gives  it  importance,  and  the  necessary  observations  are  already 
made,  and  only  require  reduction. 

On  the  Tlieory  of  Rotation. 

The  theory  of  the  rotation  of  a  rigid  system  is  strictly  deduced  from  the 
elementary  laws  of  motion,  but  the  complexity  of  the  motion  of  the  particles  of 
a  body  freely  rotating  renders  the  subject  so  intricate,  that  it  has  never  been 
thoroughly  understood  by  any  but  the  most  expert  mathematicians.  Many  who 
have  mastered  the  lunar  theory  have  come  to  erroneous  conclusions  on  this  sub- 

ject;  and  even  Newton  haa  chosen  to  deduce  the  disturbance  of  the  earth's  axis 
from  his  theory  of  the  motion  of  the  nodes  of  a  free  orbit,  rather  than  attack 
the  problem  of  the  rotation  of  a  solid  body. 
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The  method  by  which  M.  Poinsot  has  rendered  the  theory  more  manageable, 

is  by  the  liberal  introduction  of  "appropriate  ideas,"  chiefly  of  a  geometrical 
character,  most  of  which  had  been  rendered  familiar  to  mathematicians  by  the 

writings  of  Monge,  but  which  then  first  became  illustrations  of  this  branch  of 

dynamics.  If  any  further  progress  is  to  be  made  in  simplifying  and  arranging 

the  theory,  it  must  be  by  the  method  which  Poins6t  has  repeatedly  pointed  out 

as  the  only  one  which  can  lead  to  a  true  knowledge  of  the  subject, — that  of 

proceeding  from  one  distinct  idea  to  another,  instead  of  trusting  to  symbols  and 

equations. 

An  important  contribution  to  our  stock  of  appropriate  ideas  and  methods  has 

lately  been  made  by  Mr  R.  B.  Hayward,  in  a  paper,  "On  a  Direct  Method  of 

estimatmg  Velocities,  Accelerations,  and  all  similar  quantities,  with  respect  to  axes, 

moveable  in  any  manner  in  Space."  {Trans.  Cambridge  Phil.  Soc.  Vol.  x.  Part  i.) 
*  In  this  communication  I  intend  to  confine  myself  to  that  part  of  the 

subject  which  the  top  is  intended  to  illustrate,  namely,  the  alteration  of  the 

position  of  the  axis  in  a  body  rotating  freely  about  its  centre  of  gravity.  I 

shall,  therefore,  deduce  the  theory  as  briefly  as  possible,  from  two  considera- 

tions only, — the  permanence  of  the  original  angular  momentum  in  direction  and 

magnitude,  and  the  permanence  of  the  original  vis  viva. 

•"'  The  mathematical  difiSculties  of  the  theory  of  rotation  arise  chiefly  from 
the  want  of  geometrical  illustrations  and  sensible  images,  by  which  we  might 
fix  the  results  of  analysis  in  our  minds. 

It  is  easy  to  understand  the  motion  of  a  body  revolving  about  a  fixed  axle. 

Every  point  in  the  body  describes  a  circle  about  the  axis,  and  returns  to  its 

original  position  after  each  complete  revolution.  But  if  the  axle  itself  be  in 

motion,  the  paths  of  the  different  points  of  the  body  will  no  longer  be  circular 

or  re-entrant.  Even  the  velocity  of  rotation  about  the  axis  requires  a  careful 

definition,  and  the  proposition  that,  in  all  motion  about  a  fixed  point,  there  is 

always  one  Hne  of  particles  forming  an  instantaneous  axis,  is  usually  given  in 

the  form  of  a  very  repulsive  mass  of  calculation.  Most  of  these  difficulties  may 

be  got  rid  of  by  devoting  a  little  attention  to  the  mechanics  and  geometry  of 

the  problem  before  entering  on  the  discussion  of  the  equations. 

Mr  Hayward,  in  his  paper  already  referred  to,  has  made  great  use  of  the 

mechanical  conception  of  Angular  Momentum. 

*  7th  May,  1857.     The  paragraphs  marked  thus  have  been  rewritten  since  the  paper  was  read. 
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Definition. — Jlie  Angular  Momentum  of  a  particle  about  an  axis  is  mea- 

sured by  the  product  of  the  mass  of  the  particle,  its  velocity  resolved  in  the  normal 

plane,  and  the  perpendicular  from  the  axis  on  the  direction  of  motion. 

^'  The  angular  momentum  of  any  system  about  an  axis  is  the  algebraical 
sum  of  the  angular  momenta  of  its  parts. 

As  the  rate  of  change  of  the  linear  momentum  of  a  particle  measures  the 

moving  force  which  acts  on  it,  so  the  rate  of  change  of  angular  momentum 
measures  the  moment  of  that  force  about  an  axis. 

All  actions  between  the  parts  of  a  system,  being  pairs  of  equal  and  opposite 

forces,  produce  equal  and  opposite  changes  in  the  angular  momentum  of  those 

parts.  Hence  the  whole  angular  momentum  of  the  system  is  not  aflfected  by 

these  actions  and  re-actions. 

*  When  a  system  of  invariable  form  revolves  about  an  axis,  the  angular 
velocity  of  every  part  is  the  same,  and  the  angular  momentum  about  the  axis  is 

the  product  of  the  angular  velocity  and  the  moment  of  inertia  about  that  axis. 

*  It  is  only  in  particular  cases,  however,  that  the  whole  angular  momentum 
can  be  estimated  in  this  way.  In  general,  the  axis  of  angular  momentum  differs 

from  the  axis  of  rotation,  so  that  there  will  be  a  residual  angular  momentum 

about  an  axis  perpendicular  to  that  of  rotation,  imless  that  axis  has  one  of  three 

positions,  called  the  principal  axes  of  the  body. 

By  referring  everything  to  these  three  axes,  the  theory  is  greatly  simplified. 

The  moment  of  inertia  about  one  of  these  axes  is  greater  than  that  about  any 

other  axis  through  the  same  point,  and  that  about  one  of  the  others  is  a  mini- 

mum. These  two  are  at  right  angles,  and  the  third  axis  is  perpendicular  to 

their  plane,  and  is  called  the  mean  axis. 

*  Let  A,  B,  C  be  the  moments  of  inertia  about  the  principal  axes  through 
the  centre  of  gravity,  taken  in  order  of  magnitude,  and  let  Wj  oj.,  cd^  be  the 

angular  velocities  about  them,  then  the  angular  momenta  wHl  be  Ao)„  Bco. 
and  Cwj . 

Angular  momenta  may  be  compounded  like  forces  or  velocities,  by  the 

law  of  the  "parallelogram,"  and  since  these  three  are  at  right  angles  to  each other,  their  resultant  is 

JA^:^JTB%JTC^'  =  H   (1), 

and   this  must   be   constant,    both   in   magnitude   and  direction  in  space,  since  no 
external  forces  act  on  the  body. 
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We   shall   call   this   axis    of    angular  momentum   the   invariable  axis.      It  is 

perpendicular   to   what   has   been   called   the   invariable    plane.      Poins6t    calls    it 

the   axis   of  the  couple  of  impulsion.     The    direction-cosines   of    this   axis   in   the 
body  are, 

,     A(o,  B(o.  Ca)o 

«  =  ̂ ,       m  =  -^,       ̂   =  ̂ - 

Since  I,  m  and  n  vary  during  the  motion,  we  need  some  additional 

condition  to  determine  the  relation  between  them.  We  find  this  in  the  property 
of  the  vis  viva  of  a  system  of  invariable  form  in  which  there  is  no  friction. 

The  vis  viva  of  such  a  system  must  be  constant.  We  express  this  in  the 

equation 

Aoj,'  +  B(o,'+C(o,'=V   (2). 

Substituting  the  values  of  Wi,  w^,  Wj  in  terms  of  I,  m,  n, 

Let   -i=a\       -T,  =  h\       ̂ =c\ 

=  e' 

A       '       B       '       C~   '       W 
and  this  equation  becomes 

a'Z'  +  6W  +  cV  =  e»   (3), 

and    the    equation    to    the    cone,    described   by    the    invariable   axis   within   the 
body,  is 

(a'-e')x'  +  {h'-e')y'-\-{c'-e')z'  =  0   (4). 

The  intersections  of  this  cone  with  planes  perpendicular  to  the  principal 
axes  are  found  by  putting  x,  y,  or  z,  constant  in  this  equation.  By  giving 
e  various  values,  all  the  different  paths  of  the  pole  of  the  invariable  axis, 
corresponding  to  different  initial  circumstances,  may  be  traced. 

*In  the  figiu-es,  I  have  supposed  a' =  100,  6'=  107,  and  c"  =  110.  The 
first  figure  represents  a  section  of  the  various  cones  by  a  plane  perpendicular 
to  the  axis  of  x,  which  is  that  of  greatest  moment  of  inertia.  These  sections 

are  ellipses  having  their  major  axis  parallel  to  the  axis  of  h.  The  value  of  e* 
corresponding  to  each  of  these  curves  is  indicated  by  figures  beside  the  curve. 
The  ellipticity  increases  with  the  size  of  the  ellipse,  so  that  the  section 

corresponding  to  6^=107  would  be  two  parallel  straight  lines  (beyond  the  bounds 
of  the  figure),   after  which  the  sections  would  be  hyperbolas. 
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*The  second  figure  represents  the  sections  made  by  a  plane,  perpendicular 

to  the  mean  axis.  They  are  all  hyperbolas,  except  when  6^=107,  when  the 
section  is  two  intersecting  straight  lines. 

The  third  figure  shows  the  sections  perpendicular  to  the  axis  of  least 

moment  of  inertia.  From  e'=110  to  ̂ "=107  the  sections  are  ellipses,  e*=107 
gives  two  parallel  straight  lines,  and  beyond  these  the  curves  are  hyperbolas. 

*The   fourth   and   fifth    figures    show    the    sections     of    the    series    of  cones 
made   by   a   cube   and   a   sphere   respectively.      The    use    of    these    figures  is    to 
exhibit  the  connexion  between  the  different  curves  described  about  the  three 

principal  axes  by  the  invariable  axis  during  the  motion  of  the  body. 

*We  have  next  to  compare  the  velocity  of  the  invariable  axis  with  respect 
to  the  body,  with  that  of  the  body  itself  round  one  of  the  principal  axes. 

Since  the  invariable  axis  is  fixed  in  space,  its  motion  relative  to  the  body 

must  be  equal  and  opposite  to  that  of  the  portion  of  the  body  through  which 

it  passes.  Now  the  angular  velocity  of  a  portion  of  the  body  whose  direction - 
cosines  are  I,  m,  n,  about  the  axis  of  x  is 

Substituting  the  values  of  w^,  w^,  w,,  in  terms  of  I,  m,  n,  and  taking 

account  of  equation  (3),  this  expression  becomes 

Changing  the  sign  and  putting  1=^tt  we  have  the  angular  velocity  of 

the  invariable  axis  about  that  of  x 

_    o>,     e'  —  a" 

always  positive  about  the  axis  of  greatest  moment,  negative  about  that  of  least 

moment,  and  positive  or  negative  about  the  mean  axis  according  to  the  value 

of  e*.  The  direction  of  the  motion  in  every  case  is  represented  by  the  arrows 
in  the  figures.  The  arrows  on  the  outside  of  each  figure  indicate  the  direction 
of  rotation  of  the  body, 

*If   we   attend   to   the   curve   described   by   the   pole   of  the   invariable   axis 
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on  the  sphere  in  fig.    5,   we   shall   see    that   the    areas   described   by   that   point, 
if  projected  on  the  plane  of  yz,  are  swept  out  at  the  rate 
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Dividing  the  area  of  this  ellipse  by  the  area  described  during  one  revo- 
lution of  the  body,  we  find  the  number  of  revolutions  of  the  body  during 

the  description  of  the  ellipse — 

The  projections  of  the  spherical  ellipses  upon  the  plane  of  yz  are  all 
similar  ellipses,  and  described  in  the  same  number  of  revolutions;  and  in  each 

ellipse  so  projected,  the  area  described  in  any  time  is  proportional  to  the 
number  of  revolutions  of  the  body  about  the  axis  of  x,  so  that  if  we  measure 

time  by  revolutions  of  the  body,  the  motion  of  the  projection  of  the  pole  of 
the  invariable  axis  is  identical  with  that  of  a  body  acted  on  by  an  attractive 

central  force  varying  directly  as  the  distance.  In  the  case  of  the  hyperbolas 

in  the  plane  of  the  greatest  and  least  axis,  this  force  must  be  supposed 

repulsive.  The  dots  in  the  figures  1,  2,  3,  are  intended  to  indicate  roughly 

the  progress  made  by  the  invariable  axis  during  each  revolution  of  the  body 
about  the  axis  of  x,  y  and  z  respectively.  It  must  be  remembered  that  the 
rotation  about  these  axes  varies  with  their  inclination  to  the  invariable  axis, 

so  that  the  angular  velocity  diminishes  as  the  inclination  increases,  and  there- 
fore the  areas  in  the  ellipses  above  mentioned  are  not  described  with  uniform 

velocity  in  absolute  time,  but  are  less  rapidly  swept  out  at  the  extremities  of 
the  major  axis  than  at  those  of  the  minor. 

*When  two  of  the  axes  have  equal  moments  of  inertia,  or  h  —  c,  then 
the  angular  velocity  (o^  is  constant,  and  the  path  of  the  invariable  axis  is 
circular,  the  number  of  revolutions  of  the  body  during  one  circuit  of  the 

invariable  axis,  being 
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The  motion  is  in  the  same  direction  as  that  of  rotation,  or  in  the  opposite 

direction,  according  as  the  axis  of  x  is  that  of  greatest  or  of  least  moment 
of  inertia. 

*Both  in  this  case,  and  in  that  in  which  the  three  axes  are  unequal,  the 
motion  of  the  invariable  axis  in  the  body  may  be  rendered  very  slow  by 

dimlulshing  the  difference  of  the  moments  of  inertia.  The  angular  velocity  of 
the  axis  of  x  about  the  invariable  axis  in  space  is to. 

a'(l-l')' 

which  is  greater  or  less  than  Wj,  as  e*  is  greater  or  less  than  a\  and,  when 
these  quantities  are  nearly  equal,  is  very  nearly  the  same  as  Wj  itself.  This 

quantity  indicates  the  rate  of  revolution  of  the  axle  of  the  top  about  its 
mean  position,  and  is  very  easily  observed. 

*The  instantaneous  axis  is  not  so  easily  observed.  It  revolves  round  the 
invariable  axis  in  the  same  time  with  the  axis  of  x,  at  a  distance  which  Is  very 

small  in  the  case  when  a,  h,  c,  are  nearly  equal.  From  its  rapid  angular  motion 

in  space,  and  Its  near  coincidence  with  the  invariable  axis,  there  Is  no  advantage 

in  studying  its  motion  in  the  top. 

*By  making  the  moments  of  inertia  very  unequal,  and  in  definite  proportion 
to  each  other,  and  by  drawing  a  few  strong  lines  as  diameters  of  the  disc,  the 

combination  of  motions  will  produce  an  appearance  of  epicycloids,  which  are  the 
result  of  the  continued  intersection  of  the  successive  positions  of  these  lines,  and 

the  cusps  of  the  epicycloids  lie  in  the  curve  in  which  the  instantaneous  axis 

travels.     Some  of  the  figures  produced  in  this  way  are  very  pleasing. 

In  order  to  illustrate  the  theory  of  rotation  experimentally,  we  must  have 

a  body  balanced  on  its  centre  of  gravity,  and  capable  of  having  Its  principal 
axes  and  moments  of  inertia  altered  in  form  and  position  within  certain  limits. 

We  must  be  able  to  make  the  axle  of  the  instrument  the  greatest,  least,  or 

mean  principal  axis,  or  to  make  it  not  a  principal  axis  at  all,  and  we  must  be 
able  to  see  the  position  of  the  Invariable  axis  of  rotation  at  any  time.  There 

must  be  three  adjustments  to  regulate  the  position  of  the  centre  of  gravity, 

three  for  the  magnitudes  of  the  moments  of  inertia,  and  three  for  the  directions 

of  the  principal  axes,  nine  Independent  adjustments,  which  may  be  distributed 

as  we  please  among  the  screws  of  the  instrument. 
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The  form  of  the  body  of  the  instrument  which  I  have  found  most  suitable  is 

that  of  a  bell  (p.  262,  fig.  6).  (7  is  a  hollow  cone  of  brass,  i2  is  a  heavy 

ring  cast  in  the  same  piece.  Six  screws,  with  heavy  heads,  x,  y,  z,  x,  y',  z, 
work  horizontally  in  the  ring,  and  three  similar  screws,  I,  m,  n,  work  vertically 

through  the  ring  at  equal  intervals.  AS  is  the  axle  of  the  instrument,  SS  is 

a  brass  screw  working  in  the  upper  part  of  the  cone  (7,  and  capable  of  being 

firmly  clamped  by  means  of  the  nut  c.  5  is  a  cylindrical  brass  bob,  which  may 

be  screwed  up  or  down  the  axis,  and  fixed  in  its  place  by  the  nut  7). 

The  lower  extremity  of  the  axle  is  a  fine  steel  point,  finished  without  emery, 

and  afterwards  hardened.  It  runs  in  a  little  agate  cup  set  in  the  top  of  the 

pillai'  P.  If  any  emery  had  been  embedded  in  the  steel,  the  cup  would  soon 
be  worn  out.  The  upper  end  of  the  axle  has  also  a  steel  point  by  which  it  may 

be  kept  steady  while  spinning. 

When  the  instrument  is  in  use,  a  coloured  disc  is  attached  to  the  upper 
end  of  the  axle. 

It  will  be  seen  that  there  are  eleven  adjustments,  nine  screws  in  the  brass 

ring,  the  axle  screwing  in  the  cone,  and  the  bob  screwing  on  the  axle.  The 

advantage  of  the  last  two  adjustments  is,  that  by  them  large  alterations  can  be 

made,  which  are  not  possible  by  means  of  the  small  screws. 

The  first  thing  to  be  done  with  the  instrument  is,  to  make  the  steel  point 

at  the  end  of  the  axle  coincide  with  the  centre  of  gravity  of  the  whole.  This 

is  done  roughly  by  screwing  the  axle  to  the  right  place  nearly,  and  then  balancing 

the  instrument  on  its  point,  and  screwing  the  bob  and  the  horizontal  screws  till 

the  instrument  will  remain  balanced  in  any  position  in  which  it  is  placed. 

When  this  adjustment  is  carefully  made,  the  rotation  of  the  top  has  no 

tendency  to  shake  the  steel  point  in  the  agate  cup,  however  irregular  the  motion 

may  appear  to  be. 

The  next  thing  to  be  done,  is  to  make  one  of  the  principal  axes  of  the 

central  ellipsoid  coincide  with  the  axle  of  the  top. 

To  effect  this,  we  must  begin  by  spinning  the  top  gently  about  its  axle, 

steadying  the  upper  part  with  the  finger  at  first.  If  the  axle  is  already  a 

principal  axis  the  top  will  continue  to  revolve  about  its  axle  when  the  finger  is 

removed.  If  it  is  not,  we  observe  that  the  top  begins  to  spin  about  some  other 

axis,  and  the  axle  moves  away  from  the  centre  of  motion  and  then  back  to  it 

again,  and  so  on,  alternately  widening  its  circles  and  contracting  them. 
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It  is  impossible  to  observe  this  motion  successfully,  without  the  aid  of  the 

coloured  disc  placed  near  the  upper  end  of  the  axis.  This  disc  is  divided  into 

sectors,  and  strongly  coloured,  so  that  each  sector  may  be  recognised  by  its  colour 

when  in  rapid  motion.  If  the  axis  about  which  the  top  is  really  revolving,  falls 

within  this  disc,  its  position  may  be  ascertained  by  the  colour  of  the  spot  at  the 
centre  of  motion.  If  the  central  spot  appears  red,  we  know  that  the  invariable 
axis  at  that  instant  passes  through  the  red  part  of  the  disc. 

In  this  way  we  can  trace  the  motion  of  the  invariable  axis  in  the  revolving 

body,  and  we  find  that  the  path  which  it  describes  upon  the  disc  may  be  a  circle, 

an  ellipse,  an  hyperbola,  or  a  straight  line,  according  to  the  arrangement  of  the 
instrument. 

In  the  case  in  which  the  invariable  axis  coincides  at  first  with  the  axle  of 

the  top,  and  returns  to  it  after  separating  from  it  for  a  time,  its  true  path  is 

a  circle  or  an  ellipse  having  the  axle  in  its  circumference.  The  true  principal 
axis  is  at  the  centre  of  the  closed  curve.  It  must  be  made  to  coincide  with  the 

axle  by  adjusting  the  vertical  screws  I,  in,  n. 

Suppose  that  the  colour  of  the  centre  of  motion,  when  farthest  from  the 

axle,  indicated  that  the  axis  of  rotation  passed  through  the  sector  L,  then  the 
principal  axis  must  also  lie  in  that  sector  at  half  the  distance  from  the  axle. 

If  this  principal  axis  be  that  of  greatest  moment  of  inertia,  we  must  raise 

the  screw  I  in  order  to  bring  it  nearer  the  axle  A.  If  it  be  the  axis  of  least 

moment  we  must  lower  the  screw  /.  In  this  way  we  may  make  the  principal 

axis  coincide  with  the  axle.  Let  us  suppose  that  the  principal  axis  is  that  of 
greatest  moment  of  inertia,  and  that  we  have  made  it  coincide  with  the  axle  of 

the  instrument.  Let  us  also  suppose  that  the  moments  of  inertia  about  the 

other  axes  are  equal,  and  very  little  less  than  that  about  the  axle.  Let  the  top 

be  spun  about  the  axle  and  then  receive  a  disturbance  which  causes  it  to  spin 
about  some  other  axis.  The  instantaneous  axis  wiU  not  remain  at  rest  either 

in  space  or  in  the  body.  In  space  it  will  describe  a  right  cone,  completing  a 

revolution  in  somewhat  less  than  the  time  of  revolution  of  the  top.  In  the 

body  it  will  describe  another  cone  of  larger  angle  in  a  period  which  is  longer 

as  the  difierence  of  axes  of  the  body  is  smaller.'  The  invariable  axis  will  be 
fixed  in  space,  and  describe  a  cone  in  the  body. 

The  relation  of  the  different  motions  may  be  understood  from  the  following 

illustration.  Take  a  hoop  and  make  it  revolve  about  a  stick  which  remains  at 

rest  and  touches  the  inside  of  the  hoop.     The  section  of  the  stick  represents  the 
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path  of  the  instantaneous  axis  in  space,  the  hoop  that  of  the  same  axis  in  the 

body,  and  the  axis  of  the  stick  the  invariable  axis.  The  point  of  contact  repre- 
sents the  pole  of  the  instantaneous  axis  itself,  travelling  many  times  round  the 

stick  before  it  gets  once  round  the  hoop.  It  is  easy  to  see  that  the  direction  in 
which  the  instantaneous  axis  travels  round  the  hoop,  is  in  this  case  the  same  as 

that  in  which  the  hoop  moves  round  the  stick,  so  that  if  the  top  be  spinning  in 
the  direction  i,  M,  N,  the  colours  will  appear  in  the  same  order. 

By  screwing  the  bob  B  up  the  axle,  the  difference  of  the  axes  of  inertia 

may  be  diminished,  and  the  time  of  a  complete  revolution  of  the  invariable 
axis  in  the  body  increased.  By  observing  the  number  of  revolutions  of  the  top 
in  a  complete  cycle  of  colours  of  the  invariable  axis,  we  may  determine  the 
ratio  of  the  moments  of  inertia. 

By  screwing  the  bob  up  farther,  we  may  make  the  axle  the  principal  axis  of 
least  moment  of  inertia. 

The  motion  of  the  instantaneous  axis  will  then  be  that  of  the  point  of 

contact  of  the  stick  with  the  outside  of  the  hoop  rolling  on  it.  The  order  of 

colours  will  be  N,  M,  L,  if  the  top  be  spinning  in  the  direction  Z,  M,  N,  and 

the  more  the  bob  is  screwed  up,  the  more  rapidly  will  the  colours  change,  till 
it  ceases  to  be  possible  to  make  the  observations  correctly. 

In  calculating  the  dimensions  of  the  parts  of  the  instrument,  it  is  necessary 

to  provide  for  the  exhibition  of  the  instrument  with  its  axle  either  the  greatest 
or  the  least  axis  of  inertia.  The  dimensions  and  weights  of  the  parts  of  the  top 

which  I  have  found  most  suitable,  are  given  in  a  note  at  the  end  of  this  paper. 
Now  let  us  make  the  axes  of  inertia  in  the  plane  of  the  ring  unequal.  We 

may  do  this  by  screwing  the  balance  screws  x  and  x^  farther  from  the  axle 
without  altering  the  centre  of  gravity. 

Let  us  suppose  the  bob  B  screwed  up  so  as  to  make  the  axle  the  axis  of 

least  inertia.  Then  the  mean  axis  is  parallel  to  xt^,  and  the  greatest  is  at  right 

angles  to  xdd^  in  the  horizontal  plane.  The  path  of  the  invariable  axis  on  the 
disc  is  no  longer  a  circle  but  an  ellipse,  concentric  with  the  disc,  and  having 
its  major  axis  parallel  to  the  mean  axis  xo^. 

The  smaller  the  difference  between  the  moment  of  inertia  about  the  axle  and 

about  the  mean  axis,  the  more  eccentric  the  ellipse  will  be;  and  if,  by  screwing 
the  bob  down,  the  axle  be  made  the  mean  axis,  the  path  of  the  invariable  axis 

will  be  no  longer  a  closed  curve,  but  an  hyperbola,  so  that  it  will  depart  alto- 
gether from  the  neighbourhood   of  the  axle.     When  the  top  is  in  this  condition 
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it  must  be  spun  gently,  for  it  is  very  difficult  to  manage  it  when  its  motion 
gets  more  and  more  eccentric. 

When  the  bob  is  screwed  still  farther  down,  the  axle  becomes  the  axis  of 

greatest  inertia,  and  a:x^  the  least.  The  major  axis  of  the  ellipse  described  by 
the  invariable  axis  will  now  be  perpendicular  to  ccx",  and  the  farther  the  bob 
is  screwed  down,  the  eccentricity  of  the  ellipse  will  diminish,  and  the  velocity 
with  which  it  is  described  will  increase. 

I  have  now  described  all  the  phenomena  presented  by  a  body  revolving  freely 
on  its  centre  of  gravity.  If  we  wish  to  trace  the  motion  of  the  invariable  axis 

by  means  of  the  coloured  sectors,  we  must  make  its  motion  very  slow  compared 
■vvith  that  of  the  top.  It  is  necessary,  therefore,  to  make  the  moments  of  inertia 
about  the  principal  axes  very  nearly  equal,  and  in  this  case  a  very  small  change 

in  the  position  of  any  part  of  the  top  will  greatly  derange  the  'position  of  the 
principal  axis.  So  that  when  the  top  is  well  adjusted,  a  single  turn  of  one  of 

the  screws  of  the  ring  is  sufficient  to  make  the  axle  no  longer  a  principal  axis, 
and  to  set  the  true  axis  at  a  considerable  inclination  to  the  axle  of  the  top. 

All  the  adjustments  must  therefore  be  most  carefully  arranged,  or  we  may 
have  the  whole  apparatus  deranged  by  some  eccentricity  of  spinning.  The  method 

of  making  the  principal  axis  coincide  with  the  axle  must  be  studied  and  prac- 
tised, or  the  first  attempt  at  spinning  rapidly  may  end  in  the  destruction  of 

the  top,  if  not  of  the  table  on  which  it  is  spun. 

On  the  Earth's  Motion. 

We  must  remember  that  these  motions  of  a  body  about  its  centre  of  gra- 
vity, are  not  illustrations  of  the  theory  of  the  precession  of  the  Equinoxes. 

Precession  can  be  illustrated  by  the  apparatus,  but  we  must  arrange  it  so  that 
the  force  of  gravity  acts  the  part  of  the  attraction  of  the  sun  and  moon  in 

producing  a  force  tending  to  alter  the  axis  of  rotation.  This  is  easily  done  by 
bringing  the  centre  of  gravity  of  the  whole  a  little  below  the  point  on  which 

it  spins.  The  theory  of  such  motions  is  far  more  easily  comprehended  than 
that  which  we  have  been  investigating. 

But  the  earth  is  a  body  whose  principal  axes  are  unequal,  and  from  the 

phenomena  of  precession  we  can  determine  the  ratio  of  the  polar  and  equatorial 

axes  of  the  "central  ellipsoid;"  and  supposing  the  earth  to  have  been  set  in 
motion   about   any  axis   except   the   principal   axis,    or   to   have    had    its    original 
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axis   disturbed   in   any   way,  its   subsequent   motion   would    be    that    of    the    top 
when  the  bob  is  a  little  below  the  critical  position. 

The  axis  of  angular  momentum  would  have  an  invariable  position  in  space, 
and  would  travel  with  respect  to  the  earth  round  the  axis  of  figure  with  a  velo- 

C—A 
city  =  0)  -— : —  where  w  is  the  sidereal  angular  velocity  of  the  earth.     The  apparent 

pole   of  the  earth   would   travel   (with   respect   to   the   earth)    from   west   to  east 
A 

round  the  true  pole,  completing  its  circuit  in  jy — ^  sidereal  days,  which  appears 

to  be  about  325*6  solar  days. 
The  instantaneous  axis  would  revolve  about  this  axis  in  space  in  about 

a  day,  and  would  always  be  in  a  plane  with  the  true  axis  of  the  earth  and 

the  axis  of  angular  momentum.  The  effect  of  such  a  motion  on  the  apparent 
position  of  a  star  would  be,  that  its  zenith  distance  would  be  increased  and 

diminished  during  a  period  of  325-6  days.  This  alteration  of  zenith  distance 
is  the  same  above  and  below  the  pole,  so  that  the  polar  distance  of  the  star 

is  unaltered.  In  fact  the  method  of  finding  the  pole  of  the  heavens  by  obser- 
vations of  stars,  gives  the  pole  of  the  invan-aUe  axis,  which  is  altered  only  by 

external  forces,  such  as  those  of  the  sun  and  moon. 

There  is  therefore  no  change  in  the  apparent  polar  distance  of  stars  due  to 
this  cause.  It  is  the  latitude  which  varies.  The  magnitude  of  this  variation 
cannot  be  determined  by  theory.  The  periodic  time  of  the  variation  may  be 
found  approximately  from  the  known  dynamical  properties  of  the  earth.  The 
epoch  of  maximum  latitude  cannot  be  found  except  by  observation,  but  it  must 
be  later  in  proportion  to  the  east  longitude  of  the  observatory. 

In  order  to  determine  the  existence  of  such  a  variation  of  latitude,  I  have 
examined  the  observations  of  Polaris  with  the  Greenwich  Transit  Circle  in  the 

years  1851-2-3-4.  The  observations  of  the  upper  transit  during  each  month  were 
collected,  and  the  mean  of  each  month  found.  The  same  was  done  for  the  lower 

transits.  The  difference  of  zenith  distance  of  upper  and  lower  transit  is  twice 

the  polar  distance  of  Polaris,  and  half  the  sum  gives  the  co-latitude  of  Greenwich. 

In  this  way  I  found  the  apparent  co-latitude  of  Greenwich  for  each  month 
of  the  four  years  specified. 

There  appeared  a  very  slight  indication  of  a  maximum  belonging  to  the  set 
of  months, 

March,  51.      Feb.  52.      Dec.  52.      Nov.  53.      Sept.  54. 
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Tliis  result,  liowever,  is  to  be  regarded  as  very  doubtful,  as  there  did  not 

appear  to  be  evidence  for  any  variation  exceeding  half  a  second  of  space,  and 

more  observations  would  be  required  to  establish  the  existence  of  so  small  a 
variation  at  all. 

I  therefore  conclude  that  the  earth  has  been  for  a  long  time  revolving 

about  an  axis  very  near  to  the  axis  of  figure,  if  not  coinciding  with  it.  The 
cause  of  this  near  coincidence  is  either  the  original  softness  of  the  earth,  or 

the  present  fluidity  of  its  interior.  The  axes  of  the  earth  are  so  nearly  equal, 
that  a  considerable  elevation  of  a  tract  of  country  might  produce  a  deviation 

of  the  principal  axis  within  the  limits  of  observation,  and  the  only  cause  which 
would  restore  the  uniform  motion,  would  be  the  action  of  a  fluid  which  would 

gradually  diminish  the  oscillations  of  latitude.  The  permanence  of  latitude  essen- 

tially depends  on  the  inequality  of  the  earth's  axes,  for  if  they  had  been  all 

equal,  any  alteration  of  the  crust  of  the  earth  would  have  produced  new  prin- 
cipal axes,  and  the  axis  of  rotation  would  travel  about  those  axes,  altering  the 

latitudes  of  all  places,  and  yet  not  in  the  least  altering  the  position  of  the 

axis  of  rotation  among  the  stars. 

Perhaps  by  a  more  extensive  search  and  analysis  of  the  observations  of 
different  observatories,  the  nature  of  the  periodic  variation  of  latitude,  if  it  exist, 

may  be  determined.  I  am  not  aware  of  any  calculations  having  been  made  to 

prove  its  non-existence,  although,  on  dynamical  grounds,  we  have  every  reason 

to  look  for  some  very  small  variation  having  the  periodic  time  of  325-6  days 
nearly,  a  period  which  is  clearly  distinguished  from  any  other  astronomical  cycle, 
and  therefore  easily  recognised. 
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NOTK 

Dimensions  and  Weights  of  the  parts  of  the  Dynamical  Top. 

I.     Body  of  the  top — 
Mean  diameter  of  ring,  4  inches. 
Section  of  ring,  |  inch  square. 
The  conical  portion  rises  from  the  upper  and  inner  edge  of  the  ring,  a 

height  of  1|  inches  from  the  base. 
The  whole  body  of  the  top  weighs   1  lb.  7    oz. 
Each   of  the   nine   adjusting   screws  has   its  screw   1    inch   long,  and   the 

screw  and  head  together  weigh  1  ounce.     The  whole  weigh         .        .  9    „ 

II.     Axle,  &c.— 
Length  of  axle  5  inches,  of  which  |  inch  at  the  bottom  is  occupied  by 

the  steel  point,  3J  inches  are  brass  with  a  good  screw  turned  on  it, 
and   the   remaining   inch   is  of  steel,  with  a  sharp  point  at  the  top. 
The  whole  weighs    1^  „ 

The  bob  B  has  a  diameter  of  1'4<  inches,  and  a  thickness  of  •4.     It  weighs  2|  „ 
The  nuts  b  and  c,  for  clamping  the  bob  and  the  body  of  the  top  on  the 

axle,  each  weigh  ̂   oz.    1     „ 

Weight  of  whole  top  2  lb.  5J  oz. 

The  best  arrangement,  for  general  observations,  is  to  have  the  disc  of  card  divided 
into  four  quadrants,  coloured  with  vermilion,  chrome  yellow,  emerald  green,  and  ultramarine. 
These  are  bright  colours,  and,  if  the  vermilion  is  good,  they  combine  into  a  grayish  tint 
when  the  revolution  is  about  the  axle,  and  burst  into  brilliant  colours  when  the  axis  is 
disturbed.  It  is  useful  to  have  some  concentric  circles,  drawn  with  ink,  over  the  colours, 

and  about  12  radii  drawn  in  strong  pencil  lines.  It  is  easy  to  distinguish  the  ink  from 
the  pencil  lines,  as  they  cross  the  invariable  axis,  by  their  want  of  lustre.  In  this  way, 
the  path  of  the  invariable  axis  may  be  identified  with  great  accuracy,  and  compared  with 
theory. 
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[From  the  Philosophical  Magazine,  Vol.  xiv.] 

XVI.     Account  of  Experiments  on  the  Perception  of  Colour. 

To  the  Editors  of  the  Philosophical  Magazine  and  Journal. 

Gentlemen, 

The  experiments  which  I  intend  to  describe  were  undertaken  in  order 

to  render  more  perfect  the  quantitative  proof  of  the  theory  of  three  primary 

colours.  According  to  that  theory,  every  sensation  of  colour  in  a  perfect  human 

eye  is  distinguished  by  three,  and  only  three,  elementary  qualities,  so  that  in 

mathematical  language  the  quahty  of  a  colour  may  be  expressed  as  a  function 

of  three  independent  variables.  There  is  very  little  evidence  at  present  for 

deciding  the  precise  tints  of  the  true  primaries.  I  have  ascertained  that  a 

certain  red  is  the  sensation  wanting  in  colour-blind  eyes,  but  the  mathematical 

theory  relates  to  the  number,  not  to  the  nature  of  the  primaries.  If,  with  Sir 
David  Brewster,  we  assume  red,  blue,  and  yellow  to  be  the  primary  colours,  this 

amounts  to  saying  that  every  conceivable  tint  may  be  produced  by  adding 

together  so  much  red,  so  much  yellow,  and  so  much  blue.  This  is  perhaps  the 
best  method  of  forming  a  provisional  notion  of  the  theory.  It  is  evident  that  if 

any  colour  could  be  found  which  could  not  be  accurately  defined  as  so  much  of 
each  of  the  three  primaries,  the  theory  would  fall  to  the  ground.  Besides  this, 

the  truth  of  the  theory  requires  that  every  mathematical  consequence  of  assuming 

every  colour  to  be  the  result  of  mixture  of  three  primaries  should  also  be  true. 

I  have  made  experiments  on  upwards  of  100  diiferent  artificial  colours,  con- 
sisting of  the  pigments  used  in  the  arts,  and  their  mechanical  mixtures.  These 

experiments  were  made  primarily  to  trace  the  effects  of  mechanical  mixture  on 

various  coloured  powders ;  but  they  also  afford  evidence  of  the  truth  of  the 
theory,  that  all  these  various   colours   can  be   referred   to   three   primaries.      The 
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following  experiments  relate  to  the  combinations  of  six  well-defined  colours  only, 
and  I  shall  describe  them  the  more  minutely,  as  I  hope  to  induce  those  who 

have  good  eyes  to  subject  them  to  the  same  trial  of  skill  in  distinguishing 
tints. 

The  method  of  performing  the  experiments  is  described  in  the  Transactions 

of  the  Royal  Society  of  Edinburgh,  Vol.  xxi.  Part  2.  The  colour- top  or  teetotum 
which  I  used  may  be  had  of  Mr  J.  M.  Bryson,  Edinburgh,  or  it  may  be  easily 

extemporized.  Any  rotatory  apparatus  which  will  keep  a  disc  revolving  steadily 
and  rapidly  in  a  good  light,  without  noise  or  disturbance,  and  can  be  easily 

stopped  and  shifted,  will  do  as  well  as  the  contrivance  of  the  spinning-top. 
The  essential  part  of  the  experiment  consists  in  placing  several  discs  of 

coloured  paper  of  the  same  size,  and  slit  along  a  radius,  over  one  another,  so 

that  a  portion  of  each  is  seen,  the  rest  being  covered  by  the  other  discs.  By 

sliding  the  discs  over  each  other  the  proportion  of  each  colour  may  be  varied, 
and  by  means  of  divisions  on  a  circle  on  which  the  discs  lie,  the  proportion  of 
each  colour  may  be  read  off.     My  circle  was  divided  into  100  parts. 

On  the  top  of  this  set  of  discs  is  placed  a  smaller  set  of  concentric  discs, 
so  that  when  the  whole  is  in  motion  round  the  centre,  the  colour  resulting  from 

the  mixture  of  colours  of  the  small  discs  is  seen  in  the  middle  of  that  arising 

from  the  laro-er  discs.  It  is  the  object  of  the  experimenter  to  shift  the  colours 
till  the  outer  and  inner  tints  appear  exactly  the  same,  and  then  to  read  off  the 

proportions. 
It  is  easy  to  deduce  from  the  theory  of  three  primary  colours  what  must 

be  the  number  of  discs  exposed  at  one  time,  and  how  much  of  each  colour  must 

appear. 
Every  colour  placed  on  either  circle  consists  of  a  certain  proportion  of  each 

of  the  primaries,  and  in  order  that  the  outer  and  inner  circles  may  have  precisely 
the  same  resultant  colour  in  every  respect,  there  must  be  the  same  amount  of 

each  of  the  primary  colours  in  the  outer  and  inner  circles.  Thus  we  have  as 

many  conditions  to  fulfil  as  there  are  primary  colours;  and  besides  these  we 
have  two  more,  because  the  whole  number  of  divisions  in  either  the  outer  or 

the  inner  circle  is  100,  so  that  if  there  are  three  primary  colours  there  wiU  be 

five  conditions  to  fulfil,  and  this  will  require  five  discs  to  be  disposable,  and 

these  must  be  arranged  so  that  three  are  matched  against  two,  or  four  against  one. 
If  we  take  six  difierent  colours,  we  may  leave  out  any  one  of  the  six,  and 

so   form  six   different   combinations   of    five    colours.      It   is   plain   that   these   six 
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combinations   must  be  equivalent   to   two   equations   only,    if  the    theory   of  three 

primaries  be  true. 

The  method  which  I  have  found  most  convenient  for  registering  the  result 

of  an  experiment,  after  an  identity  of  tint  has  been  obtained  in  the  inner  and 

outer  circles,  is  the  following : — 

Write  down  the  names  or  symbols  of  the  coloured  discs  each  at  the  top  of 

a  column,  and  underneath  write  the  number  of  degrees  of  that  colour  observed, 

calling  it  +  when  the  colour  is  in  the  outer  circle,  and  — when  it  is  in  the  inner 
circle ;  then  equate  the  whole  to  zero.  In  this  way  the  account  of  each  colour 

is  kept  in  a  separate  column,  and  the  equations  obtained  are  easily  combined  and 

reduced,  without  danger  of  confounding  the  colours  of  which  the  quantities  have 

been  measured.  The  following  experiments  were  made  between  the  3rd  and  11th 

of  September,  1856,  about  noon  of  each  day,  in  a  room  fronting  the  north, 

without  curtains  or  any  bright- coloured  object  near  the  window.  The  same 
combination  was  never  made  twice  in  one  day,  and  no  thought  was  bestowed 

upon  the  experiments  except  at  the  time  of  observation.  Of  course  the  gradua- 
tion was  never  consulted,  nor  former  experiments  referred  to,  till  each  combi- 

nation of  colours  had  been  fixed  by  the  eye  alone;  and  no  reduction  waa 

attempted  till  all  the  experiments  were  concluded. 

The  coloured  discs  were  cut  from  paper  painted  of  the  following  colours  :  — 
Vermilion,  Ultramarine,  Emerald-green,  Snow-white,  Ivory-black,  and  Pale 

Chrome-yellow.  They  are  denoted  by  the  letters  V,  U,  G,  W,  B,  Y  respectively. 
These  colours  were  chosen,  because  each  is  well  distinguished  from  the  rest,  so 

that  a  small  change  of  its  intensity  in  any  combination  can  be  observed.  Two 

discs  of  each  colour  were  prepared,  so  that  in  each  combination  the  colours  might 

occasionally  be  transposed  from  the  outer  circle  to  the  inner. 

The  first  equation  was  formed  by  leaving  out  vermilion.  The  remaining 

colours  are  Ultramarine-blue,  Emerald-green,  White,  Black,  and  Yellow.  We 

might  suppose,  that  by  mixing  the  blue  and  yellow  in  proper  proportions,  we 

should  get  a  green  of  the  same  hue  as  the  emerald-green,  but  not  so  intense, 
80  that  in  order  to  match  it  we  should  have  to  mix  the  green  with  white  to 

dilute  it,  and  with  black  to  make  it  darker.  But  it  is  not  in  this  way  that  we 

have  to  arrange  the  colours,  for  our  blue  and  yellow  produce  a  pinkish  tint,  and 

never  a  green,  so  that  we  must  add  green  to  the  combination  of  blue  and  yellow, 

to  produce  a  neutral  tint,  identical  with  a  mixture  of  white  and  black. 
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Blue,  green,  and  yellow  must  therefore  be  combined  on  the  large  discs,  and 

stand  on  one  side  of  the  equation,  and  black  and  white,  on  the  small  discs,  must 

stand  on  the  other  side.  In  order  to  facilitate  calculations,  the  colours  are 

always  put  down  in  the  same  order;  but  those  belonging  to  the  small  discs 

are  marked  negative.     Thus,  instead  of  writing 

54U  +  UG  +  32Y  =  32W  +  68B, 

we  write  +54U  + 14G-32W-68B  +  32Y  =  0. 

The  sum  of  all  the  positive  terms  of  such  an  equation  is  100,  being  the 

whole  number  of  divisions  in  tne  circle.  The  sum  of  the  negative  terms  is 

also  100. 

The  second  equation  consists  of  all  the  colours  except  blue ;  and  in  this 

way  we  obtain  six  different  combinations  of  five  colours. 

Each  of  these  combinations  was  formed  by  the  unassisted  judgment  of  my 

eye,  on  six  different  occasions,  so  that  there  are  thirty-six  independent  observa- 
tions of  equations  between  five  colours. 

Table  I.  gives  the  actual  observations,  with  their  dates. 

Table  II.  gives  the  result  of  summing  together  each  group  of  six  equations. 

Each  equation  in  Table  11.  has  the  sums  of  its  positive  and  negative  co- 
eflBcients  each  equal  to  600. 

Having  obtained  a  number  of  observations  of  each  combination  of  colours, 

we  have  next  to  test  the  consistency  of  these  results,  since  theoretically  two 

equations  are  sufficient  to  determine  all  the  relations  among  six  colours.  We 

must  therefore,  in  the  first  place,  determine  the  comparative  accuracy  of  the 

different  sets  of  observations.  Table  III.  gives  the  averages  of  the  errors  of 

each  of  the  six  groups  of  observations.  It  appears  that  the  combination  IV.  is 

the  least  accurately  observed,  and  that  VI.  is  the  best. 

Table  IV.  gives  the  averages  of  the  errors  in  the  observation  of  each  colour 

in  the  whole  series  of  experiments.  This  Table  was  computed  in  order  to  detect 

any  tendency  to  colour-blindness  in  my  own  eyes,  which  might  be  less  accurate 

in  discriminating  red  and  green,  than  in  detecting  variations  of  other  colours. 

It  appears,  however,  that  my  observations  of  red  and  green  were  more  accurate 

than    those   of    blue    or  yellow.      White   is   the   most   easily   observed,   from   the 
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brilliancy  of  the  colour,  and  black  is  liable  to  the  greatest  mistakes.  I  would 

recommend  this  method  of  examining  a  series  of  experiments  as  a  means  of 

detecting  partial  colour-blindness,  by  the  different  accuracy  in  observing  differ- 
ent colours.  The  next  operation  is  to  combine  all  the  equations  according  to 

their  values.  Each  was  first  multiplied  by  a  coefficient  proportional  to  its  ac- 

curacy, and  to  the  coefficient  of  white  in  that  equation.  The  result  of  adding 

all  the  equations  so  found  is  given  in  equation  (W). 

Equation  (Y)  is  the  result  of  similar  operations  with  reference  to  the 

yellow  on  each  equation. 

We  have  now  two  equations,  from  which  to  deduce  six  new  equations,  by 

eliminating  each  of  the  six  colours  in  succession.  We  must  first  combine  the 

equations,  so  as  to  get  rid  of  one  of  the  colours,  and  then  we  must  divide  by 

the  sum  of  the  positive  or  negative  coefficients,  so  as  to  reduce  the  equations 

to  the  form  of  the  observed  equations.  The  results  of  these  operations  are  given 

in  Table  V.,  along  with  the  means  of  each  group  of  six  observations.  It  will 

be  seen  that  the  differences  between  the  results  of  calculation  from  two  equations 

and  the  six  independent  observed  equations  are  very  small.  The  errors  in  red 

and  green  are  here  again  somewhat  less  than  in  blue  and  yellow,  so  that  there 

is  certainly  no  tendency  to  mistake  red  and  green  more  than  other  colours. 

The  average  difference  between  the  observed  mean  value  of  a  colour  and  the 

calculated  value  is  77  of  a  degree.  The  average  error  of  an  observation  in  any 

group  from  the  mean  of  that  group  was  '92.  No  observation  was  attempted 
to  be  registered  nearer  than  one  degree  of  the  top,  or  yo7  of  ̂   circle  ;  so  that 

this  set  of  observations  agrees  with  the  theory  of  three  primary  colours  quite 
as  far  as  the  observations  can  warrant  us  in  our  calculations ;  and  I  think  that 

the  human  eye  has  seldom  been  subjected  to  so  severe  a  test  of  its  power  of 

distinguishing  colours.  My  eyes  are  by  no  means  so  accurate  in  this  respect  as 

many  eyes  I  have  examined,  but  a  little  practice  produces  great  improvement 
even  in  inaccurate  observers. 

I  have  laid  down,  according  to  Newton's  method,  the  relative  positions  of 
the  five  positive  colours  with  which  I  worked.  It  will  be  seen  that  W  lies 

within  the  triangle  VUG,  and  Y  outside  that  triangle. 

The  first  combination.  Equation  I.,  consisted  of  blue,  yellow,  and  green, 

taken  in  such  proportions  that  their  centre  of  gravity  falls  at  W, 
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In  Equation  II.  a  mixture  of  red  and  green,  represented  in  the  diagram 

by  the  point  2,  is  seen  to  be  equivalent  to  a  mixture  of  white  and  yellow,  also 

represented  by  2,  which  is  a  pale  yellow  tint. 

Equation  III.  is  between  a  mixture  of  blue  and  yellow  and  another  of 

white  and  red.  The  resulting  tint  is  at  the  intersection  of  YU  and  WV ;  that 

is,  at  the  point  3,  which  represents  a  pale  pink  grey. 

Equation  IV.  is  between  VG  and  UY,  that  is,  at  4,  a  dirty  yellow. 

Equation  V.  is  between  a  mixture  of  white,  red,  and  green,  and  a  mixture 

of  blue  and  yellow  at  the  point  5,  a  pale  dirty  yellow. 

Equation  VI.  has  W.  for  its  resulting  tint. 

Blue,  U. 

Bed,  V 
G,  Green. 

Y,  Yellow. 

Of  all  the  resulting  tints,  that  of  Equation  IV.  is  the  furthest  from  white  ; 
and  we  find  that  the  observations  of  this  equation  are  affected  with  the  greatest 

errors.  Hence  the  importance  of  reducing  the  resultant  tint  to  as  nearly  a 

neutral  colour  as  possible. 

It  is  hardly  necessary  for  me  to  observe,  that  the  whole  of  the  numerical 

results  which  I  have  given  apply  only  to  the  coloured  papers  which  I  used, 

and  to  them  only  when  illuminated  by  daylight  from  the  north  at  mid-day  in 

September,  latitude  55".  In  the  evening,  or  in  winter,  or  by  candlelight,  the 
results  are  very  different.  I  believe,  however,  that  the  results  would  differ  far 
less  if  observed  by  different  persons,  than  if  observed  under  different  lights ; 

for  the  apparatus  of  vision  is  wonderfully  similar  in  different  eyes,  and  even  in 

colour-blind  eyes  the  system  of  perception  is  not  different,  but  defective. 
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Table  I. — The  observations  arranged  in  groups. 

Equation  I. V  =  0. 
+  U. +  G. 

-W. 

-B.    +Y. 
Equation  IV. 

-V. 

+u. 

-O. 

w=o. 

+  B. 

+  Y. 1856,  Sept.  3. 0 
54 

12 
34 66       34 

1856, 

Sept.  3. 62 15 

38 0 

53 

32 
4. 0 

58 
14 31 69       28 

4. 

63 

17 37 

0 

46 

37 5. 
0 55 

12 
32 68       33 

5. 

64 

16 

36 0 50 

34 

6. 0 
54 

14 32 68       32 

6. 

62 19 38 0 46 35 
8. 0 54 

14 
32 68       32 8. 

62 

19 

38 0 

47 

34 

9. 0 53 
15 

32 68       32 

9. 

63 

17 

37 

0 

49 

34 

Equation  n. 

-V. 
u=o. 

-G. 

+  \V. +  B.     +Y. 
Equation  V. +v. 

-U. 

+  G. 
+w. 

B  =  0. 

-Y. 

Sept.  3. 59 0 41 9 71       20 
Sept.  3. 

56 47 28 

16 

0 53 
4. 61 0 39 9 68       23 

4. 

57 

50 25 

18 0 50 

5. 61 0 39 9 67       24 

5. 

66 49 

24 

20 0 

51 

6. 
59 0 41 

10 
66       24 6. 55 

47 27 

18 0 53 

8. 60 0 40 9 69       22 8. 54 49 26 

20 

0 

51 

9. 
61 0 

39 
9 68       23 

11. 
56 50 

27 17 0 50 

Equation  HI. +v. 

-u. 

G  =  0. 
+w. +  B.     -Y. Equation  VI. 

+v. +  U. 
+  G. 

-W. 

-B. 

Y  =  0. 

Sept.  3. 
20 56 0 28 52       44 

Sept.  3. 
38 

27 

35 

24 

76 0 

4. 23 
58 

0 30 47       42 

4. 

39 

27 34 

24 76 0 
5. 24 56 0 29 47       44 5. 

40 

26 34 24 

76 

0 
6. 20 56 0 

31 
49       44 

6. 

38 

28 34 24 

76 

0 

8. 21 

57 
0 

29 
60       43 

8. 

39 28 

33 24 

76 

0 

9. 21 58 0 
29 

50       42 11. 39 

27 

34 

23 

77 0 

Table  II.— The  sums  of  the  observed  equations. 
V. 

U. 
G. W. B. Y. 

Equation    I. 
0 

+  328 
+    81 

-193 

- 

-407 

+ 
191 II. _ 361 0 

-239 

+    55 +  409 + 136 
III. + 129 

-341 

0 
+  176 

+  295 
_ 259 

IV. 
376 +  103 

-224 

0 +  291 + 206 V. 
+ 334 

-292 

+  157 
+  109 

0 - 308 
VI. 4 233 +  163 +  204 

-143 

- 

-457 

0 

Table  III. — The  averages  of  the  errors  of  the  several  equations  from  the  means  expressed  in 

j^  parts  of  a  circle. 

Equations. 
I. 

n. 
m. IV. 

V. 

VL 

Errors. 

•94 

•85 

1-05 

117 ro8 

•40 

Table  IV. — The  averages  of  the  errors  of  the  several  colours  from  the  means  in  y^  parts  of 
a  circle. 

Colours.  V.  D.  G.  W.  B,  Y. 

Errors.  -83  -99  •SO  -61  115  r09 

Average  error  on  the  whole  ̂ 92. 

The  equations  from  which  the  reduced  results  were  obtained  were  calculated  as  follow : — 

Equation  for  (W)- (II)  +  2  (III)  +  (V)-2  (I) -4  (VI). 

Equation  for  (Y)  =  2  (I)  +  2  (II)  -  3  (III)  +  2  (IV)  -  3  (V> 
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These  operations  being  performed,  gave 

V.  U.  G.         W.         B.  Y. 

(W)      +    701  +  2282  +  1060-1474-3641  +  1072  =  0. 

(Y)      +2863-2761  +  1235  +  1131^    299-2767  =  0. 

From  these  were  obtained  the  following  results  by  elimination: — 

Table  V. 

Equation 

J   r  From  (W)  and  (Y) 
■  \  From  observation 

0 
0 

-54-1 
-54-7 

-13-9 

-13-5 
+  32-0 

+  32-1 +  68-0 
+  67-9 

-32  0 

-31-8 

jj    (  From  (W)  and  (Y) 
*  ( From  observation 

-59-6 
-60-2 

0 
0 

-40-4 
-39-8 

+  10-4 
+    9-2 

+  66-0 
+  68-2 

+  23-6 
+  22-6 

,^^   f  From  (W)  and  (Y) 
\  From  observation 

-21-7 

-21-5 
+  57-4 
+  56-8 

0 
0 -30-2 

-29-3 

-48-1 

-49-2 

+  42-6 

+  43-2 

f  From  (W)  and  (Y) 

(  From  observation 

-62-4 
-62-7 

+  18-6 
+  17-2 

-37-6 
-37-3 

0 
0 

+  45-7 +  48-5 +  35-7 
+  34-3 

1  From  (W)  and  (Y) 
■  (  From  observation +  55-6 

+  55-7 

-49-0 
-48-7 

+  25-2 
+  26-1 

+  19-2 
+  18-2 

0 
0 -51-0 -51-3 

^T  f  From  (W)  and  (Y)    -397      -26-6      -337      +227      +77-3  0 
^^•\  From  observation       -38-8     -27-2      -340      +28-3     +76-2  0 

James  Clerk  Maxwell. 

Glexlair,  Jum  13,  1857. 
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XVII.     On  the  General  Laws  of  Optical  Instruments. 

The  optical  effects  of  compound  instruments  have  been  generally  deduced 

from  those  of  the  elementary  parts  of  which  they  are  composed.  The  formulae 

given  in  most  works  on  Optics  for  calculating  the  effect  of  each  spherical  sur- 
face are  simple  enough,  but,  when  we  attempt  to  carry  on  our  calculations  from 

one  of  these  surfaces  to  the  next,  we  arrive  at  fractional  expressions  so  com- 

phcated  as  to  make  the  subsequent  steps  very  troublesome. 

Euler  (Acad.  R.  de  Berlin,  1757,  1761.  Acad.  R.  de  Paris,  1765)  has  attacked 

these  expressions,  but  his  investigations  are  not  easy  reading.  Lagrange  (Acad. 

Berhn,  1778,  1803)  has  reduced  the  case  to  the  theory  of  continued  fractions 

and  so  obtained  general  laws. 

Gauss  [Dioptrische  Untersuchungen,  Gottingen,  1841)  has  treated  the  subject 

with  that  combination  of  analytical  skiU  with  practical  ability  which  he  displays 

elsewhere,  and  has  made  use  of  the  properties  of  principal  foci  and  principal 

planes.  An  account  of  these  researches  is  given  by  Prof.  Miller  in  the  third 

volume  of  Taylor's  Scientific  Memoirs.  It  is  also  given  entire  in  French  by 
M.  Bravais  in  Liouvilles  Journal  for  1856,  with  additions  by  the  translator. 

The  method  of  Gauss  has  been  followed  by  Prof  Listing  in  his  Treatise 

on  the  DioptHcs  of  the  Eye  (in  Wagner's  Handworterhuch  der  Physiologie)  from 
whom  I  copy  these  references,  and  by  Prof  Helmholtz  in  his  Treatise  vn 

Physiological   Optics   (in   Karsten's    Cyclopadie). 

The  earliest  general  investigations  are  those  of  Cotes,  given  in  Smith's 
Optics,  II.  76  (1738).  The  method  there  is  geometrical,  and  perfectly  general, 

but  proceeding  from  the  elementary  cases  to  the  more  complex  by  the  method 

of  mathematical  induction.  Some  of  his  modes  of  expression,  as  for  instance  his 

measure  of  "apparent  distance,"  have  never  come  into  use,  although  his  results 
may    easily    be    expressed    more    intelligibly ;    and    indeed    the    whole    fabric    of 
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Geometrical  Optics,  as  conceived  by  Cotes  and  laboured  by  Smith,  has  fallen 

into  neglect,  except  among  the  writers  before  named.  Smith  tells  us  that  it 

was  with  reference  to  these  optical  theorems  that  Newton  said  "  If  Mr  Cotes 

had  lived  we  might  have  known  something." 
The  investigations  which  I  now  offer  are  intended  to  show  how  simple  and 

how  general  the  theory  of  instruments  may  be  rendered,  by  considering  the 

optical  effects  of  the  entire  instrument,  without  examining  the  mechanism  by 

which  those  effects  are  obtained.  I  have  thus  established  a  theory  of  "perfect 

instruments,"  geometrically  complete  in  itself,  although  I  have  also  shown,  that 
no  instrument  depending  on  refraction  and  reflexion,  (except  the  plane  mirror) 

can  be  optically  perfect.  The  first  part  of  this  theory  was  conununicated  to 

the  Philosophical  Society  of  Cambridge,  28th  April,  1856,  and  an  abstract  will 

be  found  in  the  Philosophical  Magazine,  November,  1856.  Propositions  VIII. 

and  IX.  are  now  added.     I  am  not  aware  that  the  last  has  been  proved  before. 

In  the  following  propositions  I  propose  to  establish  certain  rules  for  deter- 

mining, from  simple  data,  the  path  of  a  ray  of  light  after  passing  through  any 

optical  instrument,  the  position  of  the  conjugate  focus  of  a  luminous  point,  and 

the  magnitude  of  the  image  of  a  given  object.  The  method  which  I  shall  use 

does  not  require  a  knowledge  of  the  internal  construction  of  the  instrument  and 

derives  all  its  data  from  two  simple  experiments. 

There  are  certain  defects  incident  to  optical  instruments  from  which,  in  the 

elementary  theory,  we  suppose  them  to  be  free.  A  perfect  instrument  must 
fulfil  three  conditions : 

I.  Every  ray  of  the  pencil,  proceeding  from  a  single  point  of  the  object, 

must,  after  passing  through  the  instrument,  converge  to,  or  diverge  from,  a 

single  point  of  the  image.  The  corresponding  defect,  when  the  emergent  rays 

have  not  a  common  focus,  has  been  appropriately  called  (by  Dr  Whewell) 

Astigmatism. 

II.  If  the  object  is  a  plane  surface,  perpendicular  to  the  axis  of  the 

instrument,  the  image  of  any  point  of  it  must  also  lie  in  a  plane  perpendicular 

to  the  axis.  When  the  points  of  the  image  lie  in  a  curved  surface,  it  is  said 
to  have  the  defect  of  curvature. 

III.  The  image  of  an  object  on  this  plane  must  be  similar  to  the  object, 

whether  its  linear  dimensions  be  altered  or  not;  when  the  image  is  not  similar 

to  the  object,  it  is  said  to  be  distorted. 
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An  image  free  from  these  three  defects  is  said  to  be  jycrfect. 

In  Fig.  1,  p.  285,  let  A^x^a^  represent  a  plane  object  perpendicular  to  the 

axis  of  an  instrument  represented  by  I.,  then  if  the  instrument  is  perfect,  as 

regards  an  object  at  that  distance,  an  image  A.a.p^_  will  be  formed  by  the 

emergent  rays,  which  will  have  the  following  properties  : 

I.  Every  ray,  which  passes  through  a  point  a^  of  the  object,  will  pass 

through   the    corresponding   point   a.   of  the    image. 

II.  Every  point  of  the  image  will  lie  in  a  plane  perpendicular  to  the  axis. 

III.  The   figure   A.ap^   will    be   similar  and   similarly  situated  to  the  figure 

Now  let  us  assume  that  the  instrument  is  also   perfect  as  regards  an  object 

in   the   plane   i?i?>,y8i   perpendicular   to   the   axis   through  -B„  and   that  the   image 

of  such   an   object   is   in   the   plane   B^fio    and    similar    to  the    object,    and   we 

shall  be  able  to  prove  the  following  proposition : 

Prop.  I.  If  an  instrument  give  a  perfect  image  of  a  plane  object  at  two 

different  distances  from  the  instrument,  all  incident  rays  having  a  common  focus 

will  have  a  common  focus  after  emergence. 

Let  Pj  be  the  focus  of  incident  rays.  Let  P-,a^^  be  any  incident  ray. 

Then,  since  every  ray  which  passes  through  a^  passes  through  a,,,  its  image  after 

emergence,  and  since  every  ray  which  passes  through  Z;,  passes  through  6,,  the 

direction  of  the  ray  P^a^\  after  emergence  must  be  ah.. 

Similarly,  since  a^  and  ySj  are  the  images  of  Oj  and  ̂ i,  if  P^a^^^  be  any 

other  ray,  its  direction  after  emergence  will  be  a„fi.y 

Join  a, a,,  h^^„  a.xL..,  hfi.,;  then,  since  the  parallel  planes  AjCt^a^  and  BJ}^, 

are  cut  by  the  plane  of  the  two  rays  through  P^,  the  intersections  cTiOi  and 

?jjSi  are  parallel. 

Also,  their  images,  being  similarly  situated,  are  parallel  to  them,  therefore 

a„a,  is  parallel  to  6^j,  and  the  lines  aJj„  and  a,^^  are  in  the  same  plane,  and 

therefore  either  meet  in  a  point  P^  or  are  parallel. 

Now  take  a  third  ray  through  P,,  not  in  the  plane  of  the  two  former. 

After  emergence  it  must  either  cut  both,  or  be  parallel  to  them.  If  it  cuts 

both  it  nuist  pass  through  the  point  P.,  and  then  every  other  ray  must  pass 

through  P.,  for  no  line  can  intersect  three  Hues,  not  in  one  plane,  without 

passing   through   their   point  of  intersection.     If  not,  then  all  the  emergent  rays 
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are  parallel,  which  is  a  particular  case  of  a  perfect  pencil.  So  that  for  every 

position  of  the  focus  of  incident  rays,  the  emergent  pencil  is  free  from  astig- matism. 

Prop.  II.  In  an  instrument,  perfect  at  two  different  distances,  the  image 

of  any  plane  object  perpendicular  to  the  axis  will  be  free  from  the  defects  o
f 

curvature  and  distortion. 

Through  the  point  P,  of  the  object  draw  any  line  P,Q,  in  the  plane  of 

the  object,  and  through  P,Q,  draw  a  plane  cutting  the  planes  A„  B,  in  the  hnes 

ttio,,  h^,.  These  lines  will  be  parallel  to  P,Q,  and  to  each  other,  wherefore 

also  their  images,  a^o,,  b^„  will  be  parallel  to  P,Q,  and  to  each  other,  and 

therefore  in  one  plane. 

Now  suppose  another  plane  drawn  through  P^Q,  cutting  the  planes  A,  and 

B,  in  two  other  lines  parallel  to  P,Q^.  These  will  have  parallel  images  in  the 

planes  A^  and  B„  and  the  intersection  of  the  planes  passing  through  the  two 

pairs  of  images  wiU  define  the  line  P^Q,  which  will  be  parallel  to  them,  and 

therefore  to  P,Q„  and  will  be  the  image  of  P,Q,.  Therefore  P^,  the  image 

of  P,Qi  is  parallel  to  it,  and  therefore  in  a  plane  perpendicular  to  the  axis. 

Now  if  all  corresponding  lines  in  any  two  figures  be  parallel,  however  the  lines 

be  drawn,  the  figures  are  similar,  and  similarly  situated. 

From  these  two  propositions  it  follows  that  an  instrument  giving  a  perfect 

image  at  two  different  distances  will  give  a  perfect  image  at  all  distances.  We 

have  now  only  to  determine  the  simplest  method  of  finding  the  position  and 

magnitude  of  the  image,  remembering  that  wherever  two  rays  of  a  pencil  inter- 

sect, all  other  rays  of  the  pencil  must  meet,  and  that  aU  parts  of  a  plane 

object  have  their  images  in  the  same  plane,  and  equally  magnified  or  diminished. 

Prop.  III.  A  ray  is  incident  on  a  perfect  instrument  parallel  to  the  axis, 

to  find  its  direction  after  emergence. 

Let  a  J),  (fig.  2)  be  the  incident  ray,  A,a,  one  of  the  planes  at  which  an 

object  has  been  ascertained  to  have  a  perfect  image.  A,a,  that  image,  similar 

to  A^tti  but  in  magnitude  such  that  A/t^^xA.a,. 

Similarly  let  BJ),  be  the  image  of  BJj„  and  let  BM,  =  yBA-  Also  let 

A,B,  =  c,  and  A.X^  =  c^. 

Then  since  a,  and  h„  are  the  images  of  a,  and  \,  the  line  F^aK  will  be 

the   direction   of  the   ray  after   emergence,  cutting   the   axis   in   F^,  (unless  x  =  y. 
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when    a.})^    becomes    parallel    to    the    axis).      The    point    F._    may   be    found,    by 

remembering  that  A^a,  =  B^b^,  Ajii  =  xAfL^,  B]j.  =  yDJj^.     We  find — 

■  "     'y-x 

Let  g^  be  the  point  at  which  the  emergent  ray  is  at  the  same  distance 

from  the  axis  as  the  incident  ray,  draw  gfi^  perpendicular  to  the  axis,  then 
we  have 

'   y-x 

Similarly,  if  aSiF^  be  a  ray,  which,  after  emergence,  becomes  parallel  to 

the  axis ;  and  gfi^  a  line  perpendicular  to  the  axis,  equal  to  the  distance  of 
the  parallel  emergent  ray,  then 

A,F,  =  c,-y~,        F,G,^^^^  . x—y  ^—y 

Definitions. 

I.  The  point  F^,  the  focus  of  incident  rays  when  the  emergent  rays  are 
parallel  to  the  axis,  is  called  the  Jirst  jprincii^al  focus   of  the   instrument. 

II.  The  plane  G^^  at  which  incident  rays  through  F^  are  at  the  same 

distance  from  the  axis  as  they  are  after  emergence,  is  called  the  first  princi- 
pal plane   of  the   instrument.     F^G^   is   called   the  first  focal   length. 

III.  The  point  F^,  the  focus  of  emergent  rays  when  the  incident  rays 
are  parallel,  is  called  the  second  principal  focus. 

IV.  The  plane  G,^.,  at  which  the  emergent  rays  are  at  the  same  distance 
from  the  axis,  as  before  incidence,  is  called  the  second  principal  plane,  and 
Ffi^  is  called  the  second  focal  length. 

When  x  =  y,  the  ray  is  parallel  to  the  axis,  both  at  incidence  and  emerg- 
ence, and  there  are  no  such  points  as  F  and  G.  The  instrument  is  then 

called  a   telescope.     x(  =  y)   is   called   the   linear  ina^nifying  power  and  is  denoted 

by  I,  and  the  ratio   -    is  denoted   by  n,    and  may  be  called  the  elongation. 

In  the  more  general  case,  in  which  x  and  y  are  different,  the  principal 
foci  and  principal  planes  afford  the  readiest  means  of  finding  the  position  of 
images. 
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Prop.  IV.  Given  the  principal  foci  and  principal  planes  of  an  instrument, 

to   find   the   relations   of  the  foci   of  the   incident   and   emergent   pencils. 

Let  F„  F„  (fig.  3)  be  the  principal  foci,  G^,  G.,  the  principal  planes,  Q^ 

the  focus  of  incident  light,    Q^P^  perpendicular  to  the  axis. 

Through  ̂ 1  draw  the  ray  Q^g^F^.  Since  this  ray  passes  through  F^  it 

emerges  parallel  to  the  axis,  and  at  a  distance  from  it  equal  to  G^g^.  Its 

direction  after  emergence  is  therefore  Q.,g^  where  G^g„  =  G^g^.  Through  Q^  draw 

Q{Yi  parallel  to  the  axis.  The  corresponding  emergent  ray  wiD  pass  through 

F^^,  and  will  cut  the  second  principal  plane  at  a  distance  G^y^_=  G-^y^,  so  that 

jP„y,  is  the  direction   of  this  ray  after  emergence. 

Since  both  rays  pass  through  the  focus  of  the  emergent  pencil,  Q^,  the 

point  of  intersection,  is  that  focus.  Draw  Q^P^  perpendicular  to  the  axis. 

Then   PxQi  =  G{Y^  =  G^y.,    and    G,g,  =  G^g^  =  P,Q.,.     By   similar   triangles  F,P,Q,  and 
■F.G^r 

P,F,  :  F,G,  ::  P,Q,  :  {G,g,  =  )  P,Q,. 

And  by  similar  triangles  F^P^Q^  and  F^G^y^ 

Pm  =  Gry^)  ■  P^Q^  ■■■■  ̂ ^.  ■■  F^P^-- 
We  may  put  these  relations  into  the  concise  form 

P,F,_P,Q,_G^, 

F^r  p.Qr  F,p,' 
and  the  values  of  F„P^  and  PJ^^  are 

F  G    GJF  F  G 

F..P.=    '^'pf^"-  and  P.Q.  =  ̂'P.Q,. 

These  expressions  give  the  distance  of  the  image  from  F^  measured  along  the 

axis,  and  also  the  perpendicular  distance  from  the  axis,  so  that  they  serve  to 

determine  completely  the  position  of  the  image  of  any  point,  when  the  princi- 
pal foci  and  principal  planes  are  known. 

Prop.  V.  To  find  the  focus  of  emergent  rays,  when  the  instrument  is  a 

telescope. 

Let  ̂ 1  (fig.  4)  be  the  focus  of  incident  rays,  and  let  Q^aJ)^  be  a  ray 

parallel  to  the  axis ;  then,  since  the  instrument  is  telescopic,  the  emergent 

ray  Q^aM^  will  be  parallel  to  the  axis,  and  Q^P^^l.  Q^P^. 
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Let    QiOiB^   be   a   ray    through   ̂ ,,    the   emergent    ray    will    be    Q,a,J5,,    and 

AM,  ~  A,a,~  I.  A,a,  "  A.a,  "  A,B, ' 

so  that  -FT^  =  -4  r>'  =  n,  a  constant  ratio. P^B,     A,B^ 

Cor.     If  a   point    C  be   taken   on   the   axis   of  the    instrument   so    that 

^^^  =  A,B,-A^,  ̂ '^'  =  T:^ ^^^" 

then  CP,  =  n.CP,. 

Def.     The   point    C  is   called   the   centre   of  the   telescope. 

It  appears,  therefore,  that  the  image  of  an  object  in  a  telescope  has  its 

dimensions  perpendicular  to  the  axis  equal  to  I  times  the  corresponding  dimen- 

sions of  the  object,  and  the  distance  of  any  part  from  the  plane  through  C 

equal  to  n  times  the  distance  of  the  corresponding  part  of  the  object.  Of 

course  all  longitudinal  distances  among  objects  must  be  multipUed  by  n  to 

obtain   those   of  their   images,    and   the   tangent   of  the   angular  magnitude  of  an 

object    as    seen    from    a    given    point   in   the   axis   must   be   multipHed   by   -   to 

obtain   that   of  the   image   of  the   object   as   seen   from   the   image   of  the   given 

point.     The   quantity  -   is   therefore   called   the   angular    magnifying   power,   and 

is  denoted  by  m. 

Prop.  VI.  To  find  the  principal  foci  and  principal  planes  of  a  combina- 

tion of  two  instruments  having  a  common  axis. 

Let  /,  /'  (fig.  5)  be  the  two  instruments,  G^F^Ffi,  the  principal  foci  and 
planes  of  the  first,  G^F^F^G^  those  of  the  second,  V^<^^^S,  those  of  the  com- 

bination. Let  the  ray  g^jJj'g^  pass  through  both  instruments,  and  let  it  be 
parallel  to  the  axis  before  entering  the  fii'st  instrument.  It  will  therefore  pass 
through  F„  the  second  principal  focus  of  the  first  instrument,  and  through  g. 

so  that  G^^  =  (xi(7i. 

On  emergence  from  the  second  instrument  it  will  pass  through  ̂ ^  the 

focus    conjugate    to    F,,    and    through    g^   in    the    second    principal   plane,  so  that 
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(r.'g'  =  G^g^.  (f>i  is  by  definition  the  second  principal  focus  of  the  combination 
of  instruments,   and   if  T^y^   be   the   second   principal   plane,    then    r„y,  =  G^g^ 

We  have  now  to  find  the  positions  of  <f>,  and  Tj. 

By  Prop.  IV.,  we  have 

^^^== — F:Fr~  • 

Or,  tlie  distance  of  the  principal  focus  of  the  combination,  from  that  of  the 

second  instrument,  is  equal  to  the  product  of  the  focal  lengths  of  the  second 

instrument,  divided  by  the  distance  of  the  second  principal  focus  of  the  first 

instrument  from  the  first  of  the  second.     From  this  we  get 

r"jp'     jp'A     ̂ "'^^  {FjF^  —  F^G() Ctj  i^j  -  -t^2  9a  =   jrpT   , 

oi  G,<f>,  =   jrp7   . 

Now,   by   the   pairs   of  similar   triangles   ̂ G^g^,  (jtV^y,  and  FJjr(g',   F^G^^, 

T,<j>,  _  r,y,  ̂   %,  _  F„G, 

~g:4>.    Gig.    G:g(    g;f,- 
Multiplying  the  two  sides  of  the  former  equation  respectively  by  the  first  and 

last  of  these  equal  quantities,  we  get 

,      Gr^, .  GiF„' 

Or,  the  second  focal  distance  of  a  combination  is  the  product  of  the  second 

focal  lengths  of  its  two  components,  divided  by  the  distance  of  their  consecutive 

principal  foci. 

If  we  call  the  focal  distances  of  the  first  instrument  f^  and  /,,  those  of 

the  second  //  and  //,  and  those  of  the  combination  J\,  /j,  and  put  FJF^=d, 

then  the  positions  of  the  principal  foci  are  found  fi:om  the  values 

and  the  focal  lengths  of  the  combination  from 

'~    d     '  J'~    d    ' 
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When  d  =  0,  all  these  values  become  infinite,  and  the  compound  instruiaent 

becomes  a  telescope. 

Prop.  VII.  To  find  the  linear  magnifying  power,  the  elongation,  and  the 

centre  of  the  instrument,  when  the  combination  becomes  a  telescope. 

Here  (fig.  6)  the  second  principal  focus  of  the  first  instrument  coincides  at  J' 
with  the  first  of  the  second.  (In  the  figure,  the  focal  distances  of  both  instru- 

ments are  taken  in  the  opposite  direction  from  that  formerly  assumed.  They  are 

therefore  to  be  regarded  as  negative.) 

In  the  first  place,  F,'  is  conjugate  to  F^,  for  a  pencil  whose  focus  before 
incidence  is  F^  will  be  parallel  to  the  axis  between  the  instruments,  and  will 

converge  to  i^/  after  emergence. 

Also  if  G^g^  be  an  object  in  the  first  principal  plane,  G,g„  will  be  its  first 

image,  equal  to  itself,  and  if  Hh  be  its  final  image 

^^^-       Gjr-~-  f:^ 

Now  the  linear  magnifying  power  is  7,-  ,  and  the  elongation  is  .'  . 

because  F.'  and  H  are  the  images   of  F.^   and    G^   respectively  ;    therefore 

l=-4^    and    n=££-. 

The  angular  magnifying   power  =  in  =  -=  —  4-7  • 

The   centre  of  the   telescope  is  at   the   point   C,   such   that 

When  n  becomes  1  the  telescope  has  no  centre.  The  efiect  of  the  Instruineni 

is  then  simply  to  alter  the  position  of  an  object  by  a  certain  distance  measured 

along  the  axis,  as  in  the  case  of  refraction  through  a  plate  of  glass  bounded  bv 
parallel  planes.  In  certain  cases  this  constant  distance  itself  disappears,  as  in 
the  case  of  a  combination   of  three   convex   lenses   of  which  the   focal    lengths  arr 
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4,    1,   4  and  the  distances  4  and  4.     This  combination  simply  inverts  every  object 

without  altering  its  magnitude   or  distance  along   the  axis. 

The  preceding  theory  of  perfect  instruments  is  quite  independent  of  the 

mode  in  which  the  course  of  the  rays  is  changed  within  the  instrument,  as 

we  are  supposed  to  know  only  that  the  path  of  every  ray  is  straight  before 

it  enters,  and  after  it  emerges  from  the  instrument.  We  have  now  to  con- 
sider, how  far  these  results  can  be  applied  to  actual  instruments,  in  which 

the  course  of  the  rays  is  changed  by  reflexion  or  refraction.  "We  know  that 
such  instruments  may  be  made  so  as  to  fulfil  approximately  the  conditions  of 

a  perfect  instrument,  but  that  absolute  perfection  has  not  yet  been  obtained. 

Let  us  inquire  whether  any  additional  general  law  of  optical  instruments  can 

be  deduced  from  the  laws  of  reflexion  and  refraction,  and  whether  the  imper- 
fection of  instruments  is   necessary  or  removeable. 

The  following  theorem  is  a  necessary  consequence  of  the  known  laws  of 

reflexion  and  refraction,  whatever  theory  we  adopt. 

If  we  multiply  the  length  of  the  parts  of  a  ray  which  are  in  diflerent 

media  by  the  indices  of  refraction  of  those  media,  and  call  the  sum  of  these 

products  the  reduced  path  of  the  ray,  then  : 

I.  The  extremities  of  all  rays  from  a  given  origin,  which  have  the  same 

reduced  path,  lie  in  a  surface  normal  to  those  rays. 

II.  When  a  pencil  of  rays  is  brought  to  a  focus,  the  reduced  path  from 

the  origin  to  the  focus  is  the  same  for  every  ray  of  the  pencil. 

In  the  undulatory  theory,  the  "  reduced  path "  of  a  ray  is  the  distance 
through  which  light  would  travel  in  space,  during  the  time  which  the  ray 

takes  to  traverse  the  various  media,  and  the  surface  of  equal  "  reduced  paths " 
is  the  wave-surface.  In  extraordinary  refraction  the  wave-surface  is  not  always 

normal  to  the  ray,  but  the  other  parts  of  the  proposition  are  true  in  this  and  all 
other  cases. 

From  this  general  theorem  in  optics  we  may  deduce  the  following  propo- 
sitions, true  for  all  instruments  depending  on  refraction  and  reflexion. 

Prop.  VIII.  In  any  optical  instrument  depending  on  refraction  or  reflex- 

ion, if  ajtti,  />i^i  (fig.  7)  be  two  objects  and  a.a.^,  h.fi^  their  images,  A^B^  the 

distance    of  the    objects,    AM.   that    of  the    images,    ̂ i^   the    index  of  refraction  of 
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the    medium    in    which   the   objects   are,    /a,   that    of    the    medium   in    which   tlie 

images  are,  then 

«,a,  X  /^,y8,  _      a,a,  x  h.fi., 

^'     A  A     ~^'     A,B.,    '' 
approximately,  when  the  objects  are  small. 

Since  a,  is  the  image  of  a^,  the  reduced  path  of  the  ray  a,6,a,,  will  be 

equal  to  that  of  a^^a„_,  and  the  reduced  paths  of  the  rays  a^/3,cu  and  a,/Aa,  will 

be  equal. 

Also  because  l)^^  and  h.^„  are  conjugate  foci,  the  reduced  paths  of  the 

rays  b^ajj,  and  h^aj),,  and  of  ̂ ia,,/8j  and  ̂ ,a.,/3,  will  be  equal.  So  that  the 
reduced  paths 

afi,  +  h,a^  =  a^ySj  +  ̂.a^ 

aJ3,  +  I3,0L,  =  tti^i  +  b.cL, 

feiOj  +  Oj^j  =  b^a^  +  alt., 

these   being   still   the   reduced  paths   of  the   rays,    that   is,    the    length     of    each 

ray  multiplied  by  the  index  of  refraction  of  the  medium. 

If  the  figure  is  symmetrical  about  the  axis,   we  may  write  the  equation 

Fi  (aA  -  «i^i)  =  /^2  (aA  -  ci-A), 

where  aJS^,   &c.  are  now  the  ax^tual  lengths  of  the  rays  so  named. 

Now  aA'  =  A,B;'  + 1  (a,a,  +  b^.f, 

so  that  a^i  —  aj)^  =  OiC^  x  6^8, , 

a.a,  X  61)8, 

and  ft,  (a^  -  aj),)  =  fi^ a  A  +  aj)^ 

Similarly  /x,  (a^  -  a,&,)  =  fi,  ̂̂ ^^^j^' 

So  that  the  equation  /x,  ̂   ,    "T'  =  /x^  — ^— — ,   , 
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is  true  accurately,  and  since  when  the  objects  are  small,  the  denominators  are 

nearly  2A,B^  and  2A^„  the  proposition  is  proved  approximately  true. 

Using  the  expressions  of  Prop.  III.,  this  equation  becomes 
1  xy 

Now   by  Prop.  III.,   when   x  and  y  are  different,  the  focal  lengths  /,  and  /, 
are 

.  xy  ^  1 

^1      'x-y        ̂         y  —  ̂  

therefore  -^  =  -^  =  -    by  the  present  theorem. 

So  that  in  any  instrument,  not  a  telescope,  the  focal  lengths  are  directly  as 

the  indices  of  refraction  of  the  media  to  which  they  belong.  If,  as  in  most 

cases,  these  media  are  the  same,  then  the  two  focal  distances  are  eqiial 

When  x  =  y,   the  instrument  becomes  a  telescope,  and  we  have,  by  Prop.  V., 

l  =  x    and  n=-;    and  therefore  by  this  theorem 

m     n
' 

We  may  find  I  experimentally  by  measuring  the  actual  diameter  of  the 

image  of  a  known  near  object,  such  as  the  aperture  of  the  object  glass.  If  0  be 

the  diameter  of  the  aperture  and  o  that  of  the  circle  of  light  at  the  eye-hole 

(which  is  its  image),  then 

From  this  we  find  the  elongation  and  the  angular  magnifying  power 

n  =  ̂'l\   and   m  =  ̂'y. 

When  ix,  =  fi„  as  in  ordinary  cases,  m  =  y  =  -,  which  is  Gauss'  rule  for  deter- 

mining the  magnifying  power  of  a  telescope. 
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Prop.  IX.  It  is  impossible,  bj  means  of  any  combination  of  reflexions 

and  refractions,  to  produce  a  perfect  image  of  an  object  at  two  different  distances, 

unless  the  instrument  be  a  telescope,  and 

l  =  n=-,        m=l. 

It  appears  from  the  investigation  of  Prop.  VIII.  that  the  results  there 

obtained,  if  true  when  the  objects  are  very  small,  will  be  incorrect  when  the 

objects  are  large,   unless 

ajSi  +  tti^i  :  a^^  +  a,h  ::  A^B^  :  A^^, 

and  it  is  easy  to  prove  that  this  cannot  be,  unless  all  the  Hnes  in  the  one  figure 

are  proportional  to  the  corresponding  lines  in  the  other. 

In  this  way  we  might  show  that  we  cannot  in  general  have  an  astigmatic, 

plane,  undistorted  image  of  a  plane  object.  But  we  can  prove  that  we  cannot 

get  perfectly  focussed  images  of  an  object  in  two  positions,  even  at  the  expense 
of  curvature  and  distortion. 

We  shall  first  prove  that  if  two  objects  have  perfect  images,  the  reduced 

path  of  the  ray  joining  any  given  points  of  the  two  objects  is  equal  to  that 

of  the   ray  joining  the  corresponding  points  of  the  images. 

Let   tto  (fig.    8)  be  the  perfect  image  of  a^  and  yS^  of  /B^.     Let 

Ajai  =  a^,   BJ3,  =  b„   Ajx^  =  a^,    B.J3.,  =  b.,   A^B^  =  c^,   A^^  =  c^. 

Draw  a^D^  parallel   to   the   axis   to    meet   the   plane   B^y   and   aJD,  to   the   plane 

of  A. 

Since  everything  is  symmetrical  about  the  axis  of  the  instrument  we  shall 

have  the  angles  D^Bfi^  =  D.M.fi,  =  d,  then  in  either  figure,  omitting  the  sufl&xes, 

=  c'  +  a'  +  b'-2ahcose. 

It  has  been  shown  in  Prop.  VIII.  that  the  difference  of  the  reduced  paths 

of  the  rays  aj)^,  afi^  in  the  object  must  be  equal  to  the  difference  of  the  reduced 

paths  of  a^^j,  a^^  in  the  image.     Therefore,  since  we  may  assume  any  value  for  6 

/^i  J{(^x  +  &i'  +  Ci*  -  lajb,  cos  6)  -  fi,  J{a^  +  h^  +  c^  -  2a,h  cos  6) 
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13  constant  for  all  values  of  6.     This  can  be  only  when 

and  fi,  J{aJ),)  =fi,J  (aM,), 

which  shows  that  the  constant  must  vanish,  and  that  the  lengths  of  lines 

joining  corresponding  points  of  the  objects  and  of  the  images  must  be  inversely 

as  the  indices  of  refraction  before  incidence  and  after  emergence. 

Next  let  ABC,  DEF  (fig.  9)  represent  three  points  in  the  one  object 

and  three  points  in  the  other  object,  the  figure  being  drawn  to  a  scale  so  that 

all  the  lines  in  the  figure  are  the  actual  lines  multiplied  by  /Xj.  The  lines  of 

the  figure  represent  the  reduced  paths  of  the  rays  between  the  corresponding 

points  of  the  objects. 

Now  it  may  be  shown  that  the  form  of  this  figure  cannot  be  altered  with- 

out altering  the  length  of  one  or  more  of  the  nine  lines  joining  the  points  ABC 

to  DEF.  Therefore  since  the  reduced  paths  of  the  rays  in  the  image  are  equal 

to  those  in  the  object,  the  figure  must  represent  the  image  on  a  scale  of  /n, 

to  1,  and  therefore  the  instrument  must  magnify  every  part  of  the  object  alike 

and  elongate  the  distances  parallel  to  the  axis  in  the  same  proportion.  It  is 

therefore  a  telescope,  and  m=l. 

If  iJi,  =  ix,,  the  image  is  exactly  equal  to  the  object,  which  is  the  case  in 

reflexion  in  a  plane  mirror,  which  we  know  to  be  a  perfect  instrument  for  all 
distances. 

The  only  case  in  which  by  refraction  at  a  single  surface  we  can  get  a 

perfect  image  of  more  than  one  point  of  the  object,  is  when  the  refracting 

surface  is  a  sphere,  radius  r,  index  /x,   and  when   the   two   objects    are    spherical 

surfaces,  concentric  with  the  sphere,  their  radii  being    - ,   and   r ;    and    the    two 

images  also  concentric  spheres,  radii  /ar,  and  r. 

In  this  latter  case  the  image  is  perfect,  only  at  these  particular  distances 

and  not  generally. 

I  am  not  aware  of  any  other  case  in  which  a  perfect  image  of  an  object 

can  be  formed,  the  rays  being  straight  before  they  enter,  and  after  they  emerge 

from  the  instrument.  The  only  case  in  which  perfect  astigmatism  for  all  pencils 

has    hitherto   been   proved   to   exist,   was   suggested   to   me   by   the   consideration 
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of  the  structure  of  the  crystalline  lens  in  fish,  and  was  published  in  one  of 

the  problem-papers  of  the  Camhiidge  and  Dublin  Mathematical  Journal.  My 

own  method  of  treating  that  problem  is  to  be  found  in  that  Journal,  for 

February,  1854.  The  case  is  that  of  a  medium  whose  index  of  refraction  varies 

with  the  distance  from  a  centre,  so  that  if  fi,  be  its  value  at  the  centre,  a 

a  given  line,  and  r  the  distance  of  any  point  where  the  index  is  /x,  then 

/^  =  /Ao 

a'  +  r'' 
The  path  of  every  ray  within  this  medium  is  a  circle  in  a  plane  passing  through 
the  centre  of  the  medium. 

Every    ray    from   a   point   in   the    medium,    distant   b   from   the   centre,    will 

converge  to  a  point  on  the  opposite  side  of  the  centre  and  distant  from  it  ̂   . 

It  will  be  observed  that  both  the  object  and  the  image  are  included  in 

the  variable  medium,  otherwise  the  images  would  not  be  perfect.  This  case 

therefore  forms  no  exception  to  the  result  of  Prop.  IX.,  in  which  the  object  and 

image  are  supposed  to  be  outside  tho  instrument. 

Aberdeen,   12th  Jan.,   1858. 



[From  the  Proceedings  of  the  Royal  Society  of  Edinburgh,  Vol.  rv.] 

XYIII.      On    Theories    of  the    Constitution   of  Saturn's   Rings. 

The  planet  Saturn  is  surrounded  by  several  concentric  flattened  rings,  which 

appear  to  be  quite  free  from  any  connection  with  each  other,  or  with  the  planet, 

except  that  due  to  gravitation. 

The  exterior  diameter  of  the  whole  system  of  rings  is  estimated  at  about 

176,000  miles,  the  breadth  from  outer  to  inner  edge  of  the  entire  system, 

36,000   miles,   and   the   thickness  not   more   than    100   miles. 

It   is   evident    that    a    system    of   this    kind,   so    broad    and    so    thin,    must 

depend   for   its  stability  upon  the  dynamical  equihbrium  between  the  motions  of 

each   part   of  the   system,    and  the   attractions   which    act    on    it,   and    that    the 

cohesion   of  the   parts   of  so   large   a   body   can   have   no   effect   whatever   on  its 

motions,  though   it   were   made   of  the   most   rigid   material  known  on  earth.     It 

is   therefore   necessary,   in   order  to   satisfy   the   demands   of   physical    astronomy, 

to   explain   how  a  material   system,  presenting  the  appearance  of  Saturn's  Kings, 
can  be  maintained  in  permanent  motion  consistently  with  the  laws  of  gravitation. 

The  principal  hypotheses  which  present  themselves  are  these — 

I.     The  rings  are  solid  bodies,  regular  or  irregular. 

II.     The  rings  are  fluid  bodies,  liquid  or  gaseous. 

in.     The  rings  are  composed  of  loose  materials. 

The  results  of  mathematical  investigation  appHed  to  the  first  case  are, — 

1st.     That  a  uniform  ring  cannot  have  a  permanent  motion. 

2nd.  That  it  is  possible,  by  loading  one  side  of  the  ring,  to  produce 

stability  of  motion,  but  that  this  loading  must  be  very  great  compared  with 

the  whole  mass  of  the  rest  of  the  ring,  being  as  82  to  18. 
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3rd.  That  this  loading  must  not  only  be  very  great,  but  very  nicely 

adjusted;  because,  if  it  were  less  than  '81,  or  more  than  83  of  the  whole, 
the  motion  would  be  unstable. 

The  mode  in  which  such  a  system  would  be  destroyed  would  be  by  the 
collision  between  the  planet  and  the  inside  of  the  ring. 

And  it  is  evident  that  as  no  loading  so  enormous  in  comparison  with  the 

ring  actually  exists,  we  are  forced  to  consider  the  rings  as  fluid,  or  at  least 

not  solid ;  and  we  find  that,  in  the  case  of  a  fluid  ring,  waves  would  be  gene- 
rated, which  would  break  it  up  into  portions,  the  number  of  which  would 

depend  on  the  mass  of  Saturn  directly,  and  on  that  of  the  ring  inversely. 

It  appears,  therefore,  that  the  only  constitution  possible  for  such  a  ring  is 
a  series  of  disconnected  masses,  which  may  be  fluid  or  solid,  and  need  not  be 

equal.  The  \iomplicated  internal  motions  of  such  a  ring  have  been  investigated, 

and  found  to  consist  of  four  series  of  waves,  which,  when  combined  together, 
will  reproduce  any  form  of  original  disturbance  with  all  its  consequences.  The 

motion  of  one  of  these  waves  was  exhibited  to  the  Society  by  means  of  a  small 
mechanical  model  made  by  Ramage  of  Aberdeen. 

This  theory  of  the  rings,  being  indicated  by  the  mechanical  theory  as  the 

only  one  consistent  with  permanent  motion,  is  further  confirmed  by  recent  obser- 
vations on  the  inner  obscure  ring  of  Saturn.  The  limb  of  the  planet  is  seen 

through  the  substance  of  this  ring,  not  refracted,  as  it  would  be  through  a 

gas  or  fluid,  but  in  its  true  position,  as  would  be  the  case  if  the  light  passed 

through  interstices  between  the  separate  particles  composing  the  ring. 
As  the  whole  investigations  are  shortly  to  be  published  in  a  separate  form, 

the  mathematical  methods  employed  were  not  laid  before  the  Society. 



XIX.     On  the  Stability  of  the  motion  of  Saturn's  Rings. 

[An  Essay,  which  obtained  the  Adams  Prize  for  the  year  1856,  in  the  University 
of  Cambridge.] 

ADVERTISEMENT. 

The  Subject  of  the  Prize  was  announced  in  the  following  terms ; — 

The  University  having  accepted  a  fimd,  raised  by  several  members  of  St  John's  Collegp, 
for  the  purpose  of  founding  a  Prize  to  be  called  the  Adams  Prize,  for  the  best  Essay 

on  some  subject  of  Pure  Mathematics,  Astronomy,  or  other  branch  of  Natural  Pliilosophy, 

the  Prize  to  be  given  once  in  two  years,  and  to  be  open  to  tlhe  competition  of  all  persons 

who  have  at  any  time  been  admitted  to  a  degree  in  this   University: — 

The  Examiners  give  Notice,  that  the  following  is  the  subject  for  the  Prize  to  be  adjudged 

in  1857:— 

The  Motions  of  iSaturn's  Rings. 

***  The  problem  may  be  treated  on  the  supposition  that  the  system  of  Rings  is  exactly  or 
very  approximately  concentric  with  Saturn  and  symmetrically  disposed  about  the  plane  of  his  Equator, 
and  different  hypotheses  may  be  made  respecting  the  physical  constitution  of  the  Rings.  It  may 

be  supposed  (1)  that  they  are  rigid:  (2)  that  they  ai-e  fluid,  or  in  part  aeriform:  (3)  that  they 
consist  of  masses  of  matter  not  mutually  coherent.  The  question  will  be  considered  to  be  answered 

by  ascertaining  on  tliese  hypotheses  severally,  whether  the  conditions  of  mechanical  stability  are 
satisfied  by  the  mutual  attractions  and  motions  of  the  Planet  and  the  Rings. 

It  is  desirable  that  an  attempt  should  also  be  made  to  determine  on  which  of  the  above 

hypotheses  the  appearances  both  of  the  bright  Rings  and  the  recently  discovered  dark  Ring  may 

be  most  satisfactorily  explained;  and  to  indicate  any  causes  to  which  a  change  of  form,  such  as 
is  supposed  from  a  comparison  of  modern  with  the  earlier  observations  to  have  taken  place,  may 
be  attributed. 

E.  GUEST,   rice-Chancellor. 
J.  CHALLIS. 
S.  PARKINSON. 
W.  THOMSON. 

March  23,   1855. 
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There  are  some  questions  in  Astronomy,  to  which  we  are  attracted  rather 

on  account  of  their  pecuHarity,  as  the  possible  illustration  of  some  unknown 
principle,  than   from   any  direct   advantage   which   their   solution   would   afford   to 
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mankind.  The  theory  of  the  Moon's  inequalities,  though  in  its  first  stages  it 

presents  theorems  interesting  to  all  students  of  mechanics,  has  been  pursued  into 

such  intricacies  of  calculation  as  can  be  followed  up  only  by  those  who  make 

the  improvement  of  the  Lunar  Tables  the  object  of  their  lives.  The  value  of 

the  labours  of  these  men  is  recognised  by  all  who  are  aware  of  the  importance 

of  such  tables  in  Practical  Astronomy  and  Navigation.  The  methods  by  which 

the  results  are  obtained  are  admitted  to  be  sound,  and  we  leave  to  professional 

astronomers  the  labour  and  the  merit  of  developing  them. 

The  questions  which  are  suggested  by  the  appearance  of  Saturn's  Rings 
cannot,  in  the  present  state  of  Astronomy,  call  forth  so  great  an  amount  of 

labour  among  mathematicians.  I  am  not  aware  that  any  practical  use  has  been 

made  of  Saturn's  Rings,  either  in  Astronomy  or  in  Navigation.  They  are  too 
distant,  and  too  insignificant  in  mass,  to  produce  any  appreciable  effect  on  the 

motion  of  other  parts  of  the  Solar  system;  and  for  this  very  reason  it  is  diflS- 
cult  to  determine  those  elements  of  their  motion  which  we  obtain  so  accurately 

in  the  case  of  bodies  of  greater  mechanical  importance. 

But  when  we  contemplate  the  Rings  from  a  purely  scientific  point  of  view, 

they  become  the  most  remarkable  bodies  in  the  heavens,  except,  perhaps,  those 

still  less  useful  bodies — the  spiral  nebulae.  When  we  have  actually  seen  that 

great  arch  swung  over  the  equator  of  the  planet  without  any  visible  connexion, 

we  cannot  bring  our  minds  to  rest.  We  cannot  simply  admit  that  such  is  the 

case,  and  describe  it  as  one  of  the  observed  facts  in  nature,  not  admitting  or 

requiring  explanation.  We  must  either  explain  its  motion  on  the  principles  of 

mechanics,  or  admit  that,  in  the  Saturnian  realms,  there  can  be  motion  regu- 

lated by  laws  which  we  are  unable  to  explain. 

The  arrangement  of  the  rings  is  represented  in  the  figure  (l)  on  a  scale 

of  one  inch  to  a  hundred  thousand  miles.  S  is  a  section  of  Saturn  through 

his  equator,  A,  B  and  C  are  the  three  rings.  A  and  B  have  been  known  for 

200  years.  They  were  mistaken  by  Galileo  for  protuberances  on  the  planet  itself, 

or  perhaps  satellites.  Huyghens  discovered  that  what  he  saw  was  a  thin  flat 

ring  not  touching  the  planet,  and  Ball  discovered  the  division  between  A  and  B. 

Other  divisions  have  been  observed  splitting  these  again  into  concentric  rings, 

but  these  have  not  continued  visible,  the  only  well-established  division  being  one 

in  the  middle  of  A.  The  third  ring  C  was  first  detected  by  Mr  Bond,  at 

Cambridge  U.S.  on  November  15,  1850;  Mr  Dawes,  not  aware  of  Mr  Bond's 
discovery,  observed   it   on    November    29th,  and   Mr  Lassel  a  few  days  later.     It 
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gives  little  light  compared  with  the  other  rings,  and  is  seen  where  it  crosses 
the  planet  as  an  obscure  belt,  but  it  is  so  transparent  that  the  limb  of  the 

planet  is  visible  through  it,  and  this  without  distortion,  shewing  that  the  rays 

of  light  have  not  passed  through  a  transparent  substance,  but  between  the 

scattered  particles  of  a  discontinuous  stream. 
It  is  difficult  to  estimate  the  thickness  of  the  system ;  according  to  the 

best  estimates  it  is  not  more  than  100  miles,  the  diameter  of  A  being  176,418 

miles;  so  that  on  the  scale  of  our  figure  the  thickness  would  be  one  thousandth 
of  an  inch. 

Such  is  the  scale  on  which  this  magnificent  system  of  concentric  rings  is 
constructed;  we  have  next  to  account  for  their  continued  existence,  and  to 

reconcile  it  with  the  known  laws  of  motion  and  gravitation,  so  that  by  rejecting 

every  hypothesis  which  leads  to  conclusions  at  variance  with  the  facts,  we  may 
learn  more  of  the  nature  of  these  distant  bodies  than  the  telescope  can  yet 

ascertain.  We  must  account  for  the  rings  remaining  suspended  above  the  planet, 
concentric  with  Saturn  and  in  his  equatoreal  plane ;  for  the  flattened  figure  of  the 

section  of  each  ring,  for  the  transparency  of  the  inner  ring,  and  for  the  gradual 

approach  of  the  inner  edge  of  the  ring  to  the  body  of  Saturn  as  deduced 
from  all  the  recorded  observations  by  M.  Otto  Struvd  {Sur  les  dimensions  des 

Anneaux  de  Saturne — Recueil  de  Memoires  Astronomiques,  Poulkowa,  15  Nov. 
1851).  For  an  account  of  the  general  appearance  of  the  rings  as  seen  from  the 
planet,  see  Lardner  on  the  Uranography  of  Saturn,  Mem.  of  the  Astronomical 

Society,  1853.  See  also  the  article  "Saturn"  in  Nichol's  Cyclopcedia  of  the 
Physical  Sciences. 

Our  curiosity  with  respect  to  these  questions  is  rather  stimulated  than 

appeased  by  the  investigations  of  Laplace.  That  great  mathematician,  though 

occupied  with  many  questions  which  more  imperiously  demanded  his  attention, 

has  devoted  several  chapters  in  various  parts  of  his  great  work,  to  points  con- 
nected with  the  Saturnian  System. 

He  has  investigated  the  law  of  attraction  of  a  ring  of  small  section  on  a 

point  very  near  it  {Mec.  Cel.  Liv.  iii.  Chap,  vi.),  and  from  this  he  deduces  the 

equation   from  which   the   ratio   of  the   breadth  to  the  thickness  of  each  ring  is 
to  be  found, 

E'  p  X(X-l) 

^~3a'p      (\+l)  (3X^+1)' 
where   R   is  the  radius  of  Saturn,  and  p  his  density;   a  the  radius  of  the  ring, 
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and  p  its  density;  and  X  the  ratio  of  the  breadth  of  the  ring  to  its  thick- 
ness. The  equation  for  determining  X  when  e  is  given  has  one  negative  root 

which  must  be  rejected,  and  two  roots  which  are  positive  while  e<0"0543,  and 

impossible  when  e  has  a  greater  value.  At  the  critical  value  of  e,  X  =  2-594 
nearly. 

The  fact  that  X  is  impossible  when  e  is  above  this  value,  shews  that  the 

ring  cannot  hold  together  if  the  ratio  of  the  density  of  the  planet  to  that  of 

the  ring  exceeds  a  certain  value.  This  value  is  estimated  by  Laplace  at  I'S, 
assuming  a  =  2R. 

We  may  easily  follow  the  physical  interpretation  of  this  result,  if  we  observe 

that  the  forces  which  act  on  the  ring  may  be  reduced  to — 

(1)  The  attraction  of  Saturn,  varying  inversely  as  the  square  of  the  dis- 
tance from  his  centre. 

(2)  The  centrifugal  force  of  the  particles  of  the  ring,  acting  outwards,  and 

varying  directly  as  the  distance  from  Saturn's  polar  axis. 
(3)  The  attraction  of  the  ring  itself,  depending  on  its  form  and  density, 

and  directed,  roughly  speaking,  towards  the  centre  of  its  section. 

The  first  of  these  forces  must  balance  the  second  somewhere  near  the  mea,n 

distance  of  the  ring.  Beyond  this  distance  their  resultant  will  be  outwards, 
within  this  distance  it  will  act  inwards. 

If  the  attraction  of  the  ring  itself  is  not  sufl&cient  to  balance  these  residual 
forces,  the  outer  and  inner  portions  of  the  ring  will  tend  to  separate,  and  the 

ring  will  be  split  up ;  and  it  appears  from  Laplace's  result  that  this  will  be 
the  case  if  the  density  of  the  ring  is  less  than  ̂   of  that  of  the  planet. 

This  condition  applies  to  all  rings  whether  broad  or  narrow,  of  which  the 

parts  are  separable,  and  of  which  the  outer  and  inner  parts  revolve  with  the 
same  angular  velocity. 

Laplace  has  also  shewn  (Li v.  v.  Chap,  iii.),  that  on  account  of  the  oblate- 

ness  of  the  figure  of  Saturn,  the  planes  of  the  rings  will  follow  that  of  Saturn's 
equator  through  every  change  of  its  position  due  to  the  disturbing  action  of 
other  heavenly  bodies. 

Besides  this,  he  proves  most  distinctly  (Liv.  iii.  Chap,  vi.),  that  a  solid  uni- 
form ring  cannot  possibly  revolve  about  a  central  body  in  a  permanent  manner, 

for  the  slightest  displacement  of  the  centre  of  the  ring  from  the  centre  of  the 
planet    would    originate   a   motion   which    would    never    be    checked,    and    would 
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inevitably  precipitate  the  ring  upon  the  planet,  not  necessarily  by  breaking  the 

ring,  but  by  the  inside  of  the  ring  falling  on  the  equator  of  the  planet. 

He  therefore  infers  that  the  rings  are  irregular  solids,  whose  centres  of 

gravity  do  not  coincide  with  their  centres  of  figure.  We  may  draw  the  con- 

clusion more  formally  as  follows,  "If  the  rings  were  solid  and  uniform,  their 
motion  would  be  unstable,  and  they  would  be  destroyed.  But  they  are  not 

destroyed,  and  their  motion  is  stable;  therefore  they  are  either  not  uniform  or 

not  solid." 

I  have  not  discovered""  either  in  the  works  of  Laplace  or  in  those  of  more 
recent  mathematicians,  any  investigation  of  the  motion  of  a  ring  either  not  uni- 

form or  not  solid.  So  that  in  the  present  state  of  mechanical  science,  we  do 

not  know  whether  an  irregular  solid  ring,  or  a  fluid  or  disconnected  ring,  can 

revolve  permanently  about  a  central  body;  and  the  Saturnian  system  still  re- 

mains an  unregarded  witness  in  heaven  to  some  necessary,  but  as  yet  unknown, 
development  of  the  laws  of  the  universe. 

We  know,  since  it  has  been  demonstrated  by  Laplace,  that  a  uniform  solid 

ring  cannot  revolve  permanently  about  a  planet.  We  propose  in  this  Essay  to 

determine  the  amount  and  nature  of  the  irregularity  which  would  be  required 

to  make  a  permanent  rotation  possible.  We  shall  find  that  the  stability  of  the 

motion   of  the   ring   would   be   ensured  by  loading  the  ring  at  one  point  with  a 

*  Since  this  -was  written,  Prof.  Challis  has  pointed  out  to  me  three  important  papers  in  Gould's 
Astronomical  Journal: — Mr  G.  P.  Bond  on  the  Rings  of  Saturn  (May  1851)  and  Prof.  B.  Pierce  of 

Harvard  University  on  the  Constitution  of  Saturn's  Rings  (June  1851),  and  on  the  Adams'  Prize 
Problem  for  1856  (Sept.  1855).  These  American  mathematicians  have  both  considered  the  conditions 

of  statical  equilibrium  of  a  transverse  section  of  a  ring,  and  have  come  to  the  conclusion  that  the 

rings,  if  they  move  each  as  a  whole,  must  be  very  narrow  compared  with  the  observed  rings,  so 
that  in  reality  there  must  be  a  great  number  of  them,  each  revolving  with  its  own  velocity.  They 

have  also  entered  on  the  question  of  the  fluidity  of  the  rings,  and  Prof.  Pierce  has  made  an 

investigation  as  to  the  permanence  of  the  motion  of  an  irregular  solid  ring  and  of  a  fluid  ring. 

The  paper  in  which  these  questions  are  treated  at  large  has  not  (so  far  as  I  am  aware)  been 

pxiblished,  and  the  references  to  it  in  Gould's  Journal  are  intended  to  give  rather  a  popular  account 
of  the  results,  than  an  accurate  outline  of  the  methods  employed.  In  treating  of  the  attractions  of 

an  irregular  ring,  he  makes  admirable  use  of  the  theory  of  potentials,  but  his  published  investi- 
gation of  the  motion  of  such  a  body  contains  some  oversights  which  are  due  perhaps  rather  to  the 

imperfections  of  popular  language  than  to  any  thing  in  the  mathematical  theory.  The  only  part  of 

the  theory  of  a  fluid  ring  which  he  has  yet  given  an  account  of,  is  that  in  which  he  considers 
the  form  of  the  ring  at  any  instant  as  an  ellipse;  corresponding  to  the  case  where  n  =  u),  and 

m=l.  As  I  had  only  a  limited  time  for  reading  these  papers,  and  as  I  could  not  ascertain  the 
methods  used  in  the  original  investigations,  I  am  unable  at  present  to  state  how  far  the  results  of 
this  essay  agree  with  or  differ  from  those  obtained  by  Prof.  Pierce. 
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heavy  satellite  about  4-^  times  the  weight  of  the  ring,  but  this  load,  besides 

being  inconsistent  with  the  observed  appearance  of  the  rings,  must  be  far  too 

artificially  adjusted  to  agree  with  the  natural  arrangements  observed  elsewhere, 

for  a  very  small  error  in  excess  or  defect  would  render  the  ring  again  unstable. 

We  are  therefore  constrained  to  abandon  the  theory  of  a  solid  ring,  and 

to  consider  the  case  of  a  ring,  the  parts  of  which  are  not  rigidly  connected, 

as  in  the  case  of  a  ring  of  independent  satellites,  or  a  fluid  ring. 

There  is  now  no  danger  of  the  whole  ring  or  any  part  of  it  being  pre- 

cipitated on  the  body  of  the  planet.  Every  particle  of  the  ring  is  now  to  be 

regarded  as  a  satellite  of  Saturn,  disturbed  by  the  attraction  of  a  ring  of 

satellites  at  the  same  mean  distance  from  the  planet,  each  of  which  however  is 

subject  to  slight  displacements.  The  mutual  action  of  the  parts  of  the  ring  will 

be  so  small  compared  with  the  attraction  of  the  planet,  that  no  part  of  the 

ring  can  ever  cease  to  move  round  Saturn  as  a  satellite. 

But  the  question  now  before  us  is  altogether  different  from  that  relating  to 

the  solid  ring.  We  have  now  to  take  account  of  variations  in  the  form  and 

arrangement  of  the  parts  of  the  ring,  as  well  as  its  motion  as  a  whole,  and 

we  have  as  yet  no  security  that  these  variations  may  not  accumulate  till  the 

ring  entirely  loses  its  original  form,  and  collapses  into  one  or  more  satellites, 

circulating  round  Saturn.  In  fact  such  a  result  is  one  of  the  leading  doctrines 

of  the  "  nebular  theory "  of  the  formation  of  planetary  systems :  and  we  are 

familiar  with  the  actual  breaking  up  of  fluid  rings  under  the  action  of  "capil- 

lary "  force,  in  the  beautiful  experiments  of  M.  Plateau. 
In  this  essay  I  have  shewn  that  such  a  destructive  tendency  actually  exists, 

but  that  by  the  revolution  of  the  ring  it  is  converted  into  the  condition  of 

dynamical  stability.  As  the  scientific  interest  of  Saturn's  Rings  depends  at 
present  mainly  on  this  question  of  their  stability,  I  have  considered  their  motion 

rather  as  an  illustration  of  general  principles,  than  as  a  subject  for  elaborate 

calculation,  and  therefore  I  have  confined  myself  to  those  parts  of  the  subject 

which  bear  upon  the  question  of  the  permanence  of  a  given  form  of  motion. 

There  is  a  very  general  and  very  important  problem  in  Dynamics,  the  solu- 

tion of  which  would  contain  all  the  results  of  this  Essay  and  a  great  deal 
more.     It  is  this — 

"Having  found  a  particular  solution  of  the  equations  of  motion  of  any 
material    system,  to   determine   whether   a   slight  disturbance  of  the  motion  indi- 
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cated    by    the    solution    would    cause    a    small    periodic    variation,    or    a    total 

derangement   of  the   motion." 

The  question  may  be  made  to  depend  upon  the  conditions  of  a  maximum 
or  a  minimum  of  a  function  of  many  variables,  but  the  theory  of  the  tests 

for  distinguishing  maxima  from  minima  by  the  Calculus  of  Variations  becomes 

so  intricate  when  applied  to  functions  of  several  variables,  that  I  think  it  doubt- 
ful whether  the  physical  or  the  abstract  problem  will  be  first  solved. 

PART   I. 

ON   THE   MOTION   OF   A   RIGID   BODY   OF   ANY    FORM   ABOUT   A   SPHERE. 

We  confine  our  attention  for  the  present  to  the  motion  in  the  plane  of 

reference,  as  the  interest  of  our  problem  belongs  to  the  character  of  this  motion, 
and  not  to  the  librations,  if  any,  from  this  plane. 

Let  S  (Fig.  2)  be  the  centre  of  gravity  of  the  sphere,  which  we  may  call 

Satiu-n,  and  E  that  of  the  rigid  body,  which  we  may  call  the  Ring.  Join  RS, 
and  divide  it  in  G  so  that 

SG  :  GR  '.:  R  :  S, 

R  and  S  being  the  masses  of  the  Ring  and  Saturn  respectively. 

Then  G  will  be  the  centre  of  gravity  of  the  system,  and  its  position  will 

be  unaffected  by  any  mutual  action  between  the  parts  of  the  system.  Assume  G 

as  the  point  to  which  the  motions  of  the  system  are  to  be  referred.  Draw  GA 
in  a  direction  fixed  in  space. 

Let  AGR  =  e,  and  SR  =  r, 

then  ^^^'S+R^'   ̂ ^^    ̂ ^^STR^' 

so  that  the  positions  of  S  and  R  are  now  determined. 

Let  BRR  be  a  straight  line  through  R,  fixed  with  respect  to  the  substance 

of  the  ring,  and  let  BRK=^. 
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This  determines  the  angular  position  of  the  ring,  so  that  from  the  values 

of  r,  6,  and  ̂   the  configuration  of  the  system  may  be  deduced,  as  far  as  relates 
to  the  plane  of  reference. 

We  have  next  to  determine  the  forces  which  act  between  the  ring  and 

the  sphere,  and  this  we  shall  do  by  means  of  the  potential  function  due  to 
the  ring,  which  we  shall  call   V. 

The  value  of  V  for  any  point  of  space  S,  depends  on  its  position  relatively 
to  the  ring,  and  it  is  found  from  the  equation 

where  dm  is  an  element  of  the  mass  of  the  ring,  and  r  is  the  distance  of  that 
element  from  the  given  point,  and  the  summation  is  extended  over  every  element 

of  mass  belonging  to  the  ring.  V  will  then  depend  entirely  upon  the  position 

of  the  point  S  relatively  to  the  ring,  and  may  be  expressed  as  a  function 

of  r,  the  distance  of  S  from  R,  the  centre  of  gravity  of  the  ring,  and  ̂ ,  the 
angle  which  the  line  SR  makes  with  the  line  RB,  fixed  in  the  ring. 

A  particle   P,   placed   at   S,   will,   by   the   theory  of  potentials,    experience  a 
dV    .  ...  .  \  dV 

moving    force    P  —p    in   the   direction    which   tends   to   increase   r,    and  P  -  -jj 

in  a  tangential  direction,  tending  to  increase  ̂ . 

Now    we    know    that    the    attraction  of  a   sphere   is   the   same  as   that   of 

a  particle   of  equal  mass   placed    at   its   centre.      The   forces   acting  between  the 
dV  .  . 

sphere  and  the  ring  are  therefore  S  -j~  tending  to  increase  r,  and  a  tangential 
\  dV  . 

force  S  -  -j-r ,   applied   at  S  tending   to  increase  <;^.     In   estimating  the  efiect  of 

this   latter   force  on   the  ring,  we  must  resolve  it  into  a  tangential  force  S  -  -jj- 

dV 

acting  at  R,  and  a  couple  S  -j-r  tending  to  increase  (f). 

We   are   now  able   to  form   the   equations  of  motion  for  the  planet  and  the 
ring. 
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For  the  planet 

^d   jf  Rr  Ydd\          _R_  ̂ Jy  ,  . 

^  dt  ]S^VRl  dtj  '-  "  S  +  R  '^  d<f>   ^'^' 

«l(^)-^(f)'=^^'   (^)- 
For  the  centre  of  gravity  of  the  ring, 

j.d   (f   Sr  Y  ̂ ^1  S        dV  ,  . 

^dt\\S+-R)  Ttr~STR^df    ^  ̂' 

j.d^  f  Sr  \  Sr     (d0Y_     dV  ,  . 

For  the  rotation  of  the  ring  about  its  centre  of  gravity, 

^S(''+«=^f   (5)' 
where  h  is  the  radius  of  gyration  of  the  ring  about  its  centre  of  gravity. 

Equation  (3)  and  (4)  are  necessarily  identical  with  (l)  and  (2),  and  shew 
that  the  orbit  of  the  centre  of  gravity  of  the  ring  must  be  similar  to  that 

of  the  Planet.  Equations  (1)  and  (3)  are  equations  of  areas,  (2)  and  (4)  are 
those  of  the  radius  vector. 

Equations  (3),  (4)  and  (5)  may  be  thus  written, 

M-'^T!-'-'^}-(^-^i'-   («)' 
-{§-©}-(---)f    -   (^)- 
-(f-^f)--^  -   («)• 

These  are  the  necessary  and  sufficient  data  for  determining  the  motion  of 
the  ring,  the  initial  circumstances  being  given. 

Prob.  I.  To  find  the  conditions  under  which  a  uniform  motion  of  the 

ring  is  possible. 

By  a  uniform  motion  is  here  meant  a  motion  of  uniform  rotation,  during 
which  the  position  of  the  centre  of  the  Planet  with  respect  to  the  ring  does 
not  change. 
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In    this    case    r    and    </>    are   constant,    and  therefore    V  and  its   differential 

coefficients  are  given.     Equation  (7)  becomes, 

which  shews  that  the  angular  velocity  is  constant,  and  that 

dey        R+S  dV     ,  ,^. 
r-  =  <o\  say    (9). 

dtj  Rr      dr 
(PB 

Hence,  -71  =  0,  and  therefore  by  equation  (8), 

%-^   •   •■•••(-)• 
Equations  (9)  and  (10)  are  the  conditions  under  which  the  uniform  motion 

is  possible,  and  if  they  were  exactly  fulfilled,  the  uniform  motion  would  go  on 
for  ever  if  not  disturbed.  But  it  does  not  follow  that  if  these  conditions  were 

nearly  fulfilled,  or  that  if  when  accurately  adjusted,  the  motion  were  slightly 

disturbed,  the  motion  would  go  on  for  ever  nearly  uniform.  The  effect  of  the 

disturbance  might  be  either  to  produce  a  periodic  variation  in  the  elements 

of  the  motion,  the  ampUtude  of  the  variation  being  small,  or  to  produce  a 

displacement  which  would  increase  indefinitely,  and  derange  the  system  altogether. 
In  the  one  case  the  motion  would  be  dynamically  stable,  and  in  the  other  it 
would  be  dynamically  unstable.  The  investigation  of  these  displacements  while 

still  very  small  wiU  form  the  next  subject  of  inquiry. 

Prob.  II.     To  find  the  equations  of  the  motion  when  slightly  disturbed. 

Let    r  =  r„  0  =  o}t  and  (f)  =  (f>^  in.  the  case  of  uniform  motion,  and  let 
r=ro  +r„ 
e=a)t+e„ 

when   the    motion   is   slightly   disturbed,    where   r^,  6^,  and   ̂ 1   are  to   be   treated 

as   small   quantities   of  the   first  order,  and  their   powers  and  products  are  to  be 
dV  dV 

neglected.     We  may  expand  -j-^  and  -j-r  by  Taylor's  Theorem, 

dV_dV      drV  d'V 
dr  ~dr  "^  di^    '''"*■  cZrc/t^"^^' 

d<f>~'d<f'^drd<t>''''^  d<i>''^'' 



300  ON    THE    STABILITY    OF    THE    MOTION    OF    SATURN's    RINGS. 

where  the   values   of   the   differential  coeflBcients   on   the  right-hand   side   of    the 
equations  are  those  in  which  i\  stands  for  r,  and  ̂ ^  for  ̂ . 

CaJlmg  ^=A    ̂ ^^  =  M^   ̂ ^=N, 

and  taking  account  of  equations  (9)  and  (10),  we  may  write  these  equations, 

a^= -sirs'" +^''+^^" 

Substituting  these  values  in  equations  (6),  (7),  (8),  and  retaining  all  small 

quantities  of  the  first  order  while  omitting  their  powers  and  products,  we  have 

the  following  system  of  linear  equations  in  r^,  O^,  and  ̂ i, 

E  (2r,co^  +  r,^^^y{E  +  S)(Mr,  +  N<f.,)    =0   (11), 

R d%     ,     „     de\ 
df (o%-2r,(o-^]-{R  +  S){L7\  +  M<f>,)  =  0   (12), 

RlH'^^  +  ̂-SiMr^  +  N^:)  =0   (13). df   '  df 

Prob.    III.     To   reduce   the   three   simultaneous   equations   of   motion  to  the 
form  of  a  single  linear  equati :ion. 

Let  us  write  n  instead  of  the  symbol  -j- ,  then  arranging  the  equations  in 

terms  of  i\,  6^,  and  j>^,  they  may  be  written: 

{2R,o>n  +  (R  +  S)M}r,  +  (Rr:n')e,  +  {R  +  S)N<i>,         =0   (14), 

{Rn'-R<^'^-(R  +  S)  L}r,-(2Rr,con)d,^{R  +  S)M<f>,  =  0   (15), 

-  (SM)  r,  +  (Rk'n')  0,  +  {RUrv  -SN)<j>,        =0   (16). 

Here  we  have  three  equations  to  determine  three  quantities  r,,  6„  ̂ i ;  but 
it  is  evident  that  only  a  relation  can  be  determined  between  them,  and  that 

in  the  process  for  finding  their  absolute  values,  the  three  quantities  will  vanish 

together,  and  leave  the  following  relation  among  the  coefiicients, 
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-{2Rr,oin+  {R  +  S)^r}  [2R)\(on]  [Rlcrc'-SN} 

+  {Rn'  -  Rco'  -(R  +  S)  L]  {Rh'rf}  {(R  +  >S')  N] 

+  {SM)  {Rrjn')  {R  +  S)M-  (SM)  {2Rr,<on)  (R  +  S)Xi=0   (17). 

+  {2Rr,<on  +  (R  +  S)M}  {RLni'}  {(R  +  S)  if} 

-  {Rn'  -  Rxo'  -{R  +  S)}  {Rr.'if}  {RJc'n'  -  SN} 

By    multiplying    up,    and   arranging    by   powers   of    n   and   dividing   by   Rn\ 
this  equation  becomes 

Aii*  +  B)v+C=0   (18), 
where 

B  =  SRr-r:i''<o-'-R{R  +  S)Lr:Jc'-R{{R  +  S)]if  +  Si''}N-  i   (19). 

C=R{(R  +  S)l''-  3Sr:}  oy  +  (R  +  S)  {{R  +  S)  t  +  Sr^}  (Z.V-  IP)  J 

Here    we    have    a    biquadratic    equation   in   ?i   which   may   be    treated   as  a 

quadratic  in  ?r,  it  being  remembered  that  ?i  stands  for  the  operation  -j-  . 

Prob.    IV.      To    determine    whether    the    motion    of    the   ring  is   stable    or 

unstable,  by  means  of  the  relations  of  the  coefficients  A,  B,  C. 

The  equations  to  determine  the  forms  of  r^,  6^,  and  <^i  are  all  of  the  form 

.  d*u     -r,  dhi     ̂        ̂   /^^\ 

^*+-^*+^"=»   (-°'' 
and  if  n  be  one  of  the  four  roots  of  equation  (18),  then 

will   be   one   of    the   four   terms   of   the   solution,    and   the   values   of  i\,  6^,   and 

<^i  will  differ  only  in  the  values  of  the  coefficient  D. 

Let   us  inquire  into  the  nature  of  the  solution  in  different  cases. 

(1)  If    n    be    positive,    this    term   would   indicate   a   displacement   which 

must  increase  indefinitely,  so  as  to  destroy  the  arrangement  of  the  system. 

(2)  If  n  be  negative,   the  disturbance  which  it  belongs  to  would  gradually 
die  away. 

(3)  If  n   be  a  pure  impossible  quantity,  of  the  form    ±aj  —\,    then  there 
will   be   a   term   in   the   solution   of  the  form  D  cos  [at  +  a),  and  this   would  indi- 

277 

cate  a  periodic  variation,  whose  amplitude  is  D,  and  period  ̂ ^ . 
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(4)  If    n   be   of   the   form   b±J'^a,   the   first   term   being   positive   and 
the  second  impossible,  there  will  be  a  term  in  the  solution  of  the  form 

De^'  cos  {at  +  a), 

which    indicates    a    periodic    disturbance,    whose    amplitude   continually  increases 

till  it  disarranges  the  system. 

(5)  If  n  be  of   the   form    -h±s/-la,   a   negative  quantity   and   an   im- 

possible one,  the  corresponding  term  of  the  solution  is 
i>e"*'cos  {(it  +  a), 

which  indicates  a  periodic  disturbance  whose  amplitude  is  constantly  diminishing. 

It  is  manifest  that  the  first  and  fourth  cases  are  inconsistent  with  the 

permanent  motion  of  the  system.  Now  since  equation  (18)  contains  only  even 

powers  of  n,  it  must  have  pairs  of  equal  and  opposite  roots,  so  that  every 

root  coming  under  the  second  or  fifth  cases,  implies  the  existence  of  another 

root  belonging  to  the  first  or  fourth.  If  such  a  root  exists,  some  disturbance 

may  occur  to  produce  the  kind  of  derangement  corresponding  to  it,  so  that 

the  system  is  not  safe  unless  roots  of  the  first  and  fourth  kinds  are  altogether 

excluded.  This  cannot  be  done  without  excluding  those  of  the  second  and  fifth 

kinds,  so  that,  to  insure  stability,  aU  the  four  roots  must  be  of  the  third  kind, 

that  is,  pure  impossible  quantities. 

That  this  may  be  the  case,  both  values  of  n"  must  be  real  and  negative, 
and  the  conditions  of  this  are — 

1st.     That  A,  B,  and  C  should  be  of  the  same  sign, 

2ndly.     That  R>iAC. 

When  these  conditions  are  fulfilled,  the  disturbances  will  be  periodic  and 

consistent  with  stability.  When  they  are  not  both  fulfilled,  a  small  disturbance 

may  produce  total  derangement  of  the  system. 

Prob.  V.  To  find  the  centre  of  gravity,  the  radius  of  gyration,  and  the 

variations  of  the  potential  near  the  centre  of  a  circular  ring  of  small  but  variable 

section. 

Let  a  be  the  radius  of  the  ring,  and  let  6  be  the  angle  subtended  at  the 

centre  between  the  radius  through  the  centre  of  gravity  and  the  line  through 

a  given  point   in   the  ring.     Then   if  /i   be   the   mass    of  unit    of  length   of  the 
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ring   near    the  given    point,   ft   will   be  a  periodic   function   of  6,    and  may    there- 

fore be  expanded  by  Fourier's  theorem  in  the  series, 

li  =  —  {1  + 2/cos^  +  §^cos2^  +  §/isin2^  +  2ico3(3^  +  a)  +  &c.}   (21), 

where/,  g,  h,  &c.  are  arbitrary  coefficients,  and  R  is  the  mass  of  the  ring. 

(1)  The  moment  of  the  ring  about  the  diameter  perpendicular  to  the 

prime  radius  is 

R)\=  r  ficr  cos  ecW  =  Raf, 

therefore  the  distance  of  the  centre  of  gravity  from  the  centre  of  the  ring, 

(2)  The  radius  of  gyration  of  the  ring  about  its  centre  in  its  own  plane 

is  evidently  the  radius  of  the  ring  =a,  but  if  k  be  that  about  the  centre  of 
gravity,  we  have 

.'.  Af  =  a=(l-f). 

(3)  The  potential  at  any  point  is  found  by  dividing  the  mass  of  each 

element  by  its  distance  from  the  given  point,  and  integrating  over  the  whole 
mass. 

Let   the  given  point  be  near  the  centre  of  the  ring,  and  let  its  position  be 

defined  by  the  co-ordinates  r    and  xjj,  of  which  r   is  small  compared  with  a. 

The  distance  (p)  between  this  point  and  a  point  in  the  ring  is 

i  =  i  {1  +  %03  (^  -  0)  +  i  (Q'  + 1  (3'  cos  2{i,-0)+&c.}. 

The  other  terms  contain  powers  of  —  higher  than  the  second. 

We  have  now  to  determine  the  value  of  the  integral, 

Jo    P 

and    in   multiplying    the    terms    of    (/i)    by   those   of    f-J  ,   we   need   retain   only 

those    which    contain    constant    quantities,    for   all   those   which   contain   sines  or 
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cosines   of  multiples   of  {^1^  —  0)   will   vanisti   when  integrated  between  the   limits. 
In  this  way  we  find 

^=-  {l+/%osr/;  +  i^'(l-4-5rcos2i/,  +  ̂sin2tA)}   (22). 

The  other  terms  containing  higher  powers  of  — . 

In   order  to  express   V  in  terms  of  r,  and  (f)„   as   we  have  assumed   in   the 
former  investigation,  we  must  put 

r'  C09  xjj=  —  Tj  +  ̂r^^/, 

^=§{^-f'i^it^^+9)  +  i^fr.<f>.  +  ir<l>n^-9)}   (23). 

From  which  we  find  ,    , dr '^.-s^- 
S.='^=i'(i+^) 

K).=^=i^'(^-^) These  results  may  be  confirmed  by  the  following  considerations  applicable  to 
any  circular  ring,  and  not  involving  any  expansion  or  integration.  Let  af  be 

the  distance  of  the  centre  of  gravity  from  the  centre  of  the  ring,  and  let 

the  ring  revolve  about  its  centre  with  velocity  o).  Then  the  force  necessary 

to  keep  the  ring  in  that  orbit  will  be   —Rafoi^. 
But  let  >S  be  a  mass  fixed  at  the  centre  of  the  ring,  then  if 
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cl'V     cfV     d'V 

The  equation  3^  +  rf^-  +  dz'  +  *'P  =  « 

is  true  for  any  system  of  matter  attracting  according  to  the  law  of  gravitation. 

If  we  bear  in  mind  that  the  expression  is  identical  in  form  with  that  which 
measures  the  total   efflux   of   fluid   from   a  differential  element  of  volume,  where 

-J-  ,   -J- ,  -7-   are   the  rates  at  which  the  fluid  passes  through  its  sides,  we  may 

easily  form  the  equation  for  any  other  case.  Now  let  the  position  of  a  point 

in  space  be  determined  by  the  co-ordinates  r,  ̂   and  z,  where  z  is  measured 
perpendicularly  to  the  plane  of  the  angle  <j>.  Then  by  choosing  the  directions 

of  the  axes  x,  y,  z,  so  as  to  coincide  with  those  of  the  radius  vector  r,  the  per- 
pendicular to  it  in  the  plane  of  <^,  and  the  normal,  we  shall  have 

dx  =  dr^        dy  =  rd^,  dz  =  dz, 

dV^dV     dV^ldV     dV^dV 

dx~  dr  ̂    dy      r  d<l>'    dz       dz 
The  quantities  of  fluid  passing  through  an  element  of  area  in  each  direction  are 

-T-  rd(paz,     -j-7  -  ardz,     -p  rdcpdr, 

so  that  the  expression  for  the  whole  efflux  is 

1  dV    d^V     1    d^V    d^V 

r   dF^d^^7    df^d^   ^^^' 
which  is  necessarily  equivalent  to  the  former  expression. d^V 

Now  at  the  centre  of  the  ring  -r^  may  be  found  by  considering  the  attrac- 

tion on  a  point  just  above  the  centre  at  a  distance  z, 

dV_      p       z 

dz  {a'->tz'f' d'V        R       . 

-^=--3,whenz  =  0. 

Ai  1  \  dV        R        ,  . 
Also  we  know    ^  =  — ^ ,  and  r  =  aj, V     (XV  (Xi 

so  that  m  any  curcular  rmg  "^^^^  d^^    a^   ^     ** 
an  equation  satisfied  by  the  former  values  of  L  and  N. 
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By  referring  to  tlae  original  expression  for  the  variable  section  of  the  ring, 
it  appears  that  the  effect  of  the  coefficient  /  is  to  make  the  ring  thicker  on 
one  side  and  thinner  on  the  other  in  a  uniformly  graduated  manner.  The  eflfect 

of  ̂   is  to  thicken  the  ring  at  two  opposite  sides,  and  diminish  its  section  in 

the  parts  between.  The  coefficient  h  indicates  an  inequality  of  the  same  kind, 

only  not  symmetrically  disposed  about  the  diameter  through  the  centre  of 

gravity. 

Other  terms  indicating  inequalities  recurring  three  or  more  times  in  the 

circumference  of  the  ring,  have  no  effect  on  the  values  of  X,  M  and  N.  There  is 
one  remarkable  case,  however,  in  which  the  irregularity  consists  of  a  single 

heavy  particle  placed  at  a  point  on  the  circumference  of  the  ring. 

Let  P  be  the  mass  of  the  particle,  and  Q  that  of  the  uniform  ring  on 

which  it  is  fixed,  then  R  =  P-{-Q, 

■>     K' 

-^S-^.=^(-^S=.4(-^) 
•••  3  =  ̂  =  3/-   (27)- 

Prob.  VI.  To  determine  the  conditions  of  stability  of  the  motion  in  terms 

of  the  coefficients/,  g,  h,  which  indicate  the  distribution  of  mass  in  the  ring. 

The  quantities  which  enter  into  the  differential  equation  of  motion  (18) 

are  R,  S,  k",  i\,  (o",  L,  M,  N.  We  must  observe  that  S  is  very  large  compared 
with  R,  and  therefore  we  neglect  R  in  those  terms  in  which  it  is  added  to  S, 
and  we  put 
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Substituting  these  values  in  equation  (18)  and  dividing  by  H'a*/-,  we  obtain 

{l-P)n*  +  (l-y^  +  y^g)nW  +  (^-&r-lg^-lh^  +  2fg)<.^  =  0   (28). 

The  condition  of  stability  is  that  this  equation  shall  give  both  values  of  n* 
negative,  and  this  renders  it  necessary  that  all  the  coefficients  should  have  the 
same  sign,  and  that  the  square  of  the  second  should  exceed  four  times  the 
product  of  the  first  and  third. 

(1)  Now  if  we  suppose  the  ring  to  be  uniform,  /,  g  and  h  disappear, 
and  the  equation  becomes 

n'  +  nV  +  |  =  0   (29), 

which  gives  impossible  values  to  n'  and  indicates  the  instability  of  a  uniform 
ring. 

(2)  If  we  make  g  and  A  =  0,  we  have  the  case  of  a  ring  thicker  at  one 
side  than  the  other,  and  varying  in  section  according  to  the  simple  law  of  sines. 

We  must  remember,  however,  that  /  must  be  less  than  ̂ ,  in  order  that  the 

section  of  the  ring  at  the  thinnest  part  may  be  real.     The  equation  becomes 

(l_/=),,*  +  (l.|/^)^V  +  (|-6/>*  =  0   (30). 

The  condition  that  the  third  term  should  be  positive  gives 

/*<'375. 

The  condition  that  n'  should  be  real  gives 

71/^-112/^  +  32  negative, 

which  requires/"  to  be  between  "37445  and  1'2. 

The  condition  of  stability  is  therefore  that  /^  should  lie  between 

•37445  and  '375, 

but  the  construction  of  the  ring  on  this  principle  requires  that  /-  should  be 

less  than  "25,  so  that  it  is  impossible  to  reconcile  this  fonn  of  the  ring  with 
the  conditions  of  stability. 

(3)  Let  us  next  take  the  case  of  a  uniform  ring,  loaded  with  a  heavy 

particle  at  a  point  of  its  circumference.  We  have  then  g  =  Sf,  h  =  0,  and  the 
equation  becomes 

(l-/=)n^  +  (l-|/^  +  f/ViV+(|-y/'+6/>^  =  0   (31). 
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Dividing  each  term  by  1  -/,  we  get 

(l+/)n^+(l+/-f/0^^V  +  f{3(l+/)-8/=}a,^  =  O   (32). 

The  first  condition  gives /less  than  '8279. 

The  second  condition  gives  /  greater  than  '8 15865. 

Let  us  assume  as  a  particular  case  between  these  limits  /=  •82,  which 
makes  the  ratio  of  the  mass  of  the  particle  to  that  of  the  ring  as  82  to  18, 

then  the  equation  becomes 

l-82  7i^  +  '8114?iV+-9696a>'  =  0    (33), 

which  gives  >J^^n=  ±'5916(o  or  ±-3076w. 

These  values  of  n  indicate  variations  of  r^,  O^,  and  ̂ i,  which  are  com- 

pounded of  two  simple  periodic  inequalities,  the  period  of  the  one  being  1"69 
revolutions,  and  that  of  the  other  3 '2  51  revolutions  of  the  ring.  The  relations 
between  the  phases  and  ampUtudes  of  these  inequalities  must  be  deduced  from 

equations  (14),  (15),  (16),  in  order  that  the  character  of  the  motion  may  be 

completely  determined. 

Equations  (14),  (15),  (16)  may  be  written  as  follows: 

{Anco  +  hoi')  ̂  +2f7i%+f(3-g) (o"'(l>,  =  0   (34), 

{ii^-l<o'^{S+g)}^'-2fcone,^ifh<o'<f>,  =  0   (35), 

-/ho>^  '^  +  2  (1  -f^)n%  +  {2  (1  -f)  n'-r  {S-g)  co^}<l>,  =  0   (36). 

By  eliminating  one  of  the  variables  between  any  two  of  these  equations, 

we  may  determine  the  relation  between  the  two  remaining  variables.  Assuming 

one  of  these  to  be  a  periodic  function  of  t  of  the  form  A  cos  pt,  and  remem- 

bering that  n  stands  for  the  operation  -7- ,  we  may  find  the  form  of  the  other. 

Tlius,  eliminating  6^  between  the  first  and  second  equations, 

{n'  +  i7i<o'{5-g)  +  hoj'f-^+foy'{{3-g)<o-ym}cf>,  =  0   (37). 
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T 

Assuming  —  =A^\wvt^  and  <f)i  =  Q  cos  (ut  —  ̂ ), 

{-v'  +  ̂vo)'  (5  -  g)}  A  cos  pt  +  h(o^  A  sin  vt  +fo/  (3  -rj)  Qcos{vt  -  /3)  +  Ifhui'vQ  sin  {yt  -  /3). 

Equating  vt  to  0,  and  to  -  ,  we  get  the  equations 

[v'-^voy  (5  -g)}  A  =f<o'Q  {(3  -g)  cj  cos  /8 - ^/ii/ sin /3}, 

-  h<o'  A  =fo)'Q  {(3  -  </)  o)  sin  /8  +  -l/ii/  cos  ̂ 8}, 

from  which  to  determine  Q  and  ̂ . 

In  all  cases  in  which  the  mass  is  disposed  symmetrically  about  the  diameter 

through  the  centre  of  gravity,  A  =  0  and  the  equations  may  be  greatly  simplified. 

Let  6i  =  P  cos  (vt  — a),  then  the  second  equation  becomes 

{v'  +  ̂0)'  (3  +  g)}  A  sin  vt  =  2Pfa}v  sin  {vt  -  a), 

whence  a  =  0,   P  =  ̂^JtMiijO  .4     (38). 
2j(DV  ^        ' 

The  first  equation  becomes 

^Aoiv  cos  vt  -  2Pfv-  cos  vt  +  Qf  (3  -g)  w'  cos  (I'f  -  /S)  =  0, 

whence  ^  =  0,   <?  =  '^"t.f '  w^^-^     (S^)- 

In  the   numerical  example  in  which  a  heavy  particle  was  fixed  to   the   cir- 

cumference of  the  ring,  we  have,  when  /=  '82, 
V 

^      1-3076 
/•5916         P_r3-21         Q_f-l-229 

t-3076'      A~\b-72'      A~\-   797' 
so  that  if  we  put  (ot  =  0^  =  the  mean  anomaly, 

^  =  .4sin(-5916(9o-a)+^sin(-3076  6'o-^)     (40), 

^1  =  3-21^  cos  (-5916(90- a) +  5-72^  cos  (-3070  ̂ 0-/3)   (41), 

<^,=  -l-229^cos(-5916l9o-a)-5-7975cos(-30766',-/3)  ...  (42). 

These   three   equations    serve    to    determine  1\,   6^  and  <^i  when   the  original 

motion  is   given.      They  contain  four  arbitrary  constants  A,  B,  a,  /3.     Now  since 



310  ON    THE    STABILITY    OF    THE    MOTION    OF    SATURN  S    RINGS. 

the  original  values  1\,  0^,  <^i,  and  also  their  first  differential  coefficients  with 

respect  to  t,  are  arbitrary,  it  would  appear  that  six  arbitrary  constants  ought 

to  enter  into  the  equation.  The  reason  why  they  do  not  is  that  we  assume 

r„  and  0^  as  the  Tiiean  values  of  r  and  6  in  the  actucd  motion.  These  quantities 

therefore  depend  on  the  original  circumstances,  and  the  two  additional  arbitrary 

constants  enter  into  the  values  of  ̂ o  and  d^.  In  the  analytical  treatment  of  the 

problem  the  differential  equation  in  n  was  originally  of  the  sixth  degree  with  a 

solution  n-  =  0,  which  implies  the  possibihty  of  terms  in  the  solution  of  the 
form  Ct  +  D. 

The  existence  of  such  terms  depends  on  the  previous  equations,  and  we  find 

that  a  term  of  this  form  may  enter  into  the  value  of  6,  and  that  r^  may  contain 

a  constant  term,  but  that  in  both  cases  these  additions  will  be  absorbed  into 

the  values  of  0,  and  r,. 

PART    IL 

ON    THE    MOTION   OF   A   RING,    THE   PARTS   OF   WHICH   ARE  NOT   RIGIDLY   CONNECTTED. 

1.  In  the  case  of  the  Ring  of  invariable  form,  we  took  advantage  of  the 

principle  that  the  mutual  actions  of  the  parts  of  any  system  form  at  all  times 

a  system  of  forces  in  equilibrium,  and  we  took  no  account  of  the  attraction 

between  one  part  of  the  ring  and  any  other  part,  since  no  motion  could  result 

from  this  kind  of  action.  But  when  we  regard  the  different  parts  of  the  ring 

as  capable  of  independent  motion,  we  must  take  account  of  the  attraction  on 

each  portion  of  the  ring  as  affected  by  the  irregularities  of  the  other  parts,  and 

therefore  we  must  begin  by  investigating  the  statical  part  of  the  problem  in 

order  to  determine  the  forces  that  act  on  any  portion  of  the  ring,  as  depending 

on  the  instantaneous  condition  of  the  rest  of  the  ring. 

In  order  to  bring  the  problem  within  the  reach  of  our  mathematical  methods, 

we  limit  it  to  the  case  in  which  the  ring  is  nearly  circular  and  uniform,  and  has 

a  transverse  section  very  small  compared  with  the  radius  of  the  ring.  By 

analysing  the  difficulties  of  the  theory  of  a  linear  ring,  we  shall  be  better  able 

to  appreciate  those  which  occur  in  the  theory  of  the  actual  rings. 
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The  ring  which  we  consider  is  therefore  small  in  section,  and  very  nearly 

circular  and  uniform,  and  revolving  with  nearly  uniform  velocity.  The  variations 

from  circular  form,  uniform  section,  and  uniform  velocity  must  be  expressed  by  a 

proper  notation. 

2.  To  express  the  position  of  an  element  of  a  variable  ring  at  a  given  time 

in  terms  of  the  original  position  of  the  element  in  the  ring. 

Let  S  (fig.  3)  be  the  central  body,  and  SA  a  direction  fixed  in  space. 

Let  SB  be  a  radius,  revolving  with  the  mean  angular  velocity  w  of  the 

ring,  so  that  ASB  =  (ot. 

Let  n  be  an  element  of  the  ring  in  its  actual  position,  and  let  P  be  the 

position  it  would  have  had  if  it  had  moved  uniformly  with  the  mean  velocity  w 

and  had  not  been  displaced,  then  BSP  is  a  constant  angle  =s,  and  the  value 

of  5  enables  us  to  identify  any  element  of  the  ring. 

The  element  may  be  removed  from  its  mean  position  P  in  three  different 

ways. 

(1)  By  change  of  distance  from  S  by  a  quantity  l^TT  =  p. 

(2)  By  change  of  angular  position  through  a  space  Pp  =  a. 

(3)  By  displacement  perpendicular  to  the  plane  of  the  paper  by  a  quantity  C 

p,  a-  and  ̂   are  all  functions  of  s  and  t.  If  we  could  calculate  the  attrac- 

tions on  any  element  as  depending  on  the  form  of  these  functions,  we  miglit 

determine  the  motion  of  the  ring  for  any  given  original  disturbance.  We  cannot, 

however,  make  any  calculations  of  this  kind  without  knowing  the  form  of  the 

functions,  and  therefore  we  must  adopt  the  following  method  of  separating  the 

original  disturbance  into  others  of  simpler  form,  first  given  in  Fourier's  Tmitc de  Chaleur. 

3.  Let  C/"  be  a  function  of  s,  it  is  required  to  express  U  in  a  series  of 

sines  and  cosines  of  multiples  of  s  between  the  values  5  =  0  and  .s  =  2t. 

Assume  U=A,coss  +  A.,  cos  2*-  +  &c.  -f  A ̂   cos  nis  +  A „  cos  ns 

+  B,  sin  ,s  +  B,  cos  2.s  +  &c.  +  B,„  sin  ms  +  B„  sin  ns. 
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Multiply  by  coa  Tusds  and  integrate,  then  all  terms  of  the  form 

J  cos  ms  cos  nsds  and  /  cos  ms  sin  nsds 

will  vanish,  if  we  integrate  from  s  =  0  to  s  =  27r,  and  there  remains 

I    U  COS  msds= IT  A^,  Ua\-D.msds  =  'TrB^. 

If  we  can  determine  the  values  of  these  integrals  in  the  given  case,  we 

can  find  the  proper  coefficients  A^,  B^,  &c.,  and  the  series  will  then  represent 
the  values  of  U  from  s  =  0  to  5  =  27r,  whether  those  values  be  continuous  or 
discontinuous,  and  when  none  of  those  values  are  infinite  the  series  will  be 

convergent. 

In  this  way  we  may  separate  the  most  complex  disturbances  of  a  ring  into 
parts  whose  form  is  that  of  a  circular  function  of  s  or  its  multiples.  Each  of 

these  partial  disturbances  may  be  investigated  separately,  and  its  efiect  on  the 

attractions  of  the  ring  ascertained  either  accurately  or  approximately. 

4.  To  find  the  magnitude  and  direction  of  the  attraction  between  two 

elements  of  a  disturbed  ring. 

Let  P  and  Q  (fig.  4)  be  the  two  elements,  and  let  their  original  positions 

be  denoted  by  s^  and  5j,  the  values  of  the  arcs  BP,  BQ  before  displacement. 

The  displacement  consists  in  the  angle  BSP  being  increased  by  ctj  and  BSQ 

by  0*2 ,  while  the  distance  of  P  from  the  centre  is  increased  by  p,  and  that  of 
Q  by  Pj.  We  have  to  determine  the  effect  of  these  displacements  on  the  distance 
PQ  and  the  angle  SPQ. 

Let  the  radius  of  the  ring  be  unity,  and  5j  — .9i  =  2^,  then  the  original 
value  of  PQ  will  be  2  sin  0,  and  the  increase  due  to  displacement 

=  (/>2  +  Pi)  sin  ̂   +  (o-j  -  (Ti)  cos  6. 

We  may  write  the  complete  value  of  PQ  thus, 

PQ  =  2Bme{l+i{p,  +  p,)+^{(T,-(T,)cot0\   (1). 

The  original  value  of  the  angle  SPQ  was  -^-6,   and    the    increase    due   to 

displacement  is  i{Pi  —  Pi)  cot  ̂   -  ̂   (o-j  -  Ci), 



ON    THE    STABILITY    OF    THE    MOTION    OF    SATURN  8    RINGS. 313 

30  that  we  may  write  the  values  of  sin  SPQ  and  cos  SPQ, 

Gin  SFQ  =  cos  e {I +i{p,-p,)-i  {a-,- a,)  ta,n0}     (2), 

cos  SPQ  =  am  e  {I -i(p,-p,)coVd  +  i  (a-,- a-,)  cot  6}     (3). 

If  we   assume   the    masses  of  P  and  Q  each  equal  to  -  R,  where  P   is   the 

mass   of  the   ring,  and  p,  the   number  of  satellites   of  which   it   is   composed,  the 

accelerating  effect  of  the  radial  force  on  P  is 

li}22^  =  l--«_^{l_(p.  +  p,)_i(p._p,)eof^-iK-.T.)cot3}...(4), 

and  the  tangential  force 

I    j^sinSPQ        li^COS^-.  ,  \  /      +  ̂   ,    l  x         mi  /r:\ 

]1^     PQ     ̂ ^H^i^I^-^/^^-f/^^-l^'-^Olcot^  +  itan^)}   (5). 

1       L  —  l 
The  normal  force  is  -R  ̂    .  ,\. 

p.     8  sm^  6 

5.  Let  us  substitute  for  p,  or  and  {  their  values  expressed  in  a  series  of 
sines  and  cosines  of  multiples  of  5,  the  terms  involving  ms  being 

Pi  =  A  cos  {ms  +  a),  pi  =  A  cos  (ms  +  a  +  20), 

o-,  =  -Bsin(m5  +  ̂ ),  cr.  =  B  sin  {7}is-\-fi  + 20), 

C,  =  C  cos  (ms  +  y),  C2  =  Ccos  {ms  +  y  +  26). 

The  radial  force  now  becomes 

1  —  ̂   cos  {ms  +  a)  ( 1  +  cos  2m0)  +  A  sin  {ms  +  a)  sin  2md  i 

+  ̂ A  cos  {ms  +  a)  (1  -  cos  2m6)  cot'  ̂   -  ̂ ^  sin  (t/i^  +  a)  sin  2ni6  cot" 6  \  (6). 
+^B  sin  {ms  + ft)  {1  -cos  2m^)  cot  ̂ -^5cos(??i5  +  /8)  siii2w^cot^. 

The  radial  component  of  the  attraction  of  a  corresponding  particle  on  the 

other  side  of  P  may  be  found  by  changing  the  sign  of  6.  Adding  the  two 
together,  we  have  for  the  effect  of  the  pair 

-  ̂ -^ — ^  {1  —  ̂   COS  {ms  +  a)  (2  cos"  md  —  sin' md  cot'  6) 

-  B  cos  {ms  + 13)  ̂  sin  2m6  cot  6]   

I_i2_ 
/x  4  sin  ̂  

(?)• 
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sin*  mO  cos''  6     cos'  m6\ 

K=t 

f^va.  2m6  cos 

\      4sin*^ 
/sin"  md  cos'  6 

sin'  mt 

2  sin^ 

1 

0 

+  i sin'?n^ 

2sin^ 
(8)^: 

where    the    summation    extends    to    all    the    sateUites    on    the    same   side   of  F, 

that  is,   every    value   of    6   of    the   form    -  tt,    where   x   is   a   whole    number  less 

than 

The  radial  force  may  now  be  written 

P  =  ~R  {K+  LA  cos  ims  +  a)  -  MB  cos  {'tm  +  ̂)} 

(9). 

*  Tlie  following  values  of  several  quantities  which  enter  into  these  investigations  are  calculated  for  a 

ring  of  36  satellites. A' =24-5. 

^  sin-  md  cos-  $       ̂   cos^  md          ̂  if .V 
sinS  d                    sin  e 

m=    0 0         43    -  43 
0 0 

ni=  1 32         32    -16 
16 

37 

m=    2 107         28     26 25 
115 

m  —    3 212         25     81 
28 

221 

;u=  4 401         24    177 32 411 

vi=    9 975         20    468 30 
986 

/ft- 18 1569         18    767 0 
1582 

r   gi-eat, 
-  Z  -  -5259  when  m  -- 

=  '4342   „  TO  = 

=  -3287   „  m  = 

"3' 
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The  tangential  force  may  be  calculated  in  the  same  way,  it  is 

T=-  R{MAam(iiis-\-a)  +  NBsm(7ns  +  IB)}   (10). 

The  normal  force  is 

Z=  -^-RJC  cos  (ms  +  y)   (11). 

G.  We  have  found  the  expressions  for  the  forces  which  act  upon  each 

member  of  a  system  of  equal  satellites  which  originally  formed  a  uniform  ring, 
but  are  now  aflfected  with  displacements  depending  on  circular  functions.  If 

these    displacements    can    be   propagated   round   the    ring  in   the    form   of  waves 

with  the  velocity   — ,    the    quantities    a,  y8,    and   y   will   depend    on    t,    and    the 

complete   expressions  will  be 

p  =  ̂   cos  (ms  +  nt-\-  a)  ' 
a  =  Bam(ms  +  nt+^)  ■   (12). 

^  =  Ccos  (ms  +  nt  +  y). 

Let    us    find    in    what    cases    expressions    such  as   these    will   be   true,    and 

what  will  be  the  result  when  they  are  not  true. 

Let  the  position  of  a  satellite  at  any  time  be  determined  by  the  values 

of  r,  (j),  and  C,  where  r  is  the  radius  vector  reduced  to  the  plane  of  reference, 

<t>  the  angle  of  position  measured  on  that  plane,  and  ̂   the  distance  from  it. 

The  equations  of  motion  will  be 

[dtj       df     ̂   r
-^-^ dr  d4        d^_^ 

^Tt    dt  ̂"^  df~ 

d^ 

df'
 

1^
 

.(13). 

If  we  substitute  the  value  of  ̂   in  the  third  equation  and  remember  that  r 

is  nearly   =  1 ,  we  find 

(14). 
As    this   expression   is   necessarily   positive,    the   value   of  n'   is   always   real, 

and    the    disturbances    normal   to    the   plane    of    the    ring   can   always  be    propa- 



31G  ON    THE    STABILITY    OF    THE    MOTION    OF    SATURN's    RINGS. 

gated  as  waves,  and  therefore  can  never  be  the  cause  of  instability.  We 
therefore  confine  our  attention  to  the  motion  in  the  plane  of  the  ring  as 
deduced  from  the  two  former  equations. 

Putting  r  =  1 4-  /)  and   (f>  =  <ot  +  s  +  a;    and    omitting    powers    and    products    of 
p,  cr  and  their  differential  coeflScients, 

''+'">+2-t-t='^-2«''+^ 

-l+§=^ (15). 

Substituting  the  values  of  p  and  cr  as  given  above,  these  equations  become 

oi'-S--  RK+  U- -]-2S--EL  +  7f)A  cos  (ttis  +  nt  +  a) 

+  (2(071  + -RM)B  COS  (ins +  nt  +  ̂)  =  0   ...(16), 

H' 

(2(071  +  - EM)  A  sin  (ins  +  nt  +  a)  +  (if +-RN)Bam(7ns  +  nt-\-^)  =  0.... (17). p  p 

Putting    for    (ins  +  nt)    any    two    diflferent   values,    we    find    from    the    second 
equation  (17) 

a=)8   (18), 

and  (2(on  +  -E]\f)A  +  (n'+-EN)B  =  0   (19), 

and  from  the  first  (16)  ((o' +  2S -- EL  +  iv)  A  +  (2(on  +  -  EM)  B  =  0   (20), 

and  (o'-S--EK=0   (21). p 

Eliminating  A  and  B  from  these  equations,  we  get 

n'-{S(o'-2S  +  -E(L-N)}n^ 

-'4(o-EMn  +  ((o'  +  2S--EL)-EN--,E'M'  =  0   (22), 

a  biquadratic  equation  to  determine  n. 

For   every  real  value   of  n  there  are  terms  in  the  expressions  for  p  and  o- 
of  the  form 

A  cos  (nis  +  nt  +  a). 
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For  every  pure  impossible  root  of  the  form  ±7  —  In'  there  are  terms  of the  forms 
^e^^'cos  (ms  +  a). 

Although  the  negative  exponential  coefficient  indicates  a  continually  diminlshmg 

displacement  which  is  consistent  with  stability,  the  positive  value  which  neces- 
sarily accompanies  it  indicates  a  continually  increasing  disturbance,  which  would 

completely  derange  the  system  in  course  of  time. 

For  every  mixed  root  of  the  form   ±n/  — In'  +  n,  there  are  terms  of  the  form 
.46*"''  cos  {ms  +  nt  +  a). 

If  we  take  the  positive  exponential,  we  have  a  series  of  m   waves  travelling 

with   velocity   —    and    increasing    in    amplitude   with    the    coefficient    e"^"'.     The 

negative  exponential  gives  us  a  series  of  m  waves  gradually  dying  away,  but 
the  negative  exponential  cannot  exist  without  the  possibility  of  the  positive  one 

having  a  finite  coefficient,  so  that  it  is  necessary  for  the  stability  of  the  motion 
that  the  four  values  of  n  be  all  real,  and  none  of  them  either  impossible 

quantities  or  the  sums  of  possible  and  impossible  quantities. 

We  have  therefore  to  determine  the  relations  among  the  quantities  K,  L, 

M,  N,  R,  S,  that  the  equation 

n'-lS+^RidK+L-N)]?^ 

'-4<o-RMn  +  {SS+  -  R  (K-L)}  -  RN-  \  R'M'^  U=0 

may  have  four  real  roots. 

7.  In  the  first  place,  U  is  positive,  when  tz  is  a  large  enough  quantity, 

whether  positive  or  negative. 

It  is  also  positive  when  7i=;0,  provided  S  be  large,  as  it  must  be,  com- 

pared with  -  RL,  -  RM  and   -  RN. 

If  we  can  now  find  a  positive  and  a  negative  value  of  n  for  which  U 

is  negative,  there  must  be  four  real  values  of  n  for  which  U=0,  and  the  four 
roots  will  be  real. 
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Now  if  we  put  n=  ±J^JS, 

U=  -^S'  +  l  -R{7N±ij2M-L-dK)  S+  \r{KN-LN^M% 

which  is  negative  if  >S  be  large  compared  to  R. 

So  that  a  ring  of  satellites  can  always  be  rendered  stable  by  increasing 
the  mass  of  the  central  body  and  the  angular  velocity  of  the  ring. 

The   values   of  L,  M,  and  N  depend  on  m,   the   number   of    undulations   in 

the   ring.      When   m  =  ̂,    the    values   of  L   and    N   will   be   at   their   maximum 

and  M=0.  If  we  determine  the  relation  between  S  and  R  in  this  case  so 

that  the  system  may  be  stable,  the  stability  of  the  system  for  every  other 

displacement  will  be  secured. 

8.  To  find  the  mass  which  must  be  given  to  the  central  body  in  order 

that  a  ring  of  satellites  may  permanently  revolve  round  it. 

We  have  seen  that  when  the  attraction  of  the  central  body  is  sufficiently 

great  compared  with  the  forces  arising  from  the  mutual  action  of  the  satellites, 

a  permanent  ring  is  possible.  Now  the  forces  between  the  satellites  depend  on 

the  manner  in  which  the  displacement  of  each  satellite  takes  place.  The  con- 

ception of  a  perfectly  arbitrary  displacement  of  all  the  satellites  may  be  rendered 

manageable  by  separating  it  into  a  number  of  partial  displacements  depending 

on  periodic  functions.  The  motions  arising  from  these  small  displacements  will 

take  place  independently,  so  that  we  have  to  consider  only  one  at  a  time. 

Of  all  these  displacements,  that  which  produces  the  greatest  disturbing 

forces    is    that   in  w^hich   consecutive   satellites   are   oppositely   displaced,    that  is, 

when   m  =  -,   for   then   the   nearest  satellites   are   displaced   so   as   to   increase   as z 

much  as  possible  the  effects  of  the  displacement  of  the  satellite  between  them. 

If  we  make  /x  a  large  quantity,  we  shall  have 

2™^<^  =  e;(l  +  3-'  +  5-  +  &c.)  =  ̂.(l-0518). sm^  0  n'  ̂   TT 

M=0,         N=2L,         J5r  very  small. IT 
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Let   -  RL  =  X,  then  the  equation  of  motion  will  be 

/A 

n*-{S-x)n'  +  2x{'iS-x)=U=0   (23). 

The  conditions  of  tliis  equation  having  real  roots  are 

S>x    (24), 

(S-xY>^x{'iS-x)    (25). 

The  last  condition  gives  the  equation 

6:'-26*Sx  +  9ar>0, 

whence  S>2Q-U2x,    or>S<0-351a;   (26). 

The  last  solution  is  inadmissible  because  S  must  be  greater  than  x,  so  that 

the  true  condition  is  »S>25*649a:, 

>  25-649  i  72^3 -5259, 

/X         IT 

S>-ASd2im'R     (27). 

So  that  if  there  were   100  satellites  in  the  ring,  then 

5>4352i2 

is   the    condition  which  must  be  fulfilled  in  order   that   the    motion   arising  from 

every  conceivable  displacement  may  be  periodic. 

If  this  condition  be  not  fulfilled,  and  if  S  be  not  sufiadent  to  render  the 

motion  perfectly  stable,  then  although  the  motion  depending  upon  long  undu- 
lations may  remain  stable,  the  short  undulations  wiill  increase  in  amplitude  till 

some  of  the  neighbouring  satellites  are  brought  into  collision. 

9.  To  determine  the  nature  of  the  motion  when  the  system  of  satellites 

is  of  small  mass  compared  with  the  central  body. 

The  equation  for  the  determination  of  n  is 

^        /x      ̂   /x 

+  {Zoy-- R{2K+L)]~  RN -\R'M'=^0    (28). F'  r"  r" 

When  R  is  very  small  we  may  approximate  to  the  values  of  n  by  assuming 

that  two  of  them  are  nearly  ±  co,  and  that  the  other  two  are  small. 
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If  we  put  n=  ±(0, 

dU 
dn =  ±2g>'  +  &c. 

Therefore  the  corrected  values  of  n  are 

n^±{<o  +  ̂R(2K  +  L-.m)}  +  ̂RM. 

(29). 
The   small   values  of  n  are   nearly  ±/3-i2iV^:  correcting  them  in   the 

way,  we  find  the  approximate  values 

n=±./3^EN^2~RM   

same 

(30). 
The  four  values  of  n  are  therefore 

1 

^1=  -<o-^-E{2K+L^iM-4N) 

RN-  —  RM 

fXCt) 

^z=+J^-RN-  —  RM 

(31), 

^4=  +o>+^--R(2K+L  +  iM-4N) 

and  the  complete   expression  for  p,  so  far  as  it  depends  on  terms  containing  ms, 
is  therefore  P  =  A,  cos  {ms  +  n^t  +  a^)-\-A^  cos  (ws  +  n^t  +  c^) 

+  A^co&(ms  +  nJ,  +  a^-{-A^coB{ms-\-nJ^  +  a^)   (32), 

and   there   will   be   other  systems,  of  four  terms   each,   for  every   value   of  m  in 
the  expansion  of  the  original  disturbance. 

We  are  now  able  to  determine  the  value  of  o-  from  equations  (12),  (20),  by 
putting  /8  =  a,  and 

2<an  +  -  RM 

5=  — 

(33). 

n'  +  -RN 
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So  that  for  every  term  of  p  of  the  form 

p  =  Acos  (ms  -{-111  + a)    (34), 

there  is  a  corresponding  term  in  a, 

2w7i  +  -  RM 

7t'  +  -RN 
A  sin  {ms-¥7it  + a)   (35). 

10.  Let  us  now  fix  our  attention  on  the  motion  of  a  single  satellite, 

and  determine  its  motion  by  tracing  the  changes  of  p  and  a-  while  t  varies 

and  5  is  constant,  and  equal  to  the  value  of  s  corresponding  to  the  satellite 

in   question. 

We  must  recollect  that  p  and  a-  are  measured  outwards  and  forwards  from 

an  imaginary  point  revolving  at  distance  1  and  velocity  o,  so  that  the  motions 

we  consider  are  not  the  absolute  motions  of  the  satellite,  but  its  motions 

relative  to  a  point  fixed  in  a  revolving  plane.  This  being  understood,  we  may 

describe  the  motion  as  elliptic,  the  major  axis  being  in  the  tangential  direc- 

tion, and  the  ratio  of  the  axes  being  nearly  2  ̂  ,  which  is  nearly  2  for  n,  and  n, 

and  is  very  large  for  n^  and  n^. 

The    time   of   revolution   is  — ,  or   if  we   take   a  revolution  of   the   ring   as 

the    unit   of    time,   the    time    of    a  revolution   of    the    satellite    about    its   mean 

...        .    it) 

position  IS  -  . 

The   direction   of  revolution   of   the   satellite   about  its   mean    position    is   in 

every  case  opposite  to  that  of  the  motion  of  the  ring. 

11.     The    absolute    motion   of   a   satellite    may    be    found    from    its    motion 

relative  to  the   ring  by  writing 

r=l+p  =  l+^cos  {ms  +  nt  +  a), 

d  =  (ot  +  s-{-<T  =  (ot  +  s-2  -Asm{ms-\-nt-\-a). 
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When  n  is  nearly  equal  to  ±(0,  the  motion  of  each  satellite  in  space  is 

nearly  elliptic.  The  eccentricity  is  A,  the  longitude  at  epoch  s,  and  the  longi- 
tude when  at  the  greatest  distance  from  Saturn  is  for  the  negative  value  n^ 

-  —  R{2K+L-iM-4N)t  +  {m+l)s  +  a, 

and  for  the  positive  value  n^ 

-  —  R{2K+L  +  4M^4.N)t-{m+l)s-a. 

We  must  recollect  that  in  all  cases  the  quantity  within  brackets  is  negative, 
so  that  the  major  axis  of  the  ellipse  travels  forwards  in  both  cases.  The  chief 

difference  between  the  two  cases  lies  in  the  arrangement  of  the  major  axes  of 
the  ellipses  of  the  different  satellites.  In  the  first  case  as  we  pass  from  one 

satellite  to  the  next  in  front  the  axes  of  the  two  ellipses  lie  in  the  same 

order.  In  the  second  case  the  particle  in  front  has  its  major  axis  behind  that 
of  the  other.  In  the  cases  in  which  n  is  small  the  radius  vector  of  each 

satellite  increases  and  diminishes  during  a  periodic  time  of  several  revolutions. 

This  gives  rise  to  an  inequality,  in  which  the  tangential  displacement  far  exceeds 
the  radial,  as  in  the  case  of  the  annual  equation  of  the  Moon. 

12.  Let  us  next  examine  the  condition  of  the  ring  of  satellites  at  a  given 

instant.  We  must  therefore  fix  on  a  particular  value  of  t  and  trace  the  changes 
of  p  and  <r  for  different  values  of  s. 

From  the  expression  for  p  we  learn  that  the  satellites  form  a  wavy  line, 

which  is  furthest  from  the  centre  when  (ms  +  nt  +  a)  is  a  multiple  of  27r,  and 
nearest  to  the  centre  for  intermediate  values. 

From  the  expression  for  cr  we  learn  that  the  satellites  are  sometimes  in 

advance  and  sometimes  in  the  rear  of  their  mean  position,  so  that  there  are 

places  where  the  satellites  are  crowded  together,  and  others  where  they  are 
drawn  asunder.  When  n  is  positive,  ̂   is  of  the  opposite  sign  to  A,  and  the 

crowding  of  the  satellites  takes  place  when  they  are  furthest  from  the  centre. 

When  n  is  negative,  the  satellites  are  separated  most  when  furthest  from  the 

centre,  and  crowded  together  when  they  approach  it. 

The  form  of  the  ring  at  any  instant  is  therefore  that  of  a  string  of  beads 

forming  a  re-entering  curve,  nearly  circular,  but  with  a  small  variation  of  distance 
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from  the  centre  recurring  m  times,  and  forming  m  regular  waves  of  trans- 

vei-se  displacement  at  equal  intervals  round  the  circle.  Besides  these,  there  are 

waves  of  condensation  and  rarefaction,  the  effect  of  longitudinal  displacement. 

When  n  is  positive  the  points  of  greatest  distance  from  the  centre  are  points 

of  greatest  condensation,  and  when  n  is  negative  they  are  points  of  greatest 
rarefaction. 

13.  We  have  next  to  determine  the  velocity  with  which  these  waves  of 

disturbance  are  propagated  round  the  ring.  We  fixed  our  attention  on  a  par- 
ticular satellite  by  making  s  constant,  and  on  a  particular  instant  by  making  t 

constant,  and  thus  we  determined  the  motion  of  a  satellite  and  the  form  of  the 

ring.  We  must  now  fix  our  attention  on  a  phase  of  the  motion,  and  this  we 

do   by  making  p  or  a-  constant.      This  implies 
ms  +  nt  +  a  =  constant, 

ds  _      n 

dt~     m* 
So   that  the  particular  phase  of  the   disturbance  travels  round  the  ring  with  an 

angular  velocity  =   relative   to   the   ring    itself.      Now   the    ring   is   revolving 

in  space  with  the  velocity  w,  so  that  the  angular  velocity  of  the  wave  in  space  is 

tj-  =  w     (36). m 

Thus  each  satellite  moves  in  an  ellipse,  while  the  general  aspect  of  the 

ring  is  that  of  a  curve  of  m  waves  revolving  with  velocity  ct.  This,  however, 

is  only  the  part  of  the  whole  motion,  which  depends  on  a  single  term  of  the 

solution.  In  order  to  understand  the  general  solution  we  must  shew  how  to 

determine  the  whole  motion  from  the  state  of  the  ring  at  a  given  instant. 

14.  Given  the  position  and  motion  of  every  satellite  at  any  one  time,  to 

calculate  the  position  and  motion  of  every  satellite  at  any  other  time,  provided 
that  the  condition  of  stability  is  fulfilled. 

The  position  of  any  satellite  may  be  denoted  by  the  values  of  p  and  cr  for 
that  satellite,  and  its  velocity  and  direction  of  motion  are  then  indicated  by  the 

values  of  -r  and  -y-  at  the  g:iven  instant. dt  at 
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These  four  quantities  may  have  for  each  satellite  any  four  arbitrary  values, 

as  the  position  and  motion  of  each  satellite  are  independent  of  the  rest,  at  the 

beginning  of  the  motion. 

Each  of  these  quantities  is  therefore  a  perfectly  arbitrary  ftmction  of  s,  the 

mean  angular  position  of  the  satellite  in  the  ring. 

But  any  function  of  s  from  s  =  0  to  s  =  27r,  however  arbitrary  or  discontinuous, 

can  be  expanded  in  a  series  of  terms  of  the  form  A  cos  (5  +  a)  +  A'  cos  (2s  +  a')  +  &c. 
See  §  3. 

Let  each  of  the  four  quantities  p,  -^ ,  a,  -j-  he  expressed  in  terms  of  such 

a  series,  and  let  the  terms  in  each  involving  ms  be 

p  =  Ecoa{'ms  +  e)   (37), 

^^=Fcos(ins+f)   (38). 

<T  =G  cos  (ms+g)   (39), 

^  =  Hco3{ms  +  h)   (40). 

These  are  the  parts  of  the  values  of  each  of  the  four  quantities  which  are 

capable  of  being  expressed  in  the  form  of  periodic  fimctions  of  ms.  It  is 

evident  that  the  eight  quantities  E,  F,  G,  H,  e,  f,  g,  h,  are  all  independent  and 
arbitrary. 

The  next  operation  is  to  tind  the  values  of  X,  M,  N,  belonging  to  disturb- 
ances in  the  ring  whose  index  is  m  [see  equation  (8)],  to  introduce  these 

values  into  equation  (28),  and  to  determine  the  four  values  of  n,  (ti,,  tIj,  1I3,  n^). 

This  being  done,  the  expression  for  p  is  that  given  in  equation  (32),  which 

contains  eight  arbitrary  quantities  (A,,  A^,  A3,  At,  «„  a^,  a^,  aj. 

Giving  t  its  original  value  in  this  expression,  and  equating  it  to  Eco3{7m-\-e), 
we  get  an  equation  which  is  equivalent  to  two.     For,  putting  7ns  =  0,  we  have 

^1  cos  Oi  +  .^2  cos  a,  +  -^3  cos  a,  +  ̂^  cos  a^  =  -E'  cos  e   (41). 

And  putting  ms=    ,  we  have  another  equation 

-4i  sin  Oi  +  ̂j  sin  aj  +  ̂3  sin  03  +  ̂<  sin  a^  =  ̂   sin  e   (42). 
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Differentiating  (32)  with  respect  to  t,  we  get  two  other  equations 

-  A^n^  Bina-kc.-F cos/   (43), 

Aji^  cos  a  +  &c.=F  sin/   (44 ). 

Bearing  in  mind  that  B„  B^,  &c.  are  connected  with  A„  A^,  &c.  by  equa- 
tion (33),  and  that  B  is  therefore  proportional  to  A,  we  may  write  B  =  A^, 

where 

2o)n  +  -  RM 
P                   ̂  P=   7 

H' 
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The  value  of  <r  then  becomes  at  the  epoch 

<r  =  ̂i)8i  sin  (m5  4- Oi) -I- &c.  =  Gcoa('ms-\-g), 

from  which  we  obtain  the  two  equations 

^^1  sin  Oi  -I-  &c.  =  6^  cos  g   (45), 

^^iC0Sai  +  &c.  =  —Geing   (46). 

Differentiating  with  respect  to  t,  we  get  the  remaining  equations 

A^jij^  cos  Oj  +  &c.  =  ̂   cos  A   (47), 

^^iniSinai-l-&c.  =  iZ'sinA   (48). 

We  have  thus  found  eight  equations  to  determine  the  eight  quantities 
^1,  &c.  and  Oi,  &c.  To  solve  them,  we  may  take  the  four  in  which  -^iCosoi, 

&c.  occur,  and  treat  them  as  simple  equations,  so  as  to  find  ̂ iCosoj,  &c.  Then 

taking  those  in  which  ̂ isinoi,  &c.  occur,  and  determining  the  values  of  those 

quantities,  we  can  easily  deduce  the  value  of  A^  and  a,,   &c.  from  these. 

We  now  know  the  amplitude  and  phase  of  each  of  the  four  waves  whose 
index  is  m.  All  other  systems  of  waves  belonging  to  any  other  index  must 

be  treated  in  the  same  way,  and  since  the  original  disturbance,  however  arbitrary, 

can  be  broken  up  into  periodic  functions  of  the  form  of  equations  (37 — 40), 
our  solution  is  perfectly  general,  and  applicable  to  every  possible  disturbance  of 
a  ring  fulfilling  the  condition  of  stability  (27). 
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15.  We  come  next  to  consider  the  effect  of  an  external  disturbing  force, 

due  either  to  the  irregularities  of  the  planet,  the  attraction  of  satellites,  or 

the  motion  of  waves  in  other  rings. 

All  disturbing  forces  of  this  kind  may  be  expressed  in  series  of  which  the 

general  term  is 
A  cos  {vt  +  ms  +  a), 

where  v  is  an  angular  velocity  and  m  a  whole  number. 

Let  P  cos  {ins  +  vt  +p)  be  the  central  part  of  the  force,  acting  inwards,  and 

Q  sin  (ms  +  vt  +  q)  the  tangential  part,  acting  forwards.  Let  p  =  A  cos  {tus  +  vt  +  a) 

and  a-  =  Bsm  (ms  +  vt-]-  fi),  be  the  terms  of  p  and  a  which  depend  on  the 
external  disturbing  force.  These  will  simply  be  added  to  the  terms  depending 

on  the  original  disturbance  which  we  have  already  investigated,  so  that  the 

complete  expressions  for  p  and  <t  will  be  as  general  as  before.  In  consequence 

of  the  additional  forces  and  displacements,  we  must  add  to  equations  (16)  and 

(17),  respectively,  the  following  terms: 

{Zar --R  (2K+  L)  +  v"]  A  cos  (m^-{-vt-\- a) 

+  (2q)V -\- -  RM)  B  COS  (ms  +  vt  +  f3)-P  cos  (ms  +  vt-hp)  =  0   (49). 

(2a)i;  4-  -  EM)  A  sin  (ms  +  vt  +  a) 

+  (v" +  - EN)  B  Bm(ms  +  vt  +  fi)-¥Q  sin  (ms  +  vt  +  q)  =  0   (50). 

Making  7ns  +  vt  =  0  in  the  first  equation   and  -  in  the  second, 

{S(o'--  E  (2K+L)  +  if}  A  cos  a  +  (2(ov  +  -E3f)  B  cos  fi-P  coap  =  0   (51). 

(2a>v  +  - EM)  A  cosa  +  (v'  +  -  EN) B COB  fi  +  Qcosq  =  0   (52). 

Then  if  we  put 

U'  =  v'-{oj'  +  -E(2K+L-N)}v'-A-EMv 

+  {Sa>'--E(2K+L)}-EN-\E'M'   (53), 
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we  shall  find  the  value  of  A  cos  a  and  B  coa  fi ; 

v'  +  -RN                 2cov-i-~RM 
A  cosa  =   ft;        P  coa  p  +   t4   Qcoaq   (54). 

2(ov  4-  -  RM                y'  +  3<o'--R  {K+  L) 

Bcoafi=   j^   Pcoap   jp   Qcoaq   (55). 

Substituting  sines  for  cosines  in  equations  (51),  (52),  we  may  find  the 
values  of  A  sin  a  and  B  sin  ̂ . 

Now  U*  is  precisely  the  same  function  of  v  that  Z7  is  of  ?i,  so  that  if  u 
coincides  with  one  of  the  four  values  of  n,  U'  will  vanish,  the  coefiicients  A 
and  B  will  become  infinite,  and  the  ring  will  be  destroyed.  The  disturbing 

force  is  supposed  to   arise  from  a  revolving   body,  or  an   undulation  of  any  kind 

which    has    an    angular    velocity   relatively    to    the   ring,   and   therefore   an 

absolute  angular  velocity  =  w   . 

If  then  the  absolute  angular  velocity  of  the  disturbing  body  is  exactly  or 

nearly  equal  to  the  absolute  angular  velocity  of  any  of  the  free  waves  of  the 

ring,  that  wave  will  increase  till  the  ring  be  destroyed. 

The  velocities  of  the  free  waves  are  nearly 

l+i\     a>  +  i     /s-i^.V,  o>--     /s-i^iV^,    and  0)  fl-i)   (56). 

When  the  angular  velocity  of  the  disturbing  body  is  greater  than  that  of 
the  first  wave,  between  those  of  the  second  and  third,  or  less  than  that  of 

the  fourth,  U'  is  positive.  When  it  is  between  the  first  and  second,  or  between 

the  third  and  fourth,    U'  is  negative. 
Let  us  now  simplify  our  conception  of  the  disturbance  by  attending  to  the 

central  force  only,  and  let  us  put  ̂   =  0,  so  that  P  is  a  maximum  when  ms  +  vt 

is  a  multiple  of  27r.     We  find  in  this  case  a  =  0,  and  /8  =  0.     Also 

if+^-  RN 
^=—^P   (57), 

2cjv +  -RM 

B=   ^.   P   (58). 
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When  U'  is  positive,  A  will  be  of  the  same  sign  as  P,  that  is,  the  parts 
of  the  ring  wlU  be  furthest  from  the  centre  where  the  disturbing  force  towards 

the  centre  is  greatest.     When   U'  is  negative,  the  contrary  will  be  the  case. 

When  V  is  positive,  B  will  be  of  the  opposite  sign  to  A,  and  the  parts 
of  the  ring  furthest  from  the  centre  will  be  most  crowded.  When  v  is  negative, 
the  contrary  will  be  the  case. 

Let  us  now  attend  only  to  the  tangential  force,  and  let  us  put  ̂'  =  0.  We 
find  in  this  case  also  a  =  0,  )3  =  0, 

2(ov+-RM 

^= — tr — ^   (^^)' 

B=   ^.   Q   (60). 

The  tangential  displacement  is  here  in  the  same  or  in  the  opposite  direc- 

tion to  the  tangential  force,  according  as  £/"'  is  negative  or  positive.  The 
crowding  of  sateUites  is  at  the  points  farthest  from  or  nearest  to  Saturn 

according  as  -y  is  positive  or  negative. 

16.  The  effect  of  any  disturbing  force  is  to  be  determined  in  the  following 
manner.  The  disturbing  force,  whether  radial  or  tangential,  acting  on  the  ring 

may  be  conceived  to  vary  from  one  satellite  to  another,  and  to  be  different  at 
different  times.     It  is  therefore  a  perfectly  arbitrary  function  of  s  and  t. 

Let  Fourier's  method  be  applied  to  the  general  disturbing  force  so  as  to 
divide  it  up  into  terms  depending  on  periodic  functions  of  s,  so  that  each  term 

is  of  the  form  F  (t)  cos  {ms  +  a),  where  the  function  of  i  is  still  perfectly  arbitrary. 

But  it  appears  from  the  general  theory  of  the  permanent  motions  of  the 

heavenly  bodies  that  they  may  all  be  expressed  by  periodic  functions  of  t 

arranged  in  series.  Let  vt  be  the  argument  of  one  of  these  terms,  then  the 
corresponding  term  of  the  disturbance  will  be  of  the  form 

P  cos  (ttis  +  vt  +  a). 

This  term  of  the  disturbing  force  indicates  an  alternately  positive  and 

negative    action,    disposed    in    m    waves    round  the  ring,   completing   its  period 
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relatively    to    eaxih    particle   in   the   time    — ,   and   travelling   as   a   wave   among 

the  particles  with  an  angular  velocity   ,   the  angular  velocity  relative  to  fixed 

space  being  of  course  oj  —  -  .     The    whole   disturbing  force    may    be   split   up  into 

terms  of  this  kind. 

17.  Each  of  these  elementary  disturbances  will  produce  its  own  wave  in 

the  ring,  independent  of  those  which  belong  to  the  ring  itself.  This  new  wave, 

due  to  external  disturbance,  and  following  different  laws  from  the  natural  waves 

of  the  rincy,  is  called  the  farced  wave.  The  angular  velocity  of  the  forced  wave 

is  the  same  as  that  of  the  disturbing  force,  and  its  maxima  and  minima  coin- 

cide with  those  of  the  force,  but  the  extent  of  the  disturbance  and  its  direction 

depend  on  the  comparative  velocities  of  the  forded  wave  and  the  four  natural 
waves. 

When  the  velocity  of  the  forced  wave  lies  between  the  velocities  of  the 

two  middle  free  waves,  or  is  greater  than  that  of  the  swiftest,  or  less  than 

that  of  the  slowest,  then  the  radial  displacement  due  to  a  radial  disturbing 

force  is  in  the  same  direction  as  the  force,  but  the  tangential  displacement 

due  to  a  tangential  disturbing  force  is  in  the  opposite  direction  to  the  force. 

The  radial  force  therefore  in  this  case  produces  a  positive  forced  wave,  and 

the  tangential  force  a  negative  forced  ivave. 

When  the  velocity  of  the  forced  wave  is  either  between  the  velocities  of 
the  first  and  second  free  waves,  or  between  those  of  the  third  and  fourth,  then 

the  radial  disturbance  produces  a  forced  wave  in  the  contrary  direction  to  that 

in  which  it  acts,  or  a  negative  wave,  and  the  tangential  force  produces  a  positive 
wave. 

The  coefficient  of  the  forced  wave  changes  sign  whenever  its  velocity  passes 

through  the  value  of  any  of  the  velocities  of  the  free  waves,  but  it  does  so 

by  becoming  infinite,  and  not  by  vanishing,  so  that  when  the  angular  velocity 

very  nearly  coincides  with  that  of  a  free  wave,  the  forced  wave  becomes  very 

great,  and  if  the  velocity  of  the  disturbing  force  were  made  exactly  equal  t-o 
that  of  a  free  wave,  the  coefficient  of  the  forced  wave  would  become  infinite. 

In  such  a  case  we  should  have  to  readjust  our  approximations,  and  to  find 

whether  such  a  coincidence  might  involve  a  physical  impossibility. 
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The  forced  wave  which  we  have  just  investigated  is  that  which  would  main- 

tain itself  in  the  ring,  supposing  that  it  had  been  set  agoing  at  the  commence- 

ment of  the  motion.  It  is  in  fact  the  form  of  dynamical  equiUbrium  of  the 

ring  under  the  influence  of  the  given  forces.  In  order  to  find  the  actual  motion 

of  the  ring  we  must  combine  this  forced  wave  with  all  the  free  waves,  which 

go  on  independently  of  it,  and  in  this  way  the  solution  of  the  problem  becomes 

perfectly  complete,  and  we  can  determine  the  whole  motion  under  any  given 

initial  circumstances,  as  we  did  in  the  case  where  no  disturbing  force  acted. 

For  instance,  if  the  ring  were  perfectly  uniform  and  circular  at  the  instant 

when  the  disturbing  force  began  to  act,  we  should  have  to  combine  with  the 

constant  forced  wave  a  system  of  four  free  waves  so  disposed,  that  at  the  given 

epoch,  the  displacements  due  to  them  should  exactly  neutralize  those  due  to  the 

forced  wave.  By  the  combined  effect  of  these  four  free  waves  and  the  forced 

one  the  whole  motion  of  the  ring  would  be  accounted  for,  beginning  from  its 
undisturbed  state. 

The  disturbances  which  are  of  most  importance  in  the  theory  of  Saturn's 
rings  are  those  which  are  produced  in  one  ring  by  the  action  of  attractive 

forces  arising  from  waves  belonging  to  another  ring. 

The  effect  of  this  kind  of  action  is  to  produce  in  each  ring,  besides  its 

own  four  free  waves,  four  forced  waves  corresponding  to  the  free  waves  of  the 

other  ring.  There  will  thus  be  eight  waves  in  each  ring,  and  the  corresponding 

waves  in  the  two  rings  will  act  and  react  on  each  other,  so  that,  strictly  speak- 

ing, every  one  of  the  waves  will  be  in  some  measure  a  forced  wave,  although 

the  system  of  eight  waves  will  be  the  free  motion  of  the  two  rings  taken 

together.  The  theory  of  the  mutual  disturbance  and  combined  motion  of  two 

concentric  rings  of  satellites  requires  special  consideration. 

18.  On  the  motion  of  a  ring  of  satellites  when  the  conditions  of  stability 
are  not  fulfilled. 

We  have  hitherto  been  occupied  with  the  case  of  a  ring  of  satellites,  the 

stability  of  which  was  ensured  by  the  smaUness  of  mass  of  the  satellites  com- 
pared with  that  of  the  central  body.  We  have  seen  that  the  statically  unstable 

condition  of  each  satellite  between  its  two  immediate  neighbours  may  be  com- 
pensated by  the  dynamical  effect  of  its  revolution  round  the  planet,  and  a  planet 

of  sufiicient   mass   can   not   only  direct   the   motion   of    such   satellites   round    its 
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own  body,  but  can  likewise  exercise  an  influence  over  their  relations  to  each 
other,  so  as  to  overrule  their  natural  tendency  to  crowd  together,  and  distribute 

and  preserve  them  in  the  form  of  a  ring. 

We  have  traced  the  motion  of  each  satellite,  the  general  shape  of  the 

disturbed  ring,  and  the  motion  of  the  various  waves  of  disturbance  round  the 

ring,  and  determined  the  laws  both  of  the  natural  or  free  waves  of  the  ring, 
and  of  the  forced  waves,  due  to  extraneous  disturbing  forces. 

We  have  now  to  consider  the  cases  in  which  such  a  permanent  motion  of 

the  ring  is  impossible,  and  to  determine  the  mode  in  which  a  ring,  originally 

regular,  will  break  up,  in  the  different  cases  of  instability. 

The  equation  from  which  we  deduce  the  conditions  of  stability  is — 

U  =  n'-i(o'  +  -E(2K+L-N)\n'-4:(o-EMn 

+  hco'--R{2K  +  L)\-RN  -\r'M'  =  0. 

The  quantity,  which,  in  the  critical  cases,  determines  the  nature  of  the 

roots  of  this  equation,  is  N.  The  quantity  M  in  the  third  term  is  always 

small  compared  with  L  and  N  when  m  is  large,  that  is,  in  the  case  of  the 

dangerous  short  waves.  We  may  therefore  begin  our  study  of  the  critical  cases 

by  leaving  out  the  third  term.  The  equation  then  becomes  a  quadratic  in  n\ 

and  in  order  that  all  the  values  of  n  may  be  real,  both  values  of  n'  must  be 
real  and  positive. 

The  condition  of  the  values  of  n^  being  real  is 

oj*  +  co'-R{AK  +  2L-UN)  +  \b'{2K+L-\-NY>0   (61), 

which  shews  that  ay  must  either  be  about  14  times  at  least  smaller,  or  about  14 

times  at  least  greater,  than  quantities  like  -  RN. 

That  both  values  of  if  may  be  positive,  we  must  have 

co'  +  -R{2K  +  L-N)>0 

i3co''--R(2K-^L)\-RN>0 (62). 
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We  must  therefore  take  the  larger  value  6£  oi\  and  also  add  the  condition 

that  N  be  positive. 

RN 
We  may  therefore  state  roughly,  that,  to  ensure  stability,   ,  the  coefficient 

of  tangential  attraction,  must  lie  between  zero  and  -^oi\  If  the  quantity  be 

negative,  the  two  small  values  of  n  will  become  _pwre  impossible  quantities.  If 

it  exceed  ̂ oi\  all  the  values  of  n  will  take  the  form  of  mixed  impossible 

quantities. 

If  we   write  x  for  -  RN,  and  omit  the  other  disturbing  forces,  the  equation 

becomes  U=n*-{(o'-x)n'  +  Sco'x  =  0   (63), 

whence  n'  =  ̂ {co'-x)±^^/<o*-U(o'x  +  x'     (64). 

If  X  be  small,  two  of  the  values  of  n  are  nearly  ±<o,  and  the  others  are 

small  quantities,  real  when  x  is  positive  and  impossible  when  x  is  negative. 
2 

If  x  be  greater  than  {7-^IS)ar,  or  ̂   nearly,  the  term  under  the  radical 

becomes  negative,  and  the  value  of  ?i  becomes 

n=  ±^^fjT2^  +  o}'-x±^/^-^'Jl2co'x-ajr  +  x      (65), 

where  one  of  the  terms  is  a  real  quantity,  and  the  other  impossible.  Every 

solution  may  be  put  under  the  form 

n=p±J^^q   (66), 

where  ry  =  0  for  the  case  of  stability,  p  =  0  for  the  pure  impossible  roots,  and  p 
and  q  finite  for  the  mixed  roots. 

Let  us  now  adopt  this  general  solution  of  the  equation  for  n,  and  determine 

its  mechanical  significance  by  substituting  for  the  impossible  circular  functions 

their  equivalent  real  exponential  functions. 

Substituting  the  general  value  of  n  in  equations  (34),  (35), 

p  =  A[cos {ms +(p  +  'J^^q)t  +  a}  + cos {ms  +  ip- J -lq)t  + a}]  ...  (67), 

^^_^MP+±zlAsm{,ns  +  (p  +  ̂^q)t  +  a}  ] 
(p  +  J-lqf  +  x 

_^MEpdIi^sm{ms+(p-sr^lq)t  +  a}    \ 
{p-'J  -IqY  +  x  J 
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Introducing  the  exponential  notation,  these  values  become 

p  =  A(^^  +  €-''')co3(ms-{-pt  +  a)     (69), 

  W    r     2)  (^' +  r/ +  x)  (€«'  +  €-«')  sin  (771,5 +j9«  + a)  1 

We    have   now  obtained  a  solution  free  from  impossible  quantities,    and  applicable 

to  every  case. 

When  ̂   =  0,  the  case  becomes  that  of  real  roots,  which  we  have  already 

discussed.  When  p  =  0,  we  have  the  case  of  pure  impossible  roots  arising  from 

the  negative  values  of  if.      The  solutions  corresponding  to  these  roots  are 

/3  =  ̂   (e«' +  €-«')  cos  (m5  + a)     (71). 

o-=-^r^^^(€''-e-^0cos(m5  +  a)   (72). 

The  part  of  the  coefficient  depending  on  e"''  diminishes  indefinitely  as  the 
time  increases,  and  produces  no  marked  effect.  The  other  part,  depending  on 

€^',  increases  in  a  geometrical  proportion  as  the  time  increases  arithmetically,  and 

so  breaks  up  the  ring.  In  the  case  of  x  being  a  small  negative  quantity,  q'  is 
nearly  3x,  so  that  the  coefficient  of  cr  becomes 

It  appears  therefore  that  the  motion  of  each  particle  is  either  outwards  and 

backwards  or  inwards  and  forwards,  but  that  the  tangential  part  of  the  motion 

greatly  exceeds  the  normal  part. 

It  may  seem  paradoxical  that  a  tangential  force,  acting  towards  a  position 

of  equilibrium,  should  produce  instability,  while  a  small  tangential  force  from  that 

position  ensures  stability,  but  it  is  easy  to  trace  the  destructive  tendency  of 

this  apparently  conservative  force. 

Suppose  a  particle  slightly  in  front  of  a  crowded  part  of  the  ring,  then 

if  X  is  negative  there  will  be  a  tangential  force  pushing  it  fonvards,  and  this 

force  will  cause  its  distance  from  the  planet  to  increase,  its  angular  velocity  U> 

diminish,  and  the  particle  itself  to  fall  back  on  the  crowded  part,  thereby 

increasing  the  irregularity  of  the  ring,  till  the  whole  ring  is  broken  up.  In 

the  same  way  it  may  be  shewn  that  a  particle  hehiiid  a  crowded  part  will  be 

pushed   into   it.      The    only  force  which  could   preserve    the    ring   from    the  effect 
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of  tills  action,  is  one  which  would  prevent  the  particle  from  receding  from  the 

planet  under  the  influence  of  the  tangential  force,  or  at  least  prevent  the  dimi- 

nution of  angular  velocity.  The  transversal  force  of  attraction  of  the  ring  is  of 

this  kind,  and  acts  in  the  right  direction,  but  it  can  never  be  of  sufficient  magni- 

tude to  have  the  required  effect.  In  fact  the  thing  to  be  done  is  to  render  the 

last  term  of  the  equation  in  w  positive  when  N  is  negative,  which  requires 

fX
 

and  this  condition  is  quite  inconsistent  with  any  constitution  of  the  ring  which 

fiilfils  the  other  condition  of  stability  which  we  shall  arrive  at  presently. 

We  may  observe  that  the  waves  belonging  to  the  two  real  values  of  n, 

±(D,  must  be  conceived  to  be  travelling  round  the  ring  during  the  whole  time 

of  its  breaking  up,  and  conducting  themselves  like  ordinary  waves,  till  the 

excessive  irregularities  of  the  ring  become  inconsistent  with  their  uniform  propa- 

gation. 

The  irregularities  which  depend  on  the  exponential  solutions  do  not  travel 

round  the  ring  by  propagation  among  the  sateUites,  but  remain  among  the  same 

satellites  which  first  began  to  move  irregularly. 

We  have  seen  the  fate  of  the  ring  when  x  is  negative.  When  x  is  small 

we  have  two  small  and  two  large  values  of  n,  which  indicate  regular  waves, 

as  we  have  already  shewn.  As  x  increases,  the  small  values  of  n  increase,  and 

the  large  values  diminish,  till  they  meet  and  form  a  pair  of  positive  and  a 

pair  of  negative  equal  roots,  having  values  nearly  +"68w.  When  x  becomes 

greater  than  about  -^(o",  then  all  the  values  of  n  become  impossible,  of  the 

form  ̂ j-F-n/  — Ig",  q  being  small  when  x  first  begins  to  exceed  its  limits,  and  p 

being  nearly   +  '6S(o. 

The  values  of  p  and  cr  indicate  periodic  inequalities  having  the  period  —  , 

but  increasing  in  amplitude  at  a  rate  depending  on  the  exponential  e''.  At  the 
beginning  of  the  motion  the  oscillations  of  the  particles  are  in  eUipses  as  in  the 

case  of  stability,  having  the  ratio  of  the  axes  about  1  in  the  normal  direction 

to  3  in  the  tangential  direction.  As  the  motion  continues,  these  ellipses  increase 

in  magnitude,  and  another  motion  depending  on  the  second  term  of  cr  is  com- 

bined with  the  former,  so  as  to  increase  the  ellipticity  of  the  oscillations  and  to 
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turn  the  major  axis  into  an  inclined  position,  so  that  its  fore  end  points  a  little 

inwards,  and  its  hinder  end  a  little  outwards.  The  oscillations  of  each  particle 

round  its  mean  position  are  therefore  in  ellipses,  of  which  both  axes  increase 

continually  while  the  eccentricity  increases,  and  the  major  axis  becomes  sUghtly 

inclined  to  the  tangent,  and  this  goes  on  till  the  ring  is  destroyed.  In  the 

mean  time  the  irregularities  of  the  ring  do  not  remain  among  the  same  set  of 

particles  as  in  the  former  case,  but  travel  round  the  ring^  with  a  relative  angular 

velocity  -  ̂̂      Of  these  waves  there  are  four,  two  travelling  forwards  among  the 

satellites,  and  two  travelling  backwards.  One  of  each  of  these  pairs  depends 

on  a  negative  value  of  q,  and  consists  of  a  wave  whose  amplitude  continually 

decreases.  The  other  depends  on  a  positive  value  of  q,  and  is  the  destructive 

wave  whose  character  we  have  just  described. 

19.  We  have  taken  the  case  of  a  ring  composed  of  equal  satellites,  as 

that  with  which  we  may  compare  other  cases  in  which  the  ring  is  constructed 

of  loose  materials  diiferently  arranged. 

In  the  first  place  let  us  consider  what  will  be  the  conditions  of  a  ring 

composed  of  satellites  of  unequal  mass.  We  shall  find  that  the  motion  is  of 

the  same  kind  as  when  the  satellites  are  equal. 

For  by  arranging  the  satellites  so  that  the  smaller  satellites  are  closer 

together  than  the  larger  ones,  we  may  form  a  ring  which  will  revolve  uni- 

formly about  Saturn,  the  resultant  force  on  each  satellite  being  just  sufficient 

to  keep  it  in  its  orbit. 

To  determine  the  stability  of  this  kind  of  motion,  we  must  calculate  the 

disturbing  forces  due  to  any  given  displacement  of  the  ring.  This  calculation 

will  be  more  complicated  than  in  the  former  case,  but  will  lead  to  results  of 

the  same  general  character.  Placing  these  forces  in  the  equations  of  motion, 

we  shall  find  a  solution  of  the  same  general  character  as  in  the  former  case, 

only  instead  of  regular  waves  of  displacement  travelling  round  the  ring,  each 

wave  will  be  split  and  reflected  when  it  comes  to  irregularities  in  the  chain  of 

satellites.  But  if  the  condition  of  stability  for  every  kind  of  wave  be  fulfilled, 

the  motion  of  each  satellite  will  consist  of  small  oscillations  about  its  position 

of  dynamical  equilibrium,  and  thus,  on  the  whole,  the  ring  will  of  itself  assume 

the  arrangement  necessary  for  the  continuance  of  its  motion,  if  it  be  originally 

in  a  state  not  very  different  from  that  of  equilibrium. 
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20.  We  now  pass  to  the  case  of  a  ring  of  an  entirely  different  construc- 

tion. It  is  possible  to  conceive  of  a  quantity  of  matter,  either  solid  or  liquid, 

not  collected  into  a  continuous  mass,  but  scattered  thinly  over  a  great  extent 

of  space,  and  having  its  motion  regulated  by  the  gravitation  of  its  parts  to 

each  other,  or  towards  some  dominant  body.  A  shower  of  rain,  hail,  or  cinders 

is  a  familiar  illustration  of  a  number  of  unconnected  particles  in  motion;  the 

visible  stars,  the  milky  way,  and  the  resolved  nebula?,  give  us  instances  of  a 

similar  scattering  of  bodies  on  a  larger  scale.  In  the  terrestrial  instances  we 

see  the  motion  plainly,  but  it  is  governed  by  the  attraction  of  the  earth,  and 

retarded  by  the  resistance  of  the  air,  so  that  the  mutual  attraction  of  the 

parts  is  completely  masked.  In  the  celestial  cases  the  distances  are  so  enor- 

mous, and  the  time  during  which  they  have  been  observed  so  short,  that  we 

can  perceive  no  motion  at  all.  StiU  we  are  perfectly  able  to  conceive  of  a 

collection  of  particles  of  small  size  compared  with  the  distances  between  them, 

acting  upon  one  another  only  by  the  attraction  of  gravitation,  and  revolving 

round  a  central  body.  The  average  density  of  such  a  system  may  be  smaller 

than  that  of  the  rarest  gas,  while  the  particles  themselves  may  be  of  great 

density ;  and  the  appearance  from  a  distance  will  be  that  of  a  cloud  of  vapour, 

with  this  difference,  that  as  the  space  between  the  particles  is  empty,  the  rays 

of  light  will  pass  through  the  system  without  being  refracted,  as  they  would 

have  been  if  the  system  had  been  gaseous. 

Such  a  system  will  have  an  average  density  which  may  be  greater  in  some 

places  than  others.  The  resultant  attraction  wiU  be  towards  places  of  greater 

average  density,  and  thus  the  density  of  those  places  wiU  be  increased  so  as 

to  increase  the  irregularities  of  density.  The  system  will  therefore  be  statically 

unstable,  and  nothing  but  motion  of  some  kind  can  prevent  the  particles  from 

forming  agglomerations,  and  these  uniting,  till  all  are  reduced  to  one  solid 
mass. 

We  have  already  seen  how  dynamical  stability  can  exist  where  there  is 

statical  instability  in  the  case  of  a  row  of  particles  revolving  round  a  central 

body.  Let  us  now  conceive  a  cloud  of  particles  forming  a  ring  of  nearly  uni- 
form density  revolving  about  a  central  body.  There  will  be  a  primary  effect  of 

inequalities  in  density  tending  to  draw  particles  towards  the  denser  parts  of  the 

ring,  and  this  will  ehcit  a  secondary  effect,  due  to  the  motion  of  revolution, 

tending  in  the  contrary  direction,  so  as  to  restore  the  rings  to  uniformity.     The 
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relative  magnitude  of  these  two  opposing  forces  determines  the  destruction  or 

preservation  of  the  ring. 

To  calculate  these  effects  we  must  begin  with  the  statical  problem : — To 

determine  the  forces  arising  from  the  given  displacements  of  the  ring. 

The  longitudinal  force  arising  from  longitudinal  displacements  is  that  which 

has  most  effect  in  determining  the  stability  of  the  ring.  In  order  to  estimate  ita 

limiting  value  we  shall  solve  a  problem  of  a  simpler  form. 

21.  An  infinite  mass,  originally  of  uniform  density  Tc,  has  its  particles 

displaced  by  a  quantity  f  parallel  to  the  axis  of  x,  so  that  ̂   =  AcQ^mx,  to 
determine  the  attraction  on  each  particle  due  to  this  displacement. 

The  density  at  any  point  will  differ  from  the  original  density  by  a  quantity 

k' ,  so  that 

{k  +  k')  (dx  +  d^)  =  kdx    (73), 

k'=  —k-r-  =  Akm  sin  mx   (74). 

The  potential  at  any  point  will  be  V+V,  where  V  is  the  original  potential, 

and   F'  depends  on  the  displacement  only,  so  that 
dT     d'V     d'V     ̂     ,,     ̂   ,^,, 

^+-5^  +  ̂-  +  ̂'^^=^   (^^)- 
Now   V  is  a  function  of  x  only,  and  therefore, 

V  =  AirAk  —sinmx   (76), 

and  the  longitudinal  force  is  found  by  differentiating   V  with  respect  to  x. 

dV 
X=    -,—  =  ink  A  cos  mx  = 'ink^   (77). 

Now  let  us  suppose  this  mass  not  of  infinite  extent,  but  of  finite  section 

parallel  to  the  plane  of  yz.  This  change  amounts  to  cutting  off  all  portions 
of  the  mass  beyond  a  certain  boundary.  Now  the  effect  of  the  portion  so  cut 

off  upon  the  longitudinal  force  depends  on  the  value  of  m.  When  m  is  large, 
so  that  the  wave-length  is  small,  the  effect  of  the  external  portion  is  insensible, 

so  that  the  longitudinal  force  due  to  short  waves  is  not  diminished  by  cutting 
off  a  great  portion  of  the  mass. 
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22.  Applying  this   result   to   the   case   of  a   ring,  and  putting  s  for  x,  and 

a-  for  $  we  have 
cr  =  ̂   cos  ms,  and  T=  AttJcA  cos  ms, 

so  that  -RN=4:Trk, 

when  on  is  very  large,  and  this  is  the  greatest  value  of  N. 

The  value  of  L  has  little  effect  on  the  condition  of  stability.  If  L  and 

M  are  both  neglected,  that  condition  is 

(o'>27-S5e  (2nk)   (78), 

and   if  L  be   as   much  as  ̂ N,  then 

o>^>25-649  (27rk)   (79), 

so  that  it  is  not  important  whether  we  calculate  the  value  of  L  or  not. 

The  condition  of  stability  is,  that  the  average  density  must  not  exceed  a 
certain  value.  Let  us  ascertain  the  relation  between  the  maximum  density  of 

the  ring  and  that  of  the  planet. 

Let  h  be  the  radius  of  the  planet,  that  of  the  ring  being  unity,  then  the 

mass  of  Saturn  is  ̂ Trh'k'  =  o)"'  if  k'  be  the  density  of  the  planet.  If  we  assume 
that  the  radius  of  the  ring  is  twice  that  of  the  planet,  as  Laplace  has  done, 

then  h  =  ̂   and 

1  =  334-2  to  307-7   (80), 

so  that  the  density  of  the  ring  cannot  exceed  3^  of  that  of  the  planet.  Now 

Laplace  has  shewn  that  if  the  outer  and  inner  parts  of  the  ring  have  the  same 

angular  velocity,  the  ring  will  not  hold  together  if  the  ratio  of  the  density  of 

the  planet  to  that  of  the  ring  exceeds  1-3,  so  that  in  the  first  place,  our  ring 

cannot  have  uniform  angular  velocity,  and  in  the  second  place,  Laplace's  ring 
cannot  preserve  its  form,  if  it  is  composed  of  loose  materials  acting  on  each 

other  only  by  the  attraction  of  gravitation,  and  moving  with  the  same  angular 

velocity  throughout. 

23.  On  the  forces  arising  from  inequalities  of  thickness  in  a  thin  stratum 
of  fluid  of  indefinite  extent. 

The  forces  which  act  on  any  portion  of  a  continuous  fluid  are  of  two  kinds, 

the  pressures  of  contiguous  portions  of  fluid,  and  the  attractions  of  all  portions  of 
the  fluid  whether  near  or  distant.     In  the  case   of  a  thin  stratum  of  fluid,  not 
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acted  on  by  any  external  forces,  the  pressures  are  due  mainly  to  the  component 

of  the  attraction  which  is  perpendicular  to  the  plane  of  the  stratum.  It  is 

easy  to  shew  that  a  fluid  acted  on  by  such  a  force  will  tend  to  assume  a 

position  of  equilibrium,  in  which  its  free  surface  is  plane  ;  and  that  any  irregu- 
larities will  tend  to  equalise  themselves,  so  that  the  plane  surface  will  be  one 

of  stable  equilibrium. 

It  is  also  evident,  that  if  we  consider  only  that  part  of  the  attraction 

which  is  parallel  to  the  plane  of  the  stratum,  we  shall  find  it  always  directed 

towards  the  thicker  parts,  so  that  the  effect  of  this  force  is  to  draw  the  fluid 

from  thinner  to  thicker  parts,  and  so  to  increase  irregularities  and  destroy 

equilibrium. 

The  normal  attraction  therefore  tends  to  preserve  the  stability  of  equilibrium, 

while  the  tangential  attraction  tends  to  render  equilibrium  unstable. 

According  to  the  nature  of  the  irregularities  one  or  other  of  these  forces 

will  prevail,  so  that  if  the  extent  of  the  irregularities  is  small,  the  normal 

forces  will  ensure  stability,  while,  if  the  inequaUties  cover  much  space,  the 

tangential  forces  will  render  equilibrium  unstable,  and  break  up  the  stratum  into 
beads. 

To  fix  our  ideas,  let  us  conceive  the  irregularities  of  the  stratum  split  up 

into  the  form  of  a  number  of  systems  of  waves  superposed  on  one  another, 

then,  by  what  we  have  just  said,  it  appears,  that  very  short  waves  will  disap- 

pear of  themselves,  and  be  consistent  with  stability,  while  very  long  waves  will 

tend  to  increase  in  height,  and  will  destroy  the  form  of  the  stratum. 

In  order  to  determine  the  law  according  to  which  these  opposite  effects 

take  place,  we  must  subject  the  case  to  mathematical  investigation. 

Let  us  suppose  the  fluid  incompressible,  and  of  the  density  k,  and  let  it 

be  originally  contained  between  two  parallel  planes,  at  distances  +c  and  —  c 

from  that  of  (xy),  and  extending  to  infinity.  Let  us  next  conceive  a  series  of 

imaginary  planes,  parallel  to  the  plane  of  {ijz),  to  be  plunged  into  the  fluid 

stratum  at  infinitesimal  distances  from  one  another,  so  as  to  divide  the  fluid 

into  imaginary  slices  perpendicular  to  the  plane  of  the  stratum. 

Next  let  these  planes  be  displaced  parallel  to  the  axis  of  x  according  to  this 

law — that  if  x  be  the  original  distance  of  the  plane  from  the  origin,  and  ̂   its 

displacement  in  the  direction  of  x, 

i=A  cosmx   (81). 
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According  to  this  law  of  displacement,  certain  alterations  will  take  place  in 

the  distances  between  consecutive  planes ;  but  since  the  fluid  is  incompressible, 
and  of  indefinite  extent  in  the  direction  of  y,  the  change  of  dimension  must 
occur  in  the  direction  of  z.  The  original  thickness  of  the  stratum  was  2c.  Let 

its  thickness  at  any  point  after  displacement  be  2c +  2^,  then  we  must  have 

.+i)=2^   («2)' 
1=  — c  -r-=cmA  sinwa;   (83). 

(2c +  20  (l 

Let  us  assume  that  the  increase  of  thickness  2^  is  due  to  an  increase  of  C, 

at  each  surface  ;  this  is  necessary  for  the  equilibrium  of  the  fluid  between  the 
imaginary  planes. 

We  have   now  produced  artificially,   by  means  of  these  planes,  a  system  of 

waves   of  longitudinal   displacement   whose   length   is    —   and  amplitude  A ;   and 

we  have  found  that  this   has    produced  a  system  of  waves   of  normal   displace- 
ment  on  each   surface,   having  the   same  length,  with  a  height  =cmA. 

In  order  to  determine  the  forces  arising  from  these  displacements,  we  must, 

in  the  first  place,  determine  the  potential  function  at  any  point  of  space,  and 

this  depends  partly  on  the  state  of  the  fluid  before  displacement,  and  partly 
on  the  displacement  itself     We  have,  in  all  cases — 

d'V     d'V     d'V 

^^+^  +  ̂ =-^^^   («^)- 
Within  the  fluid,  p  =  k;  beyond  it,  p  =  0. 

Before  displacement,  the  equation  is  reduced  to 

d^'  =  -'-p   («^)- 

Instead  of  assuming  F=0  at  infinity,  we  shall  assume  F=0  at  the  origin, 
and  since  in  this  case  all  is  symmetrical,  we  have 

within  the  fluid  F,  =  -  2nkz'  -,    ̂  =  -  inJcz 

at  the  bounding  planes  F=  —  iirkc^ ;    ->-  =  T  47r^c 

beyond  them  V,  =  27r^c  ( +  2z  ±  c) ;    -y-  =  =F  ̂ nkc 

.(86); 
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the   upper   sign   being   understood   to   refer   to    the   boundary  at  distance  +c,  and 

the  lower  to  the  boundary  at  distance  —  c  from  the  origin. 

Having  ascertained  the  potential  of  the  undisturbed  stratum,  we  find  that 
of  the  disturbance  by  calculating  the  effect  of  a  stratum  of  density  k  and 

thickness  t„  spread  over  each  surface  according  to  the  law  of  thickness  already 

found.  By  supposing  the  coeJB&cient  A  small  enough,  (as  we  may  do  in  calcu- 
lating the  displacements  on  which  stabiUty  depends),  we  may  diminish  the 

absolute  thickness  indefinitely,  and  reduce  the  case  to  that  of  a  mere  "  super- 

ficial density,"  such  as  is  treated  of  in  the  theory  of  electricity.  We  have  here, 
too,  to  regard  some  parts  as  of  negative  density  ;  but  we  must  recollect  that  we 

are  dealing  with  the  difference  between  a  disturbed  and  an  undisturbed  system, 

which  may  be  positive  or  negative,  though  no  real   mass  can  be  negative. 

Let  us  for  an  instant  conceive  only  one  of  these  surfaces  to  exist,  and  let 
us  transfer  the  origin  to  it.     Then  the  law  of  thickness  is 

l,  =  mcABm.'mx   (83), 

and   we   know   that   the   normal   component   of  attraction   at   the   surface    is   the 

same  as  if  the  thickness  had  been  uniform  throughout,  so  that 

on  the  positive  side  of  the  surface. 

Also,  the  solution  of  the  equation 
d'V   dyv_ 

dx"  "^  dz'  ~    ' 

consists  of  a  series  of  terms  of  the  form  Ce'"  sin  ix. 

Of  these  the  only  one  with  which  we  have  to  do  is  that  in  which  i=  —m. 
Applying  the  condition  as  to  the  normal  force  at  the  surface,  we  get 

V=2'irkce''^Asmmx    (87), 

for  the  potential  on  the  positive  side  of  the  surface,  and 

V=27rkce'^ABm7nx   (88), 

on  the  negative  side. 
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Calculating  the  potentials  of  a  pair  of  such  surfaces  at  distances  +c  and  —c 

from  the  plane  of  xy,  and  calling  V  the  sum  of  their  potentials,  we  have  for 

the  space  between  these  planes 

F/  =  2TrkcA  sin  mxe"""  (e"^  +  e-*^) 

beyond  them  F/  =  27rZ;c^  sinma!;e^"^(e'^  +  e~'^) 

the  upper   or  lower  sign   of  the  index  being  taken  according  as  z  is  positive  or 

negative. 

These  potentials  must  be  added  to  those  formerly  obtained,  to  get  the 

potential  at  any  point  after  displacement. 

We  have  next  to  calculate  the  pressure  of  the  fluid  at  any  point,  on  the 

supposition  that  the  imaginary  planes  protect  each  shce  of  the  fluid  from  the 

pressure  of  the  adjacent  sHces,  so  that  it  is  in  equilibrium  under  the  action  of 

the  forces  of  attraction,  and  the  pressure  of  these  planes  on  each  side.  Now 

in  a  fluid  of  density  h,  in  equilibrium  under  forces  whose  potential  is  V,  we 

have  always — 

so  that  if  we  know  that  the  value  of  p  is  2\  where  that  of   F  is    F^,  then  at 

any  other  point 

jD=^„  +  ̂ (F-F„). 

Now,  at  the  free  surface  of  the  fluid,  ]p  =  0,  and  the  distance  from  the 

free  surface  of  the  disturbed  fluid  to  the  plane  of  the  original  surface  is  ̂ ,  a 

small  quantity.  The  attraction  which  acts  on  this  stratum  of  fluid  is,  in  the 

first  place,  that  of  the  undisturbed  stratum,  and  this  is  equal  to  A^irkc,  towards 

that  stratum.  The  pressure  due  to  this  cause  at  the  level  of  the  original 

surface  will  be  AnJifcC,  and  the  pressure  arising  from  the  attractive  forces  due 

to  the  displacements  upon  this  thin  layer  of  fluid,  will  be  small  quantities  of 

the  second  order,  which  we  neglect.     We  thus  find  the  pressure  when  z  =  c  to  be, 

Pa  =  AvJc^c^mA  sin  mx. 

The  potential  of  the   undisturbed  mass  when  z  =  c  is 

V,=  -2TTkc\ 

and  the  potential  of  the  disturbance  itself  for  the   same  value  of  z,  is 

F;  =  2TrkcA  sin  mx  (1  +  e""^). 
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So  that  we  find  the  general  value  of  jp  at  any  other  point  to  be 

^  =  27r^^  (c' -  z')  +  27r/:'c^  sin  ?7ia;  {2c»i  -  1  -  €- ̂ "^  +  e"^  (e"- +  e""^)}  . . .  (90). 

This  expression  gives  the  pressure  of  the  fluid  at  any  point,  as  depending 
on  the  state  of  constraint  produced  by  the  displacement  of  the  imaginary  planes. 

The  accelerating  effect  of  these  pressures  on  any  particle,  if  it  were  allowed  to 

move  parallel  to  x,  instead  of  being  confined  by  the  planes,  would  be 

_1  dp 

k  dx' 

The  accelerating  effect  of  the  attractions  in  the  same  direction  is 
dV 

dx' 

so  that  the  whole  acceleration  parallel  to  cc  is 

X=  -lirkmcA  cos  7nx  {2mc - e''^ -  I)    (91). 

It  is  to  be  observed,  that  this  quantity  is  independent  of  z,  so  that  every 

particle  in  the  slice,  by  the  combined  effect  of  pressure  and  attraction,  is  urged 
with  the  same  force,  and,  if  the  imaginary  planes  were  removed,  each  slice 

would  move  parallel  to  itself  without  distortion,  as  long  as  the  absolute  dis- 
placements remained  small.  We  have  now  to  consider  the  direction  of  the 

resultant  force  X,  and  its  changes  of  magnitude. 

We  must  remember  that  the  original  displacement  is  A  cos  7nx,  if  therefore 

(2mo-e~"^— 1)  be  positive,  X  will  be  opposed  to  the  displacement,  and  the 
equilibrium  will  be  stable,  whereas  if  that  quantity  be  negative,  X  will  act 

along  with  the  displacement  and  increase  it,  and  so  constitute  an  unstable 
condition. 

It  may  be  seen  that  large  values  of  nic  give  positive  results  and  small 
ones  negative.      The  sign  changes  when 

2mc  =  l'lA7   (92), 

which   corresponds   to   a  wave-length 

\  =  2c^^^  =  2c{5'i7l)   (93). 

The  length  of  the  complete  wave  in  the  critical  case  is  5*471  times  the 
thickness  of  the  stratum.  Waves  shorter  than  this  are  stable,  longer  waves 
are  unstable. 



344  ON    THE    STABILITY    OF    THE    MOTION    OF    SATURN  S    RINGS. 

The  quantity  2mc{2mc-e-^-l), 

has  a  minimum  when  2mc  =  '607   (94), 

and  the  wave-length  is  10 '3 5 3  times  the  thickness  of  the  stratum. 

In  this  case  2mc  (2mc-e-^"^- 1)=  - '509   (95), 

and  X='5097rMcosmx     (96). 

24.  Let  us  now  conceive  that  the  stratum  of  fluid,  instead  of  being  infinite 

in  extent,  is  limited  in  breadth  to  about  100  times  the  thickness.  The  pressures 

and  attractions  will  not  be  much  altered  by  this  removal  of  a  distant  part  of 

the  stratum.  Let  us  also  suppose  that  this  thin  but  broad  strip  is  bent  round 

in  its  own  plane  into  a  circular  ring  whose  radius  is  more  than  ten  times  the 

breadth  of  the  strip,  and  that  the  waves,  instead  of  being  exactly  parallel  to 

each  other,  have  their  ridges  in  the  direction  of  radii  of  the  ring.  We  shall 

then  have  transformed  our  stratum  into  one  of  Saturn's  Kings,  if  we  suppose 

those  rings  to  be  liquid,  and  that  a  considerable  breadth  of  the  ring  has  the 

same  angular  velocity. 

Let  us  now  investigate  the  conditions  of  stability  by  putting 

x=  - 27rkmc  (2mc - e"^ -  1) 

into   the   equation    for   n.      We    know   that   x    must   lie   between   0   and  ̂ ^  to 

ensure  stabihty.  Now  the  greatest  value  of  x  in  the  fluid  stratum  is  -509
17^-. 

Taking  Laplace's  ratio  of  the  diameter  of  the  ring  to  that  of  the  planet,  this 

gives  42-5  as  the  minimum  value  of  the  density  of  the  planet  divided  by  that 

of  the  fluid  of  the  ring. 

Now  Laplace  has  shewn  that  any  value  of  this  ratio  greater  than  1-3  is 

inconsistent  with  the  rotation  of  any  considerable  breadth  of  the  fluid  at  the 

same  angular  velocity,  so  that  our  hypothesis  of  a  broad  ring  with  uniform 

velocity  is  untenable. 

But  the  stabihty  of  such  a  ring  is  impossible  for  another  reason,  namely, 

that  for  waves  in  which  2mc>  1-147,  x  is  negative,  and  the  ring  will  be  destroyed 

by  these  short  waves  in  the  manner  described  at  page  (333). 

When  the  fluid  ring  is  treated,  not  as  a  broad  strip,  but  as  a  filament  of 

circular   or  elliptic   section,  the   mathematical  difiSculties  are  very  much  increased. 
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but  it  may  be  shown  that  in  this  case  also  there  will  be  a  maximum  value 
of  X,  which  will  require  the  density  of  the  planet  to  be  several  times  that  of 

the  ring,  and  that  in  all  cases  short  waves  will  give  rise  to  negative  values 
of  X,  inconsistent  with  the  stability  of  the  rmg. 

It  appears,  therefore,  that  a  ring  composed  of  a  continuous  liquid  mass 
cannot  revolve  about  a  central  body  without  being  broken  up,  but  that  the 

parts  of  such  a  broken  ring  may,  under  certain  conditions,  form  a  permanent 

ring  of  satellites. 

On   the   Mutual   Perturbations   of   Two   Rings. 

25.  We  shall  assume  that  the  difference  of  the  mean  radii  of  the  rings 

is  small  compared  with  the  radii  themselves,  but  large  compared  with  the 
distance  of  consecutive  satellites  of  the  same  ring.  We  shall  also  assume  that 

each  ring  separately  satisfies  the  conditions  of  stability. 

We  have  seen  that  the  effect  of  a  disturbing  force  on  a  ring  is  to  produce 

a  series  of  waves  whose  number  and  period  correspond  with  those  of  the  dis- 
turbing force  which  produces  them,  so  that  we  have  only  to  calculate  the 

coefficient  belonging  to  the  wave  from  that  of  the  disturbing  force. 

Hence  in  investigating  the  simultaneous  motions  of  two  rings,  we  may 

assume  that  the  mutually  disturbing  waves  travel  with  the  same  absolute 

angular  velocity,  and  that  a  maximum  in  one  corresponds  either  to  a  maximum 
or  a  minimum  of  the  other,  according  as  the  coefficients  have  the  same  or 

opposite  signs. 

Since  the  motions  of  the  particles  of  each  ring  are  affected  by  the  disturbance 

of  the  other  ring,  as  well  as  of  that  to  which  they  belong,  the  equations  of 
motion  of  the  two  rings  will  be  involved  in  each  other,  and  the  final  equation 

for  determining  the  wave-velocity  will  have  eight  roots  instead  of  four.  But  as 

each  of  the  rings  has  four  free  waves,  we  may  suppose  these  to  originate  forced 

waves  in  the  other  ring,  so  that  we  may  consider  the  eight  waves  of  each  ring 
as  consisting  of  four  free  waves  and  four  forced  ones. 

In  strictness,  however,  the  wave- velocity  of  the  "free"  waves  will  be 
affected  by  the  existence  of  the  forced  waves  which  they  produce  in  the  other 

ring,  so  that  none  of  the  waves  are  really  "  free "  in  either  ring  independently, 
though  the  whole  motion  of  the  system  of  two  rings  as  a  whole  is  free. 
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We  shall  find,  however,  that  it  is  best  to  consider  the  waves  first  as  free, 

and  then  to  determine  the  reaction  of  the  other  ring  upon  them,  which  is  such 

as  to  alter  the  wave-velocity  of  both,  as  we  shall  see. 

The  forces  due  to  the  second  ring  may  be  separated  into  three  parts. 

1st.     The  constant  attraction  when  both  rings  are  at  rest. 

2nd.  The  variation  of  the  attraction  on  the  first  ring,  due  to  its  own 
disturbances. 

3rd.  The  variation  of  the  attraction  due  to  the  disturbances  of  the  second 

ring. 

The  first  of  these  affects  only  the  angular  velocity.  The  second  affects  the 

waves  of  each  ring  independently,  and  the  mutual  action  of  the  waves  depends 

entirely  on  the  third  class  of  forces. 

26.     To  deteivnine  the  attractions  between  two  rings. 

Let  R  and  a  be  the  mass  and  radius  of  the  exterior  ring,  R  and  a'  those 
of  the  interior,  and  let  all  quantities  belonging  to  the  interior  ring  be  marked 
with  accented  letters.     (Fig.  5.) 

1st.     Attraction  between  the  rings  when  at  rest. 

Since  the  rings  are  at  a  distance  small  compared  with  their  radii,  we  may 
calculate  the  attraction  on  a  particle  of  the  first  ring  as  if  the  second  were  an 

infinite  straight  line  at  distance  a'  — a  from  the  first. 

7?' 

The  mass  of  unit  of  length  of  the  second  ring  is  - — > ,  and  the  accelerating 

effect  of  the  attraction  of  such  a  filament  on  an  element  of  the  first  ring  is 

TV — —,   7\  inwards    (97). 
na  [a  —  a)  ^ 

The  attraction  of  the  first  ring  on  the  second  may  be  found  by  transposing 
accented  and  unaccented  letters. 

In   consequence   of  these   forces,    the  outer  ring  will   revolve  faster,  and  the 
inner   ring   slower   than   would   otherwise  be   the   case.      These   forces   enter   into 

the   constant    terms   of    the   equations   of  motion,    and    may    be   included   in   the 
value  of  K. 
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2nd.     Variation  due  to  disturbance  of  first  ring. 

If  we  put  a(l+p)  for  a  in  the  last  expression,  we  get  the  attraction 

when  the  first  ring  is  displaced.     The  part  depending  on  p  is 

  r-,   TT,  P  inwards    (98). 

Tra  [a-ay  '^ 
This  is  the  only  variation  of  force  arising  from  the  displacement  of  the 

first  ring.     It  affects  the  value  of  X  in  the  equations  of  motion. 

3rd.      Variation  due  to  waves  in  the  second  ling. 

On  account  of  the  waves,  the  second  ring  varies  in  distance  from  the 

first,  and  also  in  mass  of  unit  of  length,  and  each  of  these  alterations  produces 

variations  both  in  the  radial  and  tangential  force,  so  that  there  are  four  things 
to  be  calculated : 

1st.  Radial  force  due  to  radial  displacement. 

2nd,  Radial  force  due  to  tangential  displacement. 

3rd.  Tangential  force  due  to  radial  displacement. 

4th.  Tangential  force  due  to  tangential  displacement. 

1st.      Put  a'(l+p')  for  a\  and  we  get  the  term  in  p 

— -,  \  ?  ~  ,;  p'  inwards  =  XV>  say   (99). 
ira    (a  -af  ̂   t^  >      J  v     ̂ 

2nd.     By    the    tangential    displacement    of   the    second    ring  the   section   is 

iced   in  the   proportion 

of  the  radial  force  equal  to 

reduced   in  the   proportion   of  1  to   l--j , ,   and  therefore  there  is  an  alteration 

-yr   inwards  =  —  /x'  -j-,  say   (100). 
ird'(a  —  a')  ds'  '^   ds' 

3rd.  By  the  radial  displacement  of  the  second  ring  the  direction  of  the 

filament  near  the  part  in  question  is  altered,  so  that  the  attraction  is  no  longer 

radial  but  forwards,  and  the  tangential  part  of  the  force  is 

.5      '^  ̂'=+/^'  forwards   (lOl). ira  (a-a)  ds         '^  ds 

44—2 
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4th.     By  the   tangential   displacement   of  the   second  ring  a  tangential  force 

arises,    depending    on    the   relation   between   the   length   of  the   waves   and  the 
distance  between  the  rings. 

"-ot'  J        f+«xsinp^   , If  we   make   m  — -  =  p,  and  m   -i  ax  =  H, 
a        ̂   J-o.(l+x-y 

/?' 

the  tangential  force  is  a  (a-a'Y  ̂ ^'  ̂  *''^'     (102). 

We  may  now  write  down  the  values  of  X,  /x,  and  v  by  transposing  accented 
and  unaccented  letters. 

g^(2a-a)  R  ^^       _?_     n   (103). 
ira  (a-aj     '^     TTa{a-a)'        ira  {a-af 

Comparing  these  values  with  those  of  X',  /x',  and  v,  it  will  be  seen  that 
the  following  relations  are  approximately  true  when  a  is  nearly  equal  to  a: 

^'=-'i  =  ̂  =  |>   (104). X  H'      ̂       R^ 

27.     To  form  the  equations  of  motion. 

*The  original  equations  were 

^■'  +  o,'p  +  -2o,^-'^,  =  P  =  S+K-(2S-L)Ap-MBp  +  yp--y:'^, 

Putting  p  =  ̂   cos  {ills  +  nt),    ar  =  B8m  (ms  +  nt), 

p'  =  A'  cos  {im  +  nt),  cr'^R  sin  {ins  +  nt), 
then  u>'  =  S-vK 

{(o'■V2S+n'-L)A  +  {2(on+M)B-XA'  +  |J:mB  =  0^  ,^^^. 

{2con  +  M)A  +  {n'^-N)B-ij:mA'  +  vR  =  o]   ^       '' 
The  corresponding  equations  for  the  second  ring  may  be  found  by  trans- 

posing accented  and  unaccented  letters.  We  should  then  have  four  equations 

to  determine  the  ratios  of  A,  B,  A',  B',  and  a  resultant  equation  of  the  eighth 
degree  to  determine  n.  But  we  may  make  use  of  a  more  convenient  method, 

since   X',  ix,  and  v   are  small.     Eliminating  B  we  find 

An'-A(ai'^-lK+L-N)n'-iAo>Mn  +  AN{Zoy)\_  ,       . 

(-X'A'  +  fx'mR)n'  +  {ix'mA' -v'B')  2<onj          ^       '' 

*  [The  analysis  in  this  article  is  somewhat  unsatisfactory,  the  equations  of  motion  employed  being 
those  which  were  applicable  in  the  case  of  a  ring  of  radius  unity.     Ed.] 
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Putting  B  =  ̂ A,  A'  =  xA,  B'  =  ̂ A'  =  ̂ xA, 

we  have  ii*  -  {o.'  ( +  2 A")  +  X  - iV}  n' -  4(oMn  +  Sco'N]  ̂ jj^^       / ̂ qj^x 

~  =  47i'-2a;';i  +  &c   (108), an 

-r  =  -  ̂''^'  +  H''ml3'}r  +  2/»iw?i  -  2u^'a)n    (109), 

28.  If  we  were  to  solve  the  equation  for  n,  leaving  out  the  terms  involving 

X,  we  should  find  the  wave-velocities  of  the  four  free  waves  of  the  first  ring, 

supposing  the  second  ring  to  be  prevented  from  being  disturbed.  But  in  reality 

the  waves  in  the  first  ring  produce  a  disturbance  in  the  second,  and  these  in 

turn  react  upon  the  first  ring,  so  that  the  wave-velocity  is  somewhat  difierent 

from  that  which  it  would  be  in  the  supposed  case.  Now  if  x  be  the  ratio 

of  the  radial  amplitude  of  displacement  in  the  second  ring  to  that  in  the  first, 

and  if  n  be  a  value  of  n  supposing  cc  =  0,  then  by  Maclaurin's  theorem, 

n=  Jfn  +  -j-x   (Ill)- 

The    wave-velocity    relative   to  the   ring  is   ,   and    the   absolute   angular 

velocity  of  the  wave  in  space  is 

n  n       I   dn  .   ̂ -. 
'ar  =  oi   =0)   j-x   (112), 

m  m      m  ax  ' 

=  +p-qx   (113), 
,                      n  ,  \   dn 

where  »  =  w   ,   and  o  =  —  -j- . ^  m  ^     m  ax 

Similarly  in  the  second  ring  we  should  have 

-=/-<z'^   (114); 

and   since   the   corresponding  waves   in  the  two  rings   must  have  the  same  abso- 
lute angular  velocity, 

^  =  ■25-',  or  'p  —  qx^'p—ci  -    (115)- 
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This  is  a  quadratic  equation  in  x,  the  roots   of  which  are  real  when 

is  positive.  When  this  condition  is  not  fulfilled,  the  roots  are  impossible,  and 

the  general  solution  of  the  equations  of  motion  will  contain  exponential  factors, 

indicating  destructive  oscillations  in  the  rings. 

Since  q  and  q'  are  small  quantities,  the  solution  is  always  real  whenever 

p  and  p'  are  considerably  different.  The  absolute  angular  velocities  of  the  two 
pairs  of  reacting  waves,  are  then  nearly 

V  -\ — ^^/ ,  and  r)  — ^^, , 

instead  of  p  and  p\  as  they  would  have  been  if  there  had  been  no  reaction 

of  the  forced  wave  upon  the  free  wave  which  produces  it. 

When  2^  and  p'  are  equal  or  nearly  equal,  the  character  of  the  solution 
will  depend  on  the  sign  of  qq.  We  must  therefore  determine  the  signs  of  q 

and  q'  in  such  cases. 

Putting  P  =  —7-,  we  may  write  the  values  of  q  and  q' 

x/        ̂      /  /6>  fO\         ,,(0     0) 
X  +  211  m    —  -  -   -  4i/  -  - n  ^       \n      71/  71  71 

7n '  4?i^  —  2<xr 

Oi         Ct/\  ,       Oi    0) 

,  _  n  ^      \n      71 1   71  n ^~m"  in"-2o)" 

Referring  to  the  values  of  the  disturbing  forces,  we  find  that 

X'         IX      V  _  Ka 

X  iL      V      Ra" 

(116). 

TT  g      n  471*  — 2&>      Ra  l^^*7\ Hence  X  =      _^ —       ,  —-,   (117). 
q      n    4n'-2w*     Ra 

Since   qq'  is   of  the   same   sign  as  -^  ,   we   have   only  to  determine  whether 
2  '2 

2n--,   and  2n' -— ,  are  of  the  same  or  of  different  signs.     If  these  quantities n  71  ' 

are  of  the  same  sign,  qq   is  positive,  if  of  different  signs,  qq'  is  negative. 
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Now   there   are    four   values    of  n,    which   give  four   corresponding  values  of 

2n 

72 1=  -W  +  &C.,                  2?ii-      is  negative, 

??j  =  —  a  small  quantity,  2n^   is  positive, 

jjj  =  -f.  a  small  quantity,  211^   is  negative, 

^3 

n^  =  oi  —  kc.,  271^   is  positive. 

The  quantity  with  which  we  have  to  do  is  therefore  positive  for  the  even 

orders  of  waves  and  negative  for  the  odd  ones,  and  the  corresponding  quantity 

in  the  other  ring  obeys  the  same  law.  Hence  when  the  waves  which  act  upon 

each  other  are  either  both  of  even  or  both  of  odd  names,  qq  will  be  positive, 

but  when  one  belongs  to  an  even  series,  and  the  other  to  an  odd  series,  qq 

is  negative. 

29.     The  values  of  j)  and  p'  are,  roughly, 

X>^  =  oi  +  —  —  &c.,  ̂ o  =  w  +  &c.,  ̂ 3  =  (u  —  &c.,  ̂ 4  =  (o  —  — -  +  &c. 

^j'  =  Co'  H   &C.,  p.'  =  0)  +  &c.,  Pa'  =  co'  —  &c.,  Pi=Oi   1-  &C. 

(118). 

<ji  is  greater  than  <u,  so  that  j>^  is  the  greatest,  and  Pi  the  least  of  these 

values,  and  of  those  of  the  same  order,  the  accented  is  greater  than  the  unac- 

cented. The  following  cases  of  equahty  are  therefore  possible  under  suitable 
circumstances ; 

P,  =P,\  Pi  =p/» 

P4=P,'  (when  m=l),   p,=2^3, 

p.=p:, 

In  the  cases  in  the  first  column  qq'  will  be  positive,  in  those  in  the  second 

column  qq'  will  be  negative. 
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30.  Now  each  of  the  four  values  of  p  is  a  function  of  w,  the  number 

of  undulations  in  the  ring,  and  of  a  the  radius  of  the  ring,  varying  nearly 

as  cfl  Hence  m  being  given,  we  may  alter  the  radius  of  the  ring  till  any 

one  of  the  four  values  of  p  becomes  equal  to  a  given  quantity,  say  a  given 

value  of  /,  so  that  if  an  indefinite  number  of  rings  coexisted,  so  as  to  form 

a  sheet  of  rings,  it  would  be  always  possible  to  discover  instances  of  t
he 

equality  of  x>  ̂ ^^  V  among  them.  K  such  a  case  of  equahty  belongs  to  th
e 

first  column  given  above,  two  constant  waves  will  arise  in  both  rings,  one 

travelling  a  little  faster,  and  the  other  a  little  slower  than  the  free  waves. 

If  the  case  belongs  to  the  second  column,  two  waves  will  also  arise  in  each 

ring,  but  the  one  pair  will  graduaUy  die  away,  and  the  other  pair  wHl  increase 

in  ampUtude  indefinitely,  the  one  wave  strengthening  the  other  till  at  last  both 

rino-s  are  thrown  into  confusion. 

The  only  way  in  which  such  an  occurrence  can  be  avoided  is  by  placing 

the  rings  at  such  a  distance  that  no  value  of  m  shall  give  coincident  values 

of  _p  and  J),  For  instance,  if  w  >  2a),  but  w  <  So),  no  such  coincidence  is  possible. 

For  j)^  is  always  less  than  p./,  it  is  greater  than  p,  when  m  =  1  or  2,  and  less 

than  _p4  when  m  is  3  or  a  greater  number.  There  are  of  course  an  infinite 

number  of  ways  in  which  this  noncoincidence  might  be  secured,  but  it  is  plain 

that  if  a  number  of  concentric  rings  were  placed  at  small  intervals  from  each 

other,  such  coincidences  must  occur  accurately  or  approximately  between  some 

pairs' of  rings,  and  if  the  value  of  [p-fj  is  brought  lower  than  -^qq,  there will  be  destructive  interference. 

This  investigation  is  applicable  to  any  number  of  concentric  rings,  for,  by 

the  principle  of  superposition  of  small  displacements,  the  reciprocal  acti
ons  of 

any  pair  of  rings  are  independent  of  all  the  rest. 

31.     On  the  effect  of  long-continued  disturbances  on  a  system  of  rings. 

The  result  of  our  previous  investigations  has  been  to  point  out  several 

ways  in  which  disturbances  may  accumulate  till  collisions  of  the  different  par
- 

ticles of  the  rings  take  place.  After  such  a  collision  the  particles  wUl  still 

continue  to  revolve  about  the  planet,  but  there  will  be  a  loss  of  energy  in 

the  system  during  the  colUsion  which  can  never  be  restored.  Such  coUis
ions 

however  will  not  affect  what  is  called  the  Angular  Momentum  of  the  system 

about  the  planet,  which  will  therefore  remain  constant. 
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Let  M  be  the  mass  of  tlie  system  of  rings,  and  hm  that  of  one  ring 

whose  radius  is  r,  and  angular  velocity  (o  =  S^r~^.  The  angular  momentum  of 
the  ring  is 

half  its  vis  viva  is  ^tuV'Sm  =  ̂ Sr~^  hm. 

The  potential  energy  due  to  Saturn's  attraction  on  the  ring  is 
-Sr-'hm. 

The  angular  momentum  of  the  whole  system  is  invariable,  and  is 

S'^%{r^hm)  =  A   (119). 

The  whole  energy  of  the  system  is  the  sum  of  half  the  vis  viva  and  the 

potential  energy,  and  is 

-^St{r-'hm)  =  E    (120). 

A  is  invariable,  while  E  necessarily  diminishes.  We  shall  find  that  as  E 

diminishes,  the  distribution  of  the  rings  must  be  altered,  some  of  the  outer 

rings  moving  outwards,  while  the  inner  rings  move  inwards,  so  as  either  to 

spread  out  the  whole  system  more,  both  on  the  outer  and  on  the  inner  edge 

of  the  system,  or,  without  affecting  the  extreme  rings,  to  diminish  the  density 

or  number  of  the  rings  at  the  mean  distance,  and  increase  it  at  or  near  the 

inner  and  outer  edges. 

Let  us  put  x  =  r^-, then  A- =  S-t{xdm)  is  constant. 

Now  let 
tixdm) ^^~  t{dm)  ' 

and X  =  Xi  +  x\ 

then  we  may  write 

-^  =  t(r-^Bm)=^t{x-'dm), 
lb 

=  Sc^m(a:--2|3  +  3|i-&c.), 

=  \t{dm)-^,X{xdm)-]-^,t(x'Bm)-kc   (121). 
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Now  t(dm)  =  M  a  constant,  t(xdm)  =  0,  and  t(x"-Bm)  is  a  quantity  which 
increases  when  the  rings  are  spread  out  from  the  mean  distance  either  way, 

X  being  subject  only  to  the  restriction  t  (xdm)  =  0.  But  %  (x'dm)  may 
increase  without  the  extreme  values  of  x  being  increased,  provided  some  other 
values  be  increased. 

32.  In  fact,  if  we  consider  the  very  innermost  particle  as  moving  in  an 

ellipse,  and  at  the  further  apse  of  its  orbit  encountering  another  particle 

belonging  to  a  larger  orbit,  we  know  that  the  second  particle,  when  at  the 

same  distance  from  the  planet,  moves  the  faster.  The  result  is,  that  the 

interior  satellite  will  receive  a  forward  impulse  at  its  further  apse,  and  will 

move  in  a  larger  and  less  eccentric  orbit  than  before.  In  the  same  way  one 

of  the  outermost  particles  may  receive  a  backward  impulse  at  its  nearer  apse, 

and  so  be  made  to  move  in  a  smaller  and  less  eccentric  orbit  than  before. 

When  we  come  to  deal  with  collisions  among  bodies  of  unknown  number,  size, 

and  shape,  we  can  no  longer  trace  the  mathematical  laws  of  their  motion  with 

any  distinctness.  All  we  can  now  do  is  to  collect  the  results  of  our  investi- 

gations and  to  make  the  best  use  we  can  of  them  in  forming  an  opinion  as 

to  the  constitution  of  the  actual  rings  of  Saturn  which  are  still  in  existence 

and  apparently  in  steady  motion,  whatever  catastrophes  may  be  indicated  by 
the  various  theories  we  have  attempted. 

33.  To  find  the  Loss  of  Energy  due  to  internal  friction  in  a  hroad  Fluid 

Ring,  the  parts  of  which  revolve  about  the  Planet,  each  with  the  velocity  of  a 
satellite  at  the  same  distance. 

Conceive  a  fluid,  the  particles  of  which  move  parallel  to  the  axis  of  x 

with  a  velocity  u,  u  being  a  function  of  z,  then  there  will  be  a  tangential  pres- 
sure on  a  plane  parallel  to  xy 

dU  ..  r. 

=  /x-y-  on  umt  01  area 

'^  dz 

due  to  the  relative  sliding  of  the  parts  of  the  fluid  over  each  other. 

In  the  case  of  the  ring  we  have 

The  absolute  velocity  of  any  particle  is  tor.  That  of  a  particle  at  distance 

{r-\-Zr)  is 

(ar  +  -j-  {(ar)  hr. 
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If  the  angular  velocity  had  been  uniform,  there  would  have  been  no  sliding, 

and  the  velocity  would  have  been 
cji"  +  (ohr. 

The  sliding  is  therefore 

d(o  ̂  

r  -J-  or, 
ar 

and  the  friction  on  unit  of  area  perpendicular  to  r  is  fir  -p  • 

The  loss  of  Energy,  per   unit   of  area,   is   the   product  of  the  sliding  by  the 

friction, 

or,  /x?-*-^    Sr  in  unit  of  time. 

The   loss    of    Energy  in   a   part    of    the    Ring    whose   radius    is   r,    breadth 

Sr,  and  thickness  c,  is 

27rr*c/x  -j-    Sr. 

In  the  case  before  us  it  is  f  Tr/x/Scr"*  Sr. 

If  the   thickness  of  the  ring   is  uniform   between  r  =  a  and   r  =  h,  the    whole 

loss  of  Energy  is 

in  unit  of  time. 

Now  half  the  vis  viva  of  an  elementary  ring  is 

npcrhr  r^oy  =  nfxSSr, 

and  this  between  the  limits  r  =  a  and  r  =  h  gives 

npcS  (a  —  h). 

The  potential   due   to   the  attraction   of  5  is   twice   this   quantity    with   the 

sign  changed,  so  that 
E=-TrpcS(a-b), 

E  dt~      ̂   p  ah' 
45—2 
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Now  Professor  Stokes  finds  a/^  =  0-0564  for  water, 

^  P 

and  =0'116  for  air, 

taking  the  unit  of  space  one  English  inch,  and  the  unit  of  time  one  second. 

We  may  take  a  =  88,209  miles,  and  ?>  =  77,636  for  the  ring  A)  and  a  =  75,845, 

and  6  =  58,660  for  the  ring  B.  We  may  also  take  one  year  as  the  unit  of 

time.  The  quantity  representing  the  ratio  of  the  loss  of  energy  in  a  year  to 

the  whole  energy  is 

I   dE  1  p      .-L       •        ̂  

E  W=  60,880,000,000,000  ̂ ^'  ̂^'  "^^  ̂' 

^^  39,540,000,000,000  ̂ ''  ̂^^  ̂^"^  ̂' 

showing  that  the  efiect  of  internal  friction  in  a  ring  of  water  moving  with 

steady  motion  is  inappreciably  small.  It  cannot  be  from  this  cause  therefore 

that  any  decay  can  take  place  in  the  motion  of  the  ring,  provided  that  no 
waves  arise  to  disturb  the  motion. 

Recapitulation  of  the  Tlieory  of  the  Motion  of  a  Rigid  Ring. 

The  position  of  the  ring  relative  to  Saturn  at  any  given  instant  is  defined 

by  three  variable  quantities. 

1st.  The  distance  between  the  centre  of  gravity  of  Saturn  and  the  centre 

of  gravity  of  the  ring.     This  distance  we  denote   by  r. 

2nd.  The  angle  which  the  line  r  makes  with  a  fixed  line  in  the  plane  of 

the  motion  of  the  ring.    This  angle  is  called  0. 

3rd.  The  angle  between  the  line  r  and  a  Hne  fixed  with  respect  to  the 

ring  so  that  it  coincides  with  r  when  the  ring  is  in  its  mean  position.  This  is 

the  angle  <^. 

The  values  of  these  three  quantities  determine  the  position  of  the  ring  so 

far  as  its  motion  in  its  own  plane  is  concerned.  They  may  be  referred  to  as 

the  radius  vector,   longitude,  and  angle  of  lihration  of  the  ring. 

The  forces  which  act  between  the  ring  and  the  planet  depend  entirely  upon 

their  relative  positions.     The  method   adopted   above   consists  in  determining  the 
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potential  ( V)  of  the  ring  at  the  centre  of  the  planet  In  terms  of  r  and  <^.     Then 

the  work  done  by   any  displacement   of  the   system    is   measured   by   the   change 

of   VS  during  that  displacement.     The   attraction   between   the   centre   of  gravity 
(IV 

of  the  Ring  and  that  of  the  planet  Is    ~S   ,   ,   and   the   moment  of  the  couple 

clV 

tending  to   turn   the  ring  about  Its  centre   of  gravity  Is  S-j-j, 

It  Is  proved  In  Problem  V,  that  if  a  be  the  radius  of  a  circular  ring,  r^^uf 

the   distance   of  its   centre   of  gravity  from   the  centre   of  the  circle,  and  R  the 

mass  of  the  ring,  then,  at  the  centre  of  the  ring,     ,-  =   5/,  -yj  =  0. 

(PV       Ji 

It  also  appears  that    T-^  =  -k~3  {^  +9)>  "which  is  positive  when  g  >  —I, 

d'V       R 

and  that   -n\=^—f'(^—g),   which  is  positive  when  ̂ <3. 

d'V  .  .  . 
If  -y—  is  positive,  then  the  attraction  between  the  centres  decreases  as  the 

distance   increases,    so  that,   if  the   two    centres    were    kept    at    rest   at   a   given 
d'V  .         .  . 

distance  by  a  constant  force,  the  equilibrium  would  be  unstable.     If  -t-t;  is  positive, 

then  the  forces  tend  to  increase  the  angle  of  libration,  in  whichever  direction 

the  libration  takes  place,  so  that  if  the  ring  were  fixed  by  an  axis  through  its 

centre  of  gravity,  its  equilibrium  round  that  axis  would  be  unstable. 

In  the  case  of  the  uniform  ring  with  a  heavy  particle  on  its  circumference 

whose  weight  ="82  of  the  whole,  the  direction  of  the  whole  attractive  force  of 
the  ring  near  the  centre  will  pass  through  a  point  lying  in  the  same  radius  as 

the  centre  of  gravity,   but  at  a  distance  from  the  centre  =  fa.     (Fig.  6.) 

If  we  call  this  point  0,  the  line  SO  will  indicate  the  direction  and  position 

of  the  force  acting  on  the  ring,  which   we  may  call  F. 

It  Is  evident  that  the  force  F,  acting  on  the  ring  in  the  line  OS,  will  tend 

to  turn  it  round  its  centre  of  gravity  R  and  to  increase  the  angle  of  libration 

KRO.  The  direct  action  of  this  force  can  never  reduce  the  angle  of  libration 

to  zero  again.  To  understand  the  indirect  action  of  the  force,  we  must  recollect 

that  the  centre  of  gravity  (i?)  of  the  ring  is  revolving  about  Saturn  in  the 

direction  of  the  arrows,  and  that  the  ring  is  revolving  about  its  centre  of  gravity 
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with  nearly  the  same  velocity.  If  the  angular  velocity  of  the  centre  of  gravity 
about  Saturn  were  always  equal  to  the  rotatory  velocity  of  the  ring,  there 
would  be  no  libration. 

Now  suppose  that  the  angle  of  rotation  of  the  ring  is  in  advance  of  the 

longitude  of  its  centre  of  gravity,  so  that  the  line  RO  has  got  in  advance  of 

SRK  by  the  angle  of  libration  KRO.  The  attraction  between  the  planet  and 

the  ring  is  a  force  F  acting  in  SO.  We  resolve  this  force  into  a  couple,  whose 

moment  is  FRN,  and  a  force  F  acting  through  R  the  centre  of  gravity  of  the 
ring. 

The  couple  affects  the  rotation  of  the  ring,  but  not  the  position  of  its  centre 

of  gravity,  and  the  force  RF  acts  on  the  centre  of  gravity  without  affecting  the 
rotation. 

Now  the  couple,  in  the  case  represented  in  the  figure,  acts  in  the  positive 
direction,  so  as  to  increase  the  angular  velocity  of  the  ring,  which  was  already 

greater  than  the  velocity  of  revolution  of  R  about  S,  so  that  the  angle  of 
libration  would  increase,  and  never  be  reduced  to  zero. 

The  force  RF  does  not  act  in  the  direction  of  >S',  but  behind  it,  so  that  it 
becomes  a  retarding  force  acting  upon  the  centre  of  gravity  of  the  ring.  Now 
the  effect  of  a  retarding  force  is  to  cause  the  distance  of  the  revolving  body  to 

decrease  and  the  angular  velocity  to  increase,  so  that  a  retarding  force  increases 
the  angular  velocity  of  R  about  S. 

The  effect  of  the  attraction  along  SO  in  the  case  of  the  figure  is,  first,  to 

increase  the  rate  of  rotation  of  the  ring  round  R,  and  secondly,  to  iacrease  the 

angular  velocity  of  R  about  S.  If  the  second  effect  is  greater  than  the  first, 
then,  although  the  line  RO  increases  its  angular  velocity,  SR  will  increase  its 

angular  velocity  more,  and  will  overtake  RO,  and  restore  the  ring  to  its  original 

position,  so  that  SRO  will  be  made  a  straight  line  as  at  first.  If  this  accelerat- 
ing effect  is  not  greater  than  the  acceleration  of  rotation  about  R  due  to  the 

couple,  then  no  compensation  will  take  place,  and  the  motion  will  be  essentially 
unstable. 

If  in  the  figure  we  had  drawn  ̂   negative  instead  of  positive,  then  the 

couple  would  have  been  negative,  the  tangential  force  on  R  accelerative,  r  would 
have  increased,  and  in  the  cases  of  stability  the  retardation  of  6  would  be  greater 

than  that  of  (^  +  <^),  and  the  normal  position  would  be  restored,  as  before. 
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The  object  of  the  investigation  is  to  find  the  conditions  under  wliich  this 

compensation  is  possible. 

It  is  evident  that  when  SRO  becomes  straight,  there  is  still  a  difference 

of  angular  velocities  between  the  rotation  of  the  ring  and  the  revolution  of 

the  centre  of  gravity,  so  that  there  will  be  an  oscillation  on  the  other  side, 

and  the  motion  will  proceed  by  alternate  oscillations  without  limit. 

If  we  begin  with  r  at  its  mean  value,  and  <^  negative,  then  the  rotation 

of  the  ring  will  be  retarded,  7*  will  be  increased,  the  revolution  of  r  will  be 
more  retarded,  and  thus  <f>  will  be  reduced  to  zero.  The  next  part  of  the 

motion  will  reduce  r  to  its  mean  value,  and  bring  (f)  to  its  greatest  positive 

value.  Then  r  will  diminish  to  its  least  value,  and  (f>  will  vanish.  Lastly  r 

will  return  to  the  mean  value,  and  <f)  to  the  greatest  negative  value. 

It  appears  from  the  calculations,  that  there  are,  in  general,  two  different 

ways  in  which  this  kind  of  motion  may  take  place,  and  that  these  may  have 

different  periods,  phases,  and  amplitudes.  The  mental  exertion  required  in  follow- 

ing out  the  results  of  a  combined  motion  of  this  kind,  with  all  the  variations  of 

force  and  velocity  during  a  complete  cycle,  w^ould  be  very  great  in  proportion  to 
the  additional  knowledge  we  should  derive  from  the  exercise. 

The  result  of  this  theory  of  a  rigid  ring  shows  not  only  that  a  perfectly 

uniform  ring  cannot  revolve  permanently  about  the  planet,  but  that  the  irregu- 

larity of  a  permanently  revolving  ring  must  be  a  very  observable  quantity,  the 

distance  between  the  centre  of  the  ring  and  the  centre  of  gravity  being  between 

•8158  and  '8279  of  the  radius.  As  there  is  no  appearance  about  the  rings 
justifying  a  belief  in  so  great  an  irregularity,  the  theory  of  the  solidity  of  the 

rings  becomes  very  improbable. 

When  we  come  to  consider  the  additional  difficulty  of  the  tendency  of  the 

fluid  or  loose  parts  of  the  ring  to  accumulate  at  the  thicker  parts,  and  thus 

to  destroy  that  nice  adjustment  of  the  load  on  which  stability  depends,  we 

have  another  powerful  argument  against  solidity. 

And  when  we  consider  the  immense  size  of  the  rings,  and  their  comparative 

thinness,  the  absurdity  of  treating  them  as  rigid  bodies  becomes  self-evident. 

An  iron  ring  of  such  a  size  would  be  not  only  plastic  but  semifluid  under  the 

forces  which  it  would  experience,  and  we  have  no  reason  to  believe  these  rings 
to  be  artificially  strengthened  with  any  material  unknown  on  this  earth. 
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Recapitulation  of  the  Theory  of  a  Ring  of  equal  Satellites. 

In  attempting  to  conceive  of  the  disturbed  motion  of  a  ring  of  unconnected 

satellites,  we  have,  in  the  first  place,  to  devise  a  method  of  identifying  each 

satellite  at  any  given  time,  and  in  the  second  place,  to  express  the  motion  of 

every  satellite  under  the  same  general  formula,  in  order  that  the  mathematical 

methods  may  embrace  the  whole  system  of  bodies  at  once. 

By  conceiving  the  ring  of  satellites  arranged  regularly  in  a  circle,  we  may 

easily  identify  any  satellite,  by  stating  the  angular  distance  between  it  and  a 

known  satellite  when  so  arranged.  If  the  motion  of  the  ring  were  undisturbed, 

this  angle  would  remain  unchanged  during  the  motion,  but,  in  reality,  the 

satellite  has  its  position  altered  in  three  ways :  1st,  it  may  be  further  from 

or  nearer  to  Saturn;  2ndly,  it  may  be  in  advance  or  in  the  rear  of  the  position 

it  would  have  had  if  undisturbed ;  3rdly,  it  may  be  on  one  side  or  other  of 

the  mean  plane  of  the  ring.  Each  of  these  displacements  may  vary  in  any  way 

whatever  as  we  pass  from  one  satellite  to  another,  so  that  it  is  impossible 

to  assign  beforehand  the  place  of  any  satellite  by  knowing  the  places  of  the 

rest.     §  2. 

The  formula,  therefore,  by  which  we  are  enabled  to  predict  the  place  of 

every  satellite  at  any  given  time,  must  be  such  as  to  allow  the  initial  position 

of  every  satellite  to  be  independent  of  the  rest,  and  must  express  all  future 

positions  of  that  satellite  by  inserting  the  corresponding  value  of  the  quantity 

denoting  time,  and  those  of  every  other  sateUite  by  inserting  the  value  of  the 

angular  distance  of  the  given  satelUte  from  the  point  of  reference.  The  three 

displacements  of  the  satellite  will  therefore  be  functions  of  two  variables — the 

angular  position  of  the  satellite,  and  the  time.  When  the  time  alone  is  made 

to  vary,  we  trace  the  complete  motion  of  a  single  satellite ;  and  when  the  time 

is  made  constant,  and  the  angle  is  made  to  vary,  we  trace  the  form  of  the 

ring  at  a  given  time. 

It  is  evident  that  the  fonn  of  this  function,  in  so  far  as  it  indicates  the 

state  of  the  whole  ring  at  a  given  instant,  must  be  wholly  arbitrary,  for  the 

form  of  the  ring  and  its  motion  at  starting  are  limited  only  by  the  condition 

that  the  irregularities  must  be  small.  We  have,  however,  the  means  of  breaking 

up  any  function,  however  complicated,  into  a  series  of  simple  functions,  so  that 

the   value   of    the   function   between    certain    limits   may   be   accurately  expressed 



ON    THE    STABILITY     OF    THE    MOTION     OF    SATURN's    RINGS.  361 

as  the  sum  of  a  series  of  sines  and  cosines  of  multiples  of  the  variable.  This 

method,  due  to  Fourier,  is  peculiarly  applicable  to  the  case  of  a  ring  returning 

into  itself,  for  the  value  of  Fourier's  series  is  necessarily  periodic.  We  now 
regard  the  form  of  the  disturbed  ring  at  any  instant  as  the  result  of  the 

superposition  of  a  number  of  separate  disturbances,  each  of  -which  is  of  the  nature 
of  a  series  of  equal  waves  regularly  arranged  round  the.  ring.  Each  of  these 

elementary  disturbances  is  characterised  by  the  number  of  undulations  in  it,  by 

their  amplitude,  and  by  the  position  of  the  first  maximum  in  the  ring.     §  3. 

When  we  know  the  form  of  each  elementary  disturbance,  we  may  calculate 

the  attraction  of  the  disturbed  ring  on  any  given  particle  in  terms  of  the  con- 

stants belonging  to  that  disturbance,  so  that  as  the  actual  displacement  is  the 

resultant  of  the  elementary  displacements,  the  actual  attraction  will  be  the 

resultant  of  the  corresponding  elementary  attractions,  and  therefore  the  actual 

motion  will  be  the  resultant  of  all  the  motions  arising  from  the  elementary 

disturbances.  We  have  therefore  only  to  investigate  the  elementary  disturbances 

one  by  one,  and  having  established  the  theory  of  these,  we  calculate  the  actual 

motion  by  combining  the  series  of  motions  so  obtained. 

Assuming  the  motion  of  the  satellites  in  one  of  the  elementary  disturbances 

to  be  that  of  oscillation  about  a  mean  position,  and  the  whole  motion  to  be 

that  of  a  uniformly  revolving  series  of  undulations,  we  find  our  supposition  to 

be  correct,  provided  a  certain  biquadratic  equation  is  satisfied  by  the  quantity 

denoting  the  rate  of  oscillation.     §  6. 

When  the  four  roots  of  this  equation  are  all  real,  the  motion  of  each 

satellite  is  compounded  of  four  difierent  oscillations  of  difi'erent  amplitudes  and 
periods,  and  the  motion  of  the  whole  ring  consists  of  four  series  of  undulations, 

travelling  round  the  ring  with  different  velocities.  When  any  of  these  roots 

are  impossible,  the  motion  is  no  longer  oscillatory,  but  tends  to  the  rapid 

destruction  of  the  ring. 

To  determine  whether  the  motion  of  the  ring  is  permanent,  we  must  assure 

ourselves  that  the  four  roots  of  this  equation  are  real,  whatever  be  the  number 

of  undulations  in  the  ring;  for  if  any  one  of  the  possible  elementary  distui'b- 
ances  should  lead  to  destructive  oscillations,  that  disturbance  might  sooner  or 

later  commence,  and  the  ring  would  be  destroyed. 

Now  the  number  of  undulations  in  the  ring  may  be  any  whole  number 

from   one    up   to  half  the   number   of  satellites.      The   forces   from   which   danger 
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is  to  be  apprehended  are  greatest  when  the  number  of  undulations  is  greatest, 

and  by  taking  that  number  equal  to  half  the  number  of  satellites,  we  find  the 
condition  of  stability  to  be 

S>.A352tiR, 

where  S  is  the  mass  of  the  central  body,  R  that  of  the  ring,  and  /x  the  number 
of  sateUites  of  which  it  is  composed.  §  8.  If  the  number  of  satelHtes  be  too 

great,  destructive  oscillations  will  commence,  and  finally  some  of  the  satellites 
will  come  into  coUision  with  each  other  and  unite,  so  that  the  number  of 

independent  satellites  will  be  reduced  to  that  which  the  central  body  can  retain 
and  keep  in  discipline.  When  this  has  taken  place,  the  satellites  will  not  only 

be  kept  at  the  proper  distance  from  the  primary,  but  will  be  prevented  by  its 

preponderating  mass  from  interfering  with  each  other. 
We  next  considered  more  carefully  the  case  in  which  the  mass  of  the  ring 

is  very  small,  so  that  the  forces  arising  from  the  attraction  of  the  ring  are 
small  compared  with  that  due  to  the  central  body.  In  this  case  the  values 

of  the  roots  of  the  biquadratic  are  all  real,  and  easUy  estimated.     §  9. 

If  we  consider  the  motion  of  any  satellite  about  its  mean  position,  as 

referred  to  axes  fixed  in  the  plane  of  the  ring,  we  shall  find  that  it  describes 

an  ellipse  in  the  direction  opposite  to  that  of  the  revolution  of  the  ring,  the 

periodic  time  being  to  that  of  the  ring  as  o>  to  n,  and  the  tangential  ampli- 
tude of  oscillation  being  to  the  radial  as  2(0  to  n.     §  10. 

The  absolute  motion  of  each  satellite  in  space  is  nearly  elliptic  for  the  large 

values  of  n,  the  axis  of  the  ellipse  always  advancing  slowly  in  the  direction  of 

rotation.  The  path  of  a  satellite  corresponding  to  one  of  the  small  values  of 
n  is  nearly  circular,  but  the  radius  slowly  increases  and  diminishes  during  a 
period  of  many  revolutions.     §  11. 

The  form  of  the  ring  at  any  instant  is  that  of  a  re-entering  curve,  having 
m  alternations  of  distance  from  the  centre,  symmetrically  arranged,  and  m  points 

of  condensation,  or  crowding  of  the  satellites,  which  coincide  with  the  points  of 

greatest  distance  when  n  is  positive,  and  with  the  points  nearest  the  centre 
when  n  m  negative.     §  12. 

This  system  of  undulations  travels  with  an  angular  velocity   relative   to 

the   ring,   and   co   in   space,    so   that   during   each   oscillation    of   a   satellite   a 

complete  wave  passes  over  it.     §  14. 
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To  exhibit  the  movements  of  the  satellites,  I  have  made  an  arrangement 
by  which  36  little  ivory  balls  are  made  to  go  through  the  motions  belonging 
to  the  first  or  fourth  series  of  waves.     (Figs.  7,  8.) 

The  instrument  stands  on  a  pillar  A,  in  the  upper  part  of  which  turns 
the  cranked  axle  CC.  On  the  parallel  parts  of  this  axle  are  placed  two  wheels, 
RR  and  TT,  each  of  which  has  36  holes  at  equal  distances  in  a  circle  neai- 
its  circumference.  The  two  circles  are  connected  by  36  small  cranks  of  the 
fonn  KK,  the  extremities  of  which  turn  in  the  corresponding  holes  of  the  two 
wheels.  That  axle  of  the  crank  K  which  passes  through  the  hole  in  the  wheel 
S  is  bored,  so  as  to  hold  the  end  of  the  bent  wire  which  carries  the  satellite  >S'. 
This  wire  may  be  turned  in  the  hole  so  as  to  place  the  bent  part  carrying 
the  satellite  at  any  angle  with  the  crank.  A  pin  F,  which  passes  through  the 
top  of  the  pillar,  serves  to  prevent  the  cranked  axle  from  turning ;  and  a  pin  Q, 
passing  through  the  pillar  horizontally,  may  be  made  to  fix  the  wheel  R,  by 
inserting  it  in  a  hole  in  one  of  the  spokes  of  that  wheel.  There  is  also  a 
handle  H,  which  is  in  one  piece  with  the  wheel  T,  and  serves  to  turn  the  axle. 

Now  suppose  the  pin  P  taken  out,  so  as  to  allow  the  cranked  axle  to 
turn,  and  the  pin  Q  inserted  in  its  hole,  so  as  to  prevent  the  wheel  R  from 
revolving;  then  if  the  crank  C  be  turned  by  means  of  the  handle  H,  the 
wheel  T  will  have  its  centre  carried  round  in  a  vertical  circle,  but  will  remain 
parallel  to  itself  during  the  whole  motion,  so  that  every  point  in  its  plane  will 
describe  an  equal  circle,  and  all  the  cranks  K  will  be  made  to  revolve  exactly 
as  the  large  crank  C  does.  Each  satellite  will  therefore  revolve  in  a  small 
circular  orbit,  in  the  same  time  with  the  handle  H,  but  the  position  of  each 
satellite  in  that  orbit  may  be  arranged  as  we  please,  according  as  we  turn  the 
wire  which  supports  it  in  the  end  of  the  crank. 

In  fig.  8,  which  gives  a  front  view  of  the  instrument,  the  satelHtes  are  so 
placed  that  each  is  turned  60^  further  round  in  its  socket  than  the  one  behind 
it.  As  there  are  36  satellites,  this  process  will  bring  us  back  to  our  starting- 
point  after  six  revolutions  of  the  direction  of  the  arm  of  the  satellite;  and 
therefore  as  we  have  gone  round  the  ring  once  in  the  same  direction,  the  ami 
of  the   sateUite  will  have  overtaken  the  radius  of  the  ring  five  times. 

Hence  there  will  be  five  places  where  the  satellites  are  beyond  their  mean 
distance  from  the  centre  of  the  ring,  and  five  where  they  are  within  it,  so 
that   we   have   here   a   series  of  five    undulations   round  the  circumference  of  the 

46—2 
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ring.     In  this  case  the  satellites  are  crowded  together  when  nearest  to  the  centre, 

so  that  the  case  is  that  of  the  first  series  of  waves,   when  m  =  5. 

Now  suppose  the  cranked  axle  C  to  be  turned,  and  all  the  small  cranks 
K  to  turn  with  it,  as  before  explained,  every  satellite  will  then  be  carried 
round  on  its  own  arm  in  the  same  direction ;  but,  since  the  direction  of  the 

arms  of  different  satellites  is  different,  their  phases  of  revolution  will  preserve 

the  same  difference,  and  the  system  of  satellites  will  still  be  arranged  in  five 

undulations,  only  the  undulations  will  be  propagated  round  the  ring  in  the 
direction   opposite   to   that   of  the   revolution   of  the   satellites. 

To  understand  the  motion  better,  let  us  conceive  the  centres  of  the  orbits 

of  the  satellites  to  be  arranged  in  a  straight  line  instead  of  a  circle,  as  in 

fig.  10.  Each  satellite  is  here  represented  in  a  different  phase  of  its  orbit,  so 

that  as  we  pass  from  one  to  another  from  left  to  right,  we  find  the  position 
of  the  satellite  in  its  orbit  altering  in  the  direction  opposite  to  that  of  the 
hands  of  a  watch.  The  satellites  all  lie  in  a  trochoidal  curve,  indicated  by 

the  line  through  them  in  the  figure.  Now  conceive  every  satellite  to  move  in 

its  orbit  through  a  certain  angle  in  the  direction  of  the  arrows.  The  satellites 
will  then  lie  in  the  dotted  line,  the  form  of  which  is  the  same  as  that  of 

the  former  curve,  only  shifted  in  the  direction  of  the  large  arrow.  It  appears, 
therefore,  that  as  the  satellites  revolve,  the  undulation  travels,  so  that  any 

part  of  it  reaches  successively  each  satellite  as  it  comes  into  the  same  phase 
of  rotation.  It  therefore  travels  from  those  satellites  which  are  most  advanced 

in  phase  to  those  which  are  less  so,  and  passes  over  a  complete  wave-length 
in  the   time   of  one  revolution   of  a   satellite. 

Now  if  the  satellites  be  arranged  as  in  fig.  8,  where  each  is  more  advanced 
in  phase  as  we  go  round  the  ring  in  the  direction  of  rotation,  the  wave  will 

travel  in  the  direction  opposite  to  that  of  rotation,  but  if  they  are  arranged 

as  in  fig.  12,  where  each  satellite  is  less  advanced  in  phase  as  we  go  round 

the  ring,  the  wave  will  travel  in  the  direction  of  rotation.  Fig.  8  represents 

the  first  series  of  waves  where  m  =  5,  and  fig.  12  represents  the  fourth  series 

where  m  =  7.  By  arranging  the  satellites  in  their  sockets  before  starting,  we 
might  make  w  equal  to  any  whole  number,  from  1  to  18.  If  we  chose  any 
number  above  18  the  result  would  be  the  same  as  if  we  had  taken  a  number 

as  much  below  18  and  changed  the  arrangement  from  the  first  wave  to  the 
fourth. 
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In  this  way  we  can  exhibit  the  motions  of  the  satellites  in  the  first  and 

fourth  waves.  In  reality  they  ought  to  move  in  ellipses,  the  major  axes  being 
twice  the  minor,  whereas  in  the  machine  they  move  in  circles :  but  the  character 
of  the  motion  is  the  same,  though  the  form  of  the  orbit  is  diflferent. 

We  may  now  show  these  motions  of  the  satellites  among  each  other,  com- 
bined with  the  motion  of  rotation  of  the  whole  ring.  For  this  purpose  we 

put  in  the  pin  P,  so  as  to  prevent  the  crank  axle  from  turning,  and  take 
out  the  pin  ̂   so  as  to  allow  the  wheel  R  to  turn.  If  we  then  turn  the 

wheel  T,  all  the  small  cranks  will  remain  parallel  to  the  fixed  crank,  and  the 
wheel  R  will  revolve  at  the  same  rate  as  T.  The  arm  of  each  satellite  will 

continue  parallel  to  itself  during  the  motion,  so  that  the  satellite  will  describe 

a  circle  whose  centre  is  at  a  distance  from  the  centre  of  R,  equal  to  the  arm 

of  the  satellite,  and  measured  in  the  same  direction.  In  our  theory  of  real 

satellites,  each  moves  in  an  ellipse,  having  the  central  body  in  its  focus,  but 
this  motion  in  an  eccentric  circle  is  sufficiently  near  for  illustration.  The 

motion  of  the  waves  relative  to  the  ring  is  the  same  as  before.  The  waves 

of  the  first  kind  travel  faster  than  the  ring  itself,  and  overtake  the  satellites, 

those   of  the  fourth  kind  travel  slower,  and  are  overtaken  by  them. 

In  fig.  11  we  have  an  exaggerated  representation  of  a  ring  of  twelve  satel- 
lites afiected  by  a  wave  of  the  fourth  kind  where  m  =  2.  The  satellites  here  lie  in 

an  eUipse  at  any  given  instant,  and  as  each  moves  round  in  its  circle  about 

its  mean  position,  the  ellipse  also  moves  round  in  the  same  direction  with  half 

their  angular  velocity.  In  the  figure  the  dotted  line  represents  the  position  of 

the  ellipse  when  each  satellite  has  moved  forward  into  the  position  represented 
by  a  dot. 

Fig.  13  represents  a  wave  of  the  first  kind  where  m  =  2.  The  satellites  at 
any  instant  lie  in  an  epitrochoid,  which,  as  the  satellites  revolve  about  their 

mean  positions,  revolves  in  the  opposite  direction  with  half  their  angular  velocity, 

so  that  when  the  satellites  come  into  the  positions  represented  by  the  dots, 
the  curve  in  which  they  lie  turns  round  in  the  opposite  direction  and  forms  the 
dotted  curve. 

In  fig.  9  we  have  the  same  case  as  in  fig.  13,  only  that  the  absolute  orbits 

of  the  satellites  in  space  are  given,  instead  of  their  orbits  about  their  mean 

positions  in  the  ring.     Here  each  moves  about  the  central    body   in  an   eccentric 
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circle,  which  in  strictness  ought  to  be  an  ellipse  not  differing  much  from  the 
circle. 

As  the  satellites  move  in  their  orbits  in  the  direction  of  the  arrows,  the 

curve  which  they  form  revolves  in  the  same  direction  with  a  velocity  1^  times 

that  of  the  ring. 

By  considering  these  figures,  and  still  more  by  watching  the  actual  motion 

of  the  ivory  balls  in  the  model,  we  may  form  a  distinct  notion  of  the  motions 

of  the  particles  of  a  discontinuous  ring,  although  the  motions  of  the  model  are 

circular  and  not  elliptic.  The  model,  represented  on  a  scale  of  one-third  in  figs. 
7  and  8,  was  made  in  brass  by  Messrs.  Smith  and  Ramage  of  Aberdeen. 

We  are  now  able  to  understand  the  mechanical  principle,  on  account  of 

which  a  massive  central  body  is  enabled  to  govern  a  numerous  assemblage  of 

satellites,  and  to  space  them  out  into  a  regular  ring;  while  a  smaller  central 

body  would  allow  disturbances  to  arise  among  the  individual  satelHtes,  and 

collisions  to  take  place. 

When  we  calculated  the  attractions  among  the  satellites  composing  the  ring, 

we  found  that  if  any  satellite  be  displaced  tangentially,  the  resultant  attraction 

will  draw  it  away  from  its  mean  position,  for  the  attraction  of  the  satellites  it 

approaches  will  increase,  while  that  of  those  it  recedes  from  will  diminish,  so  that 

its  equilibrium  when  in  the  mean  position  is  unstable  with  respect  to  tangential 

displacements ;  and  therefore,  since  every  satellite  of  the  ring  is  statically  unstable 

between  its  neighbours,  the  slightest  disturbance  would  tend  to  produce  coUisions 

among  the  satellites,  and  to  break  up  the  ring  into  groups  of  conglomerated 
sateUites- 

But  if  we  consider  the  dynamics  of  the  problem,  we  shall  find  that  this 

effect  need  not  necessarily  take  place,  and  that  this  very  force  which  tends 

towards  destruction  may  become  the  condition  of  the  preservation  of  the  ring. 

Suppose  the  whole  ring  to  be  revolving  round  a  central  body,  and  that  one 

satellite  gets  in  advance  of  its  mean  position.  It  will  then  be  attracted  forwards, 

its  path  will  become  less  concave  towards  the  attracting  body,  so  that  its  distance 

from  that  body  will  increase.  At  this  increased  distance  its  angular  velocity 

will  be  less,  so  that  instead  of  overtaking  those  in  front,  it  may  by  this  means 

be  made  to  fall  back  to  its  original  position.  Whether  it  does  so  or  not  must 

depend  on  the  actual  values  of  the  attractive  forces  and  on  the  angular  velocity 

of  the  ring.     When  the  angular  velocity  is  great  and  the  attractive  forces  small, 
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the  compensating  process  will  go  on  vigorously,  and  the  ring  wiU  be  preserved. 
When  the  angular  velocity  is  small  and  the  attractive  forces  of  the  ring  great, 

the  dynamical  effect  wiU  not  compensate  for  the  disturbing  action  of  the  forces 
and  the  ring  ̂ vill  be  destroyed. 

If  the  satellite,  instead  of  being  displaced  forwards,  had  been  originally 

behind  its  mean  position  in  the  ring,  the  forces  would  have  pulled  it  backwards, 
its  path  would  have  become  more  concave  towards  the  centre,  its  distance  from 

the  centre  would  diminish,  its  angular  velocity  would  increase,  and  it  would 

gain  upon  the  rest  of  the  ring  till  it  got  in  front  of  its  mean  position.  This 
effect  is  of  course  dependent  on  the  very  same  conditions  as  in  the  former  case, 
and  the  actual  effect  on  a  disturbed  satellite  would  be  to  make  it  describe  an 

orbit  about  its  mean  position  in  the  ring,  so  that  if  in  advance  of  its  mean 

position,  it  first  recedes  from  the  centre,  then  falls  behind  its  mean  position  in 
the  ring,  then  approaches  the  centre  within  the  mean  distance,  then  advances 

beyond  its  mean  position,  and,  lastly,  recedes  from  the  centre  till  it  reaches  its 

starting-point,  after  which  the  process  is  repeated  indefinitely,  the  orbit  being 
always  described  in  the  direction  opposite  to  that  of  the  revolution  of  the 
ring. 

We  now  understand  what  would  happen  to  a  disturbed  satellite,  if  all  the 

others  were  preserved  from  disturbance.  But,  since  all  the  satellites  are  equally 

free,  the  motion  of  one  will  produce  changes  in  the  forces  acting  on  the  rest, 

and  this  will  set  them  in  motion,  and  this  motion  will  be  propagated  from  one 

satellite  to  another  round  the  ring.  Now  propagated  disturbances  constitute 
waves,  and  all  waves,  however  complicated,  may  be  reduced  to  combinations  of 

simple  and  regular  waves;  and  therefore  all  the  disturbances  of  the  ring  may 

be  considered  as  the  resultant  of  many  series  of  waves,  of  different  lengths,  and 

travelling  with  different  velocities.  The  investigation  of  the  relation  between 

the  length  and  velocity  of  these  waves  forms  the  essential  part  of  the  problem, 

after  which  we  have  only  to  split  up  the  original  disturbance  into  its  simple 

elements,  to  calculate  the  effect  of  each  of  these  separately,  and  then  to  combine 
the  results.  The  solution  thus  obtained  will  be  perfectly  general,  and  quite 

independent  of  the  particular  form  of  the  ring,  whether  regular  or  irregular  at 
starting.     §  14. 

We  next  investigated  the  effect  upon  the  ring  of  an  external  disturbing 

force.     Having  split  up  the  disturbing  force   into   components   of  the   same   type 
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with  the  waves  of  the  ring  (an  operation  which  is  always  possible),  we  found 

that  each  term  of  the  disturbing  force  generates  a  "  forced  wave "  travelling  with 
its  own  angular  velocity.  The  magnitude  of  the  forced  wave  depends  not  only 

on  that  of  the  disturbing  force,  but  on  the  angular  velocity  with  which  the  dis- 

turbance travels  round  the  ring,  being  greater  in  proportion  as  this  velocity 

more  nearly  coincides  with  that  of  one  of  the  "free  waves"  of  the  ring,  "We 
also  found  that  the  displacement  of  the  satellites  was  sometimes  in  the  direction 

of  the  disturbing  force,  and  sometimes  in  the  opposite  direction,  according  to 

the  relative  position  of  the  forced  wave  among  the  four  natural  ones,  producing 

in  the  one  case  positive,  and  in  the  other  negative  forced  waves.  In  treating 

the  problem  generally,  we  must  determine  the  forced  waves  belonging  to  every 

term  of  the  disturbing  force,  and  combine  these  with  such  a  system  of  free 

waves  as  shall  reproduce  the  initial  state  of  the  ring.  The  subsequent  motion 

of  the  rmg  is  that  which  would  result  from  the  free  waves  and  forced  waves 

together.  The  most  important  class  of  forced  waves  are  those  which  are  pro- 

duced by  waves  in  neighbouring  rings.     §   15. 

We  concluded  the  theory  of  a  ring  of  satellites  by  tracing  the  process  by 

which  the  ring  would  be  destroyed  if  the  conditions  of  stability  were  not 

fulfilled.  We  found  two  cases  of  instability,  depending  on  the  nature  of  the 

tangential  force  due  to  tangential  displacement.  If  this  force  be  in  the  direction 

opposite  to  the  displacement,  that  is,  if  the  parts  of  the  ring  are  statically 

stable,  the  ring  will  be  destroyed,  the  irregularities  becoming  larger  and  larger 

mthout  being  propagated  round  the  ring.  When  the  tangential  force  is  in  the 

direction  of  the  tangential  displacement,  if  it  is  below  a  certain  value,  the 

disturbances  will  be  propagated  round  the  ring  without  becoming  larger,  and 

we  have  the  case  of  stability  treated  of  at  large.  If  the  force  exceed  this  value, 

the  disturbances  will  still  travel  round  the  ring,  but  they  will  increase  in  ampli- 
tude continually  till  the  ring  falls  into  confusion.     §  18. 

We  then  proceeded  to  extend  our  method  to  the  case  of  rings  of  different 

constitutions.  The  first  case  was  that  of  a  ring  of  satellites  of  unequal  size. 

If  the  central  body  be  of  suflScient  mass,  such  a  ring  will  be  spaced  out,  so  that 

the  larger  satellites  will  be  at  wider  intervals  than  the  smaller  ones,  and  the 

waves  of  disturbance  will  be  propagated  as  before,  except  that  there  may  be 

reflected  waves  when  a  wave  reaches  a  part  of  the  ring  where  there  is  a  change 

in  the  average  size  of  the  satellites.     §  19. 
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The  next  case  was  that  of  an  annular  cloud  of  meteoric  stones,  revolving 

uniformly  about  the  planet.  The  avercige  density  of  the  space  through  which 

these  small  bodies  are  scattered  will  vary  with  every  irregularity  of  the  motion, 

and  this  variation  of  density  will  produce  variations  in  the  forces  acting  upon 

the  other  parts  of  the  cloud,  and  so  disturbances  will  be  propagated  in  this 

ring,  as  in  a  ring  of  a  finite  number  of  satellites.  The  condition  that  such  a 

ring  should  be  free  from  destructive  oscillations  is,  that  the  density  of  the 

planet  should  be  more  than  three  hundred  times  that  of  the  ring.  This  would 

make  the  ring  much  rarer  than  common  air,  as  regards  its  average  density, 

though  the  density  of  the  particles  of  which  it  is  composed  may  be  great. 

Comparing  this  result  with  Laplace's  minimum  density  of  a  ring  revolving  as 
a  whole,  we  find  that  such  a  ring  cannot  revolve  as  a  whole,  but  that  the  inner 

parts  must  have  a  greater  angular  velocity  than  the  outer  parts.     §  20. 

We  next  took  up  the  case  of  a  flattened  ring,  composed  of  incompressible 

fluid,  and  moving  with  uniform  angular  velocity.  The  internal  forces  here  arise 

partly  from  attraction  and  partly  from  fluid  pressure.  We  began  by  taking  the 

case  of  an  intinite  stratum  of  fluid  affected  by  regular  waves,  and  found  the  accurate 

values  of  the  forces  in  this  case.  For  long  waves  the  resultant  force  Is  in  the 

same  direction  as  the  displacement,  reaching  a  maximum  for  waves  whose 

length  is  about  ten  times  the  thickness  of  the  stratum.  For  waves  about  five 

times  as  long  as  the  stratum  is  thick  there  is  no  resultant  force,  and  for  shorter 

waves  the  force  is  in  the  opposite  direction  to  the  displacement.     §  23. 

Applying  these  results  to  the  case  of  the  ring,  we  find  that  it  will  be 

destroyed  by  the  long  waves  unless  the  fluid  is  less  than  -^  of  the  density  of 

the  planet,  and  that  in  all  cases  the  short  waves  will  break  up  the  ring  into 
small  satellites. 

Passing  to  the  case  of  narroiv  rings,  we  should  find  a  somewhat  larger 

maximum  density,  but  we  should  still  find  that  very  short  waves  produce  forces 

in  the  direction  opposite  to  the  displacement,  and  that  therefore,  as  already 

explained  (page  333),  these  short  undulations  would  increase  in  magnitude  without 

being  propagated  along  the  ring,  till  they  had  broken  up  the  fluid  filament  into 

drops.  These  drops  may  or  may  not  fulfil  the  condition  formerly  given  for  the 

stability  of  a  ring  of  equal  satellites.  If  they  fulfil  it,  they  will  move  as  a 

permanent  ring.  If  they  do  not,  short  waves  will  arise  and  be  propagated  among 

the  satellites,   with    ever  increasing  magnitude,  till  a   sufficient    number   of  drops 
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have    been    brought    into    collision,  so    as    to  unite   and  form  a  smaller  number  of 

larger  drops,   which  may  be  capable  of  revolving  as  a  permanent  ring. 

We  have  already  investigated  the  disturbances  produced  by  an  external 

force  independent  of  the  ring ;  but  the  special  case  of  the  mutual  perturbations 

of  two  concentric  rings  is  considerably  more  complex,  because  the  existence  of  a 

double  system  of  waves  changes  the  character  of  both,  and  the  waves  produced 

react  on  those  that  produced  them. 

We  determined  the  attraction  of  a  ring  upon  a  particle  of  a  concentric 

ring,  first,  when  both  rings  are  in  their  undisturbed  state ;  secondly,  when  the 

particle  is  disturbed  ;  and,  thirdly,  when  the  attracting  ring  is  disturbed  by  a 

series  of  waves.     §  26. 

We  then  formed  the  equations  of  motion  of  one  of  the  rings,  taking  in  the 

disturbing  forces  arising  from  the  existence  of  a  wave  in  the  other  ring,  and 

found  the  small  variation  of  the  velocity  of  a  wave  in  the  first  ring  as  dependent 

on  the  magnitude  of  the  wave  in  the  second  ring,  which  travels  with  it.     §  27. 

The  forced  wave  in  the  second  ring  must  have  the  same  absolute  angular 

velocity  as  the  free  wave  of  the  first  which  produces  it,  but  this  velocity  of 

the  free  wave  is  slightly  altered  by  the  reaction  of  the  forced  wave  upon  it. 

We  find  that  if  a  free  wave  of  the  first  ring  has  an  absolute  angular  velocity 

not  very  different  from  that  of  a  free  wave  of  the  second  ring,  then  if  both 

fi:ee  waves  be  of  even  orders  (that  is,  of  the  second  or  fourth  varieties  of  waves), 

or  both  of  odd  orders  (that  is,  of  the  first  or  third),  then  the  swifter  of  the 

two  free  waves  has  its  velocity  increased  by  the  forced  wave  which  it  produces, 

and  the  slower  free  wave  is  rendered  still  slower  by  its  forced  wave ;  and  even 

when  the  two  free  waves  have  the  same  angular  velocity,  their  mutual  action 

will  make  them  both  split  into  two,  one  wave  in  each  ring  travelling  faster, 

and  the  other  wave  in  each  ring  travelling  slower,  than  the  rate  with  which 

they  would  move  if  they  had  not  acted  on  each  other. 

But  if  one  of  the  free  waves  be  of  an  even  order  and  the  other  of  an  odd 

order,  the  swifter  free  wave  will  travel  slower,  and  the  slower  free  wave  will 

travel  swifter,  on  account  of  the  reaction  of  their  respective  forced  waves.  If 

the  two  free  waves  have  naturally  a  certain  small  difference  of  velocities,  they 

will  be  made  to  travel  together,  but  if  the  difference  is  less  than  this,  they 

will   again    split    into    two    pairs    of    waves,    one    pair    continually   increasing   in 
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magnitude  without  limit,  and  the  other  continually  diminishing,  30  that  one 

of  the  waves  in  each  ring  will  increase  in  violence  till  it  has  thrown  the  ring 
into  a  state  of  confusion. 

There  are  four  cases  in  which  this  may  happen.  The  first  wave  of  the 

outer  ring  may  conspire  with  the  second  or  the  fourth  of  the  inner  ring,  the 
second  of  the  outer  with  the  third  of  the  inner,  or  the  third  of  the  outer  with 

the  fourth  of  the  inner.  That  two  rings  may  revolve  permanently,  their  distances 

must  be  arranged  so  that  none  of  these  conspiracies  may  arise  between  odd 
and  even  waves,  whatever  be  the  value  of  m.  The  number  of  conditions  to 

be  fulfilled  is  therefore  very  great,  especially  when  the  rings  are  near  together 

and  have  nearly  the  same  angular  velocity,  because  then  there  are  a  greater 

number  of  dangerous  values  of  m  to  be  provided  for. 

In  the  case  of  a  large  number  of  concentric  rings,  the  stability  of  each  pair 

must  be  investigated  separately,  and  if  in  the  case  of  any  two,  whether  con- 

secutive rings  or  not,  there  are  a  pair  of  conspiring  waves,  those  two  rings  will 

be  agitated  more  and  more,  till  waves  of  that  kind  are  rendered  impossible  by 

the  breaking  up  of  those  rings  into  some  different  arrangement.  The  presence 

of  the  other  rings  cannot  prevent  the  mutual  destruction  of  any  pair  which 
bear  such  relations  to  each  other. 

It  appears,  therefore,  that  in  a  system  of  many  concentric  rings  there  will 

be  continually  new  cases  of  mutual  interference  between  different  pairs  of  rings. 

The  forces  which  excite  these  disturbances  being  very  small,  they  will  be  slow 

of  growth,  and  it  is  possible  that  by  the  irregularities  of  each  of  the  rings  the 

waves  may  be  so  broken  and  confused  (see  §  19),  as  to  be  incapable  of  mounting 

up  to  the  height  at  which  they  would  begin  to  destroy  the  arrangement  of  the 

ring.  In  this  way  it  may  be  conceived  to  be  possible  that  the  gradual  dis- 

arrangement of  the  system  may  be  retarded  or  indefinitely  postponed. 

But  supposing  that  these  waves  mount  up  so  as  to  produce  collisions  among 

the  particles,  then  we  may  deduce  the  result  upon  the  system  from  general 

dynamical  principles.  There  will  be  a  tendency  among  the  exterior  rings  to 

remove  further  from  the  planet,  and  among  the  interior  rings  to  approach  the 

planet,  and  this  either  by  the  extreme  interior  and  exterior  rings  diverging 

from  each  other,  or  by  intermediate  parts  of  the  system  moving  away  from  the 

mean   ring.     If  the   interior   rings  are  observed   to   approach    the  planet,   while   it 

47—2 
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is  known  that  none  of  the  other  rings  have  expanded,  then  the  cause  of  the 

chancre  cannot  be  the  mutual  action  of  the  parts  of  the  system,  but  the  resistance 

of  some  medium  in  which  the  rings  revolve.  §  Si- 

There  is  another  cause  which  would  gradually  act  upon  a  broad  fluid  ring 

of  which  the  parts  revolve  each  with  the  angular  velocity  due  to  its  distance 

from  the  planet,  namely,  the  internal  friction  produced  by  the  slipping  of  the 

concentric  rings  with  different  angular  velocities.  It  appears,  however  (§  33), 

that  the  effect  of  fluid  friction  would  be  insensible  if  the  motion  were  regular. 

Let  us  now  gather  together  the  conclusions  we  have  been  able  to  draw 

from  the  mathematical  theory  of  various  kinds  of  conceivable  rings. 

We  found  that  the  stability  of  the  motion  of  a  solid  ring  depended  on 

so  delicate  an  adjustment,  and  at  the  same  time  so  unsymmetrieal  a  distribution 

of  mass,  that  even  if  the  exact  condition  were  fulfilled,  it  could  scarcely  last 

long,  and  if  it  did,  the  immense  preponderance  of  one  side  of  the  ring  would 

be  easily  observed,  contrary  to  experience.  These  considerations,  with  others 

derived  from  the  mechanical  structure  of  so  vast  a  body,  compel  us  to  abandon 

any  theory  of  solid  rings. 

We  next  examined  the  motion  of  a  ring  of  equal  satellites,  and  found  that 

if  the  mass  of  the  planet  is  sufficient,  any  disturbances  produced  in  the  arrange- 

ment of  the  ring  will  be  propagated  round  it  in  the  form  of  waves,  and  will  not 

introduce  dangerous  confusion.  If  the  satellites  are  unequal,  the  propagation  of 

the  waves  will  no  longer  be  regular,  but  disturbances  of  the  ring  will  in  this, 

as  in  the  former  case,  produce  only  waves,  and  not  growing  confusion.  Sup- 

posing the  ring  to  consist,  not  of  a  single  row  of  large  satellites,  but  of  a  cloud 

of  evenly  distributed  unconnected  particles,  we  found  that  such  a  cloud  must 

have  a  very  small  density  in  order  to  be  permanent,  and  that  this  is  inconsistent 

with  its  outer  and  inner  parts  moving  with  the  same  angular  velocity.  Supposing 

the  ring  to  be  fluid  and  continuous,  we  found  that  it  will  be  necessarily  broken 

up  into  small  portions. 

We  conclude,  therefore,  that  the  rings  must  consist  of  disconnected  particles ; 

these  may  be  either  solid  or  liquid,  but  they  must  be  independent.  The  entire 

system  of  rings  must  therefore  consist  either  of  a  series  of  many  concentric  rings, 

each  moving  with  its  own  velocity,  and  having  its  own  systems  of  waves,  or  else 

of  a  confused  multitude  of  revolving  particles,  not  arranged  in  rings,  and 

continually  coming  into  collision  with  each  other. 
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Taking  the  first  case,  we  tbund  that  in  an  indefinite  number  of  possible 

cases  the  mutual  perturbations  of  two  rings,  stable  in  themselves,  might  mount 

up  in  time  to  a  destructive  magnitude,  and  that  such  cases  must  continually 

occur  in  an  extensive  system  like  that  of  Saturn,  the  only  retarding  cause  being 

the  possible  irregularity  of  the  rings. 

The  result  of  long-continued  disturbance  was  found  to  be  the  spreading 

out  of  the  rings  in  breadth,  the  outer  rings  pressing  outwards,  while  the  inner 

rings  press  inwards. 

The  final  result,  therefore,  of  the  mechanical  theory  is,  that  the  only  system 

of  rings  which  can  exist  is  one  composed  of  an  indefinite  number  of  unconnected 

particles,  revolving  round  the  planet  with  different  velocities  according  to  their 

respective  distances.  These  particles  may  be  arranged  in  series  of  narrow  rings, 

or  they  may  move  through  each  other  irregularly.  In  the  first  case  the  destruc- 

tion of  the  system  will  be  very  slow,  in  the  second  case  it  will  be  more  rapid, 

but  there  may  be  a  tendency  towards  an  arrangement  in  narrow  rings,  which 

may  retard  the  process. 

We  are  not  able  to  ascertain  by  observation  the  constitution  of  the  two 

outer  divisions  of  the  system  of  rings,  but  the  inner  ring  is  certainly  transparent, 

for  the  limb  of  Saturn  has  been  observed  through  it.  It  is  also  certain,  that 

though  the  space  occupied  by  the  ring  is  transparent,  it  is  not  through  the 

material  parts  of  it  that  Saturn  was  seen,  for  his  limb  was  observed  without 

distortion ;  which  shows  that  there  was  no  refraction,  and  therefore  that  the 

rays  did  not  pass  through  a  medium  at  all,  but  between  the  solid  or  liquid 

particles  of  which  the  ring  is  composed.  Here  then  we  have  an  optical  argument 

in  favour  of  the  theory  of  independent  particles  as  the  material  of  the  rings. 

The  two  outer  rings  may  be  of  the  same  nature,  but  not  so  exceedingly  rare 

that  a  ray  of  light  can  pass  through  their  whole  thickness  without  encounterino^ 

one  of  the  particles. 

Finally,  the  two  outer  rings  have  been  observed  for  200  years,  and  it  appears, 

from  the  careful  analysis  of  all  the  observations  by  M.  Struve,  that  the  second 

ring  is  broader  than  when  first  observed,  and  that  its  inner  edge  is  nearer  the 

planet  than  formerly.  The  inner  ring  also  is  suspected  to  be  approaching  the 

planet  ever  since  its  discovery  in  1850.  These  appearances  seem  to  indicate 

the  same  slow  progress  of  the  rings  towards  separation  which  we  found  to  be 

the  result  of  theory,    and  the    remark,   that  the    inner    edge    of  the  inner  ring  is 
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most  distinct,  seems  to  indicate  that  the  approach  towards  the  planet  is  less 

rapid  near  the  edge,  as  we  had  reason  to  conjecture.  As  to  the  apparent 

unchangeableness  of  the  exterior  diameter  of  the  outer  ring,  we  must  remember 

that  the  outer  rings  are  certainly  far  more  dense  than  the  inner  one,  and  that 

a  small  change  in  the  outer  rings  must  balance  a  great  change  in  the  inner 

one.  It  is  possible,  however,  that  some  of  the  observed  changes  may  be  due 

to  the  existence  of  a  resisting  medium.  If  the  changes  already  suspected  should 

be  confirmed  by  repeated  observations  with  the  same  instruments,  it  will  be 

worth  while  to  investigate  more  carefully  whether  Saturn's  Rings  are  permanent 

or  transitionary  elements  of  the  Solar  System,  and  whether  in  that  part  of 

the  heavens  we  see  celestial  immutability,  or  terrestrial  corruption  and  generation, 

and  the  old  order  giving  place  to  new  before  our  own  eyes. 

APPENDIX. 

On   the    Stability   of  the   Steady    Motion    of  a   Rigid   Body    about   a   Fixed    Centre   of  Force. 

By  Peofessor  W.  Thomson  {communicated  in  a  letter). 

The  body  will  be  supposed  to  be  symmetrical  on  the  two  sides  of  a  certain  plane 

containing  the  centre  of  force,  and  no  motion  except  that  of  parts  of  the  body  parallel 

to  the  plane  will  be  considered.  Taking  it  as  the  plane  of  construction,  let  G  (fig.  14) 

be  the  centre  of  gravity  of  the  body,  and  0  a  point  at  which  the  resultant  attraction  of 

the  body  is  in  the  line  OG  towards  G.  Then  if  the  body  be  placed  with  0  coinciding 

with   the   centre   of  force,   and   set  in   a   state   of  rotation   about   that   point   as   an  axis,  with 

an   angular   velocity   equal   to   A/Ajr.    (where    /    denotes   the   attraction    of    the   body   on   a 

unit  of  matter  at  0,  S  the  amount  of  matter  in  the  central  body,  M  the  mass  of  the 

revolving  body,  and  a  the  distance  OG),  it  will  continue,  provided  it  be  perfectly  undis- 

turbed, to  revolve  uniformly  at  this  rate,  and  the  attraction  Sf  on  the  moving  body  will 

be  constantly  balanced  by  the  centrifugal  force  oi'aM  of  its  motion. 

Let  us  now  suppose  the  motion  to  be  slightly  disturbed,  and  let  it  be  required  to 

investigate  the  consequences.  Let  X,  S,  Y,  be  rectangular  axes  of  reference  revolving 

uniformly  with  the  angular  velocity  (o,  round  S,  the  fixed  attracting  point.  Let  x,  y,  be 

the   co-ordinates   of  G  with   reference   to   these   axes,  and  let  XS,  YS  denote  the  components 
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of  the    whole    force   of  attraction    of  S   on    the   rigid    body.     Then    since   this   force   is   in  the 
line  through  S,  its  moment  round    G  is 

SYx-SXy; 

the   components    of    the    forces   on    the    moving   body    being   reckoned    as    positive   when   they 
tend   to   diminish   x   and   y   respectively.     Hence    if  k   denote    the   radius   of    gyration    of  the 
body   round    G,  and   if  <f>   denote   the   angle  which   OG  makes  with  SX  {i.e.  the  angle  GOK), 
the  equations  of  motion  are, 

In  the  first  place  we  see  that  one  integral  of  these  equations  is 

This  is  the  "equation  of  angidar  momentum." 

In  considering  whether  the  motion  round  S  with  velocity  co  when  0  coincides  with 
-S'  is  stable  or  unstable,  we  must  find  whether  every  possible  motion  with  the  same 

"  angular  momentum  "  round  S  is  such  that  it  will  never  bring  0  to  more  than  an  infinitely 
small  distance  from  S :  that  is  to  say,  we  must  find  whether,  for  every  possible  solution 

in  which  H  =  M  {ct"  +  k"")  o),  and  for  which  the  co-ordinates  of  0  are  infinitely  small  at  one 
time,  these  co-ordinates  remain  infinitely  small.  Let  these  values  at  time  t  be  denoted 
thus:  8^  =  ̂ ,  and  NO='rj;  let  OG  be  at  first  infinitely  nearly  parallel  to  OX,  i.e.  let  <f> 
be  infinitely  small  (the  full  solution  will  tell  us  whether  or  not  <f)  remains  infinitely  small) ; 
then,  as  long  as  <f)  is  infinitely  small,  we  have 

x  =  a+  ̂,     y  =  v  +  ̂<^> 

and  the  equations  of  motion  have  the  forms 

31 

and  we  may  write  the  equation  of  angular  momentum  instead  of  the  third  equation. 

If  now  we  suppose  f  and  rj  to  be  infinitely  small,  the  last  of  these  equations  becomes 

{a'  +  k^)f^+2a>a^+af^=0   (a). 
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If  p  and   q   denote   the   components   parallel   and   perpendicular  to  OG  of  the   attraction 
of  the  body  on  a  unit  of  matter  at   S,   we  have 

X  =  pco?,^-q?,m4>  =  p,  and   F=psin^ +  5^003  ̂ =j3</>  4-^, 

since  q  and  ̂   are  each  infinitely  small ;  and  if  we  put   V=  potential  at  S,  and 

then  p  =/-  a|  -  777,  q  =  -0v-  7^. 

If  we  make  these  substitutions  for  X  and    Y,  and  take  into  account  that 

.f=co'a^   (*). 

the  first  and  second  equations  of  motion  become 

g_2.^_„.f_2„af4(.f+„)=0   (0), 

A,2„|_„.,  +  „^4(^,+,«  =  0   W. 

Combining  equations  (a),  (c),  and  (tf),  by  the   same  method  as    that  adopted  in  the  text, 
we  find  that  the  differential  equation  in  ̂ ,  7),  or  </>,  is  of  the  form 

d*u      ̂ d^u     ̂  

where  A  =  A;', 

C  =  a>*  (A;*  -  3a*)  +  «"  -^  {{a*  +  ̂*)  (a  +  yS)  -  4a»y8}  +  {a'  +  Fj^^,  (a'yS  -  7). 

In  comparing  this  result  with  that  obtained  in  the  Essay,  we  must  put 

r^  for  a, 
R  for  M, 

B+S  for  S, 

L  for  o, 

Nt:  for  y8, 

Mr^  for  7. 
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[From  the  Philosophical  Magazine  for  January  and  July,   I860.] 

XX.     Illustrations   of  the   Dynamical    Theory   of  Gases*. 

PART   L 

On  the  Motions  and  Collisions  of  Perfectly  Elastic  Spheres. 

So  many  of  the  properties  of  matter,  especially  when  in  the  gaseous  form, 

can  be  deduced  from  the  hypothesis  that  their  minute  parts  are  in  rapid  motion, 

the  velocity  increasing  with  the  temperature,  that  the  precise  nature  of  this 
motion  becomes  a  subject  of  rational  curiosity.  Daniel  Bemouilli,  Herapath, 

Joule,  Kronig,  Clausius,  &c.  have  shewn  that  the  relations  between  pressure, 

temperature,  and  density  in  a  perfect  gas  can  be  explained  by  supposing  the 
particles  to  move  with  uniform  velocity  in  straight  lines,  striking  against  the 
sides  of  the  containing  vessel  and  thus  producing  pressure.  It  is  not  necessary 

to  suppose  each  particle  to  travel  to  any  great  distance  in  the  same  straight 

line ;  for  the  effect  in  producing  pressure  \vill  be  the  same  if  the  particles 

strike  against  each  other ;  so  that  the  straight  line  described  may  be  very  short . 
M.  Clausius  has  determined  the  mean  length  of  path  in  terms  of  the  average 

distance  of  the  particles,  and  the  distance  between  the  centres  of  two  particles 

when  collision  takes  place.  We  have  at  present  no  means  of  ascertaining  either 
of  these  distances ;  but  certain  phenomena,  such  as  the  internal  friction  of  gases, 

the  conduction  of  heat  through  a  gas,  and  the  diffusion  of  one  gas  through 

another,  seem  to  indicate  the  possibility  of  determining  accurately  the  mean 

length  of  path  which  a  particle  describes  between  two  successive  collisions.  In 
order  to  lay  the  foundation  of  such  investigations  on  strict  mechanical  principles, 
I  shall  demonstrate  the  laws  of  motion  of  an  indefinite  number  of  small,  hard, 

and  perfectly  elastic  spheres  acting  on  one  another  only  during  impact. 

*  Read  at  the  Meeting  of  the  British  Association  at  Aberdeen,  Sei)tember  21,  1859. 
VOL.  I.  48 
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If  the  properties  of  such  a  system  of  bodies  are  found  to  correspond  to 

those  of  gases,  an  important  physical  analogy  will  be  established,  which  may 

lead  to  more  accurate  knowledge  of  the  properties  of  matter.  If  experiments 

on  gases  are  inconsistent  with  the  hypothesis  of  these  propositions,  then  our 

theory,  though  consistent  w^th  itself,  is  proved  to  be  incapable  of  explaining 

the  phenomena  of  gases.  In  either  case  it  is  necessary  to  follow  out  the 

consequences   of  the   hypothesis. 

Instead  of  saying  that  the  particles  are  hard,  spherical,  and  elastic,  we  may 

if  we  please  say  that  the  particles  are  centres  of  force,  of  which  the  action  is 

insensible  except  at  a  certain  small  distance,  when  it  suddenly  appears  as  a 

repulsive  force  of  very  great  intensity.  It  is  evident  that  either  assumption 
will  lead  to  the  same  results.  For  the  sake  of  avoiding  the  repetition  of  a 

long  phrase  about  these  repulsive  forces,  I  shall  proceed  upon  the  assumption 

of  perfectly  elastic  spherical  bodies.  If  we  suppose  those  aggregate  molecules 

which  move  together  to  have  a  bounding  surface  which  is  not  spherical,  then 

the  rotatory  motion  of  the  system  will  store  up  a  certain  proportion  of  the 

whole  vis  viva,  as  has  been  shewn  by  Clausius,  and  in  this  way  we  may 

accoimt  for  the  value  of  the  specific  heat  being  greater  than  on  the  more 

simple   hypothesis. 

On   the   Motion  and    Collision   of  Perfectly   Elastic   Spheres. 

Prop.  I.  Two  spheres  moving  in  opposite  directions  with  velocities*  inversely 
us  their  masses  strike  one  another;  to  determine  their  motions  after  impact. 

Let  P  and   Q  be   the   position   of  the   centres  at 

impact;    AP,   BQ  the   directions    and    magnitudes    of  ^-V  at 

the   velocities   before   impact;   Pa,   Qh   the   same   after  ^^^^^^^^ — j^ 

impact;  then,  resolving  the  velocities  parallel  and  per-  ̂  
pendicular  to  PQ  the  line  of  centres,  we  find  that 

tlie  velocities  parallel  to  the  line  of  centres  are  exactly 

reversed,  while  those  perpendicular  to  that  line  are 

luichanged.  Compounding  these  velocities  again,  we  find  that  the  velocity  of 

each  ball  is  the  same  before  and  after  impact,  and  that  the  directions  before 

and  after  impact  lie  in  the  same  plane  with  the  line  of  centres,  and  make  equal 

angles  with  it. 
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Prop.  11.  To  find  the  probability  of  the  direction  of  the  velocity  after 

impact   lying   between   given   limits. 

In  order  that  a  collision  may  take  place,  the  line  of  motion  of  one  of  the 

balls  must  pass  the  centre  of  the  other  at  a  distance  less  than  the  sum  of 
their  radii ;  that  is,  it  must  pass  through  a  circle  whose  centre  is  that  of  the 
other  ball,  and  radius  (s)  the  sum  of  the  radii  of  the  balls.  Within  this  circle 

every  position  is  equally  probable,  and  therefore  the  probability  of  the  distance 
from  the  centre  being  between  r  and  r  +  dr  is 

2rdr 

~7~' 
Now   let   <f>  be   the   angle   A  Pa  between  the  original  direction  and  the  directioii 

after  impact,  then  APN=^<f>,  and  7- =  5  sin  ̂ <^,  and  the  probabihty  becomes 
^  sin  6d^. 

The  area  of  a  spherical  zone  between  the  angles  of  polar  distance  <j>  and  <f)  +  d<f)  is 
27r  sin  (f)d<f> ; 

therefore   if  a>   be   any  small   area   on   the   surface  of  a  sphere,  radius  unity,  the 

probability  of  the  direction  of  rebound  passing  through  this  area  is 
to 

4:ir  * 

so   that   the   probability  is  independent   of  ̂ ,   that   is,  all   directions   of  rebound 

are  equally  likely. 

Prop.  III.  Given  the  direction  and  magnitude  of  the  velocities  of  two 

spheres  before  impact,  and  the  line  of  centres  at  impact ;  to  find  the  velocities 

after  impact. 

Let  OA,  OB  represent  the  velocities  before  impact,  so  that  if  there  had  been 

no  action  between  the  bodies  they  would 
have  been  at  A  and  B  at  the  end  of  a 

second.  Join  AB,  and  let  G  be  their  centre 

of  gravity,  the  position  of  which  is  not 
affected  by  their  mutual  action.  Draw  GN 

parallel  to  the  line  of  centres  at  impact  (not 

necessarily   in   the    plane   AOB).     Draw   aGh 

in  the  plane  AGN,  making  NGa  =  NGA,  and  Ga=GA  and  Gb  =  GB;   then   by 

48—2 
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Prop.  I.  Ga  and  Gh  will  be  the  velocities  relative  to  G ;  and  compounding 

these  with  OG,  we  have  Oa  and  Oh  for  the  true  velocities  after  impact. 

By  Prop.  11.  all  directions  of  the  Une  aGh  are  equally  probable.  It  appears 

therefore  that  the  velocity  after  impact  is  compounded  of  the  velocity  of  the 

centre  of  gravity,  and  of  a  velocity  equal  to  the  velocity  of  the  sphere  rela
tive 

to  the  centre  of  gravity,  which  may  with  equal  probability  be  in  any  direction 
whatever. 

If  a  great  many  equal  spherical  particles  were  in  motion  in  a  perfectly 

elastic  vessel,  collisions  would  take  place  among  the  particles,  and  their  velocitie
s 

would  be  altered  at  every  collision;  so  that  after  a  certain  time  the  vis  viva 

will  be  divided  among  the  particles  according  to  some  regular  law,  the  average 

number  of  particles  whose  velocity  lies  between  certain  Umits  being  ascertainable, 

though  the  velocity  of  each  particle  changes  at  every  colUsion. 

Prop.  IV.  To  find  the  average  number  of  particles  whose  velociti
es  he 

between  given  limits,  after  a  great  number  of  collisions  among  a  great  numb
er 

of  equal  particles. 

Let  N  be  the  whole  number  of  particles.  Let  x,  y,  z  be  the  components
 

of  the  velocity  of  each  particle  in  three  rectangular  directions,  and  let  the
  number 

of  particles  for  which  x  lies  between  x  and  x-hdx,  be  Nf{x)dx,  where  f{x)  is 
a  function  of  x  to  be  determined. 

The  number  of  particles  for  which  y  lies  between  y  and  y  +  dy  wUl  be 

Nf{y)dy;  and  the  number  for  which  z  Hes  between  z  and  z  +  dz  will  b
e  Nf(z)dz, 

where  /  always  stands  for  the  same  function. 

Now  the  existence  of  the  velocity  x  does  not  in  any  way  affect  th
at  of 

the  velocities  y  or  z,  since  these  are  all  at  right  angles  to  ea
ch  other  and 

independent,  so  that  the  number  of  particles  whose  velocity  li
es  between  x  and 

x  +  dx,  and  also  between  y  and  y-{-dy,  and  also  between  z  and  z  + 
 dz,  is 

If  we  suppose  the  N  particles  to  start  from  the  origin  
at  the  same  instant, 

then  this  wil)  be  the  number  in  the  element  of  volume  (dxdy
dz)  after  unit  of 

time,  and  the  number  referred  to  unit  of  volume  will  be 
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But   the   directions   of  the   coordinates   are  perfectly  arbitrary,  and  therefore  this 

number  must  depend  on  the  distance  from  the  origin  alone,  that  is 

f{x)f(y)f(z)  =  ̂{^+y'  +  z% 
Solving  this  functional  equation,  we  find 

f{x)  =  Ce^'',         (^M  =  CV. 

If  we  make  A  positive,  the  number  of  particles  will  increase  with  the 

velocity,  and  we  should  find  the  whole  number  of  particles  infinite.  We  there- 

fore  make  A    negative   and   equal   to    — „ ,    so   that    the    number   between  x  and 

x  +  dx  is 

NCe'^'dx. 

Integrating  from  a:=— <»    toa;=-foo,we  find  the  whole  number  of  particles, 

aVTT 
1    -?: 

f[x)  is  therefore  /-e  "  . 

Whence  we  may  draw  the  following  conclusions  : — 

1st.  The  number  of  particles  whose  velocity,  resolved  in  a  certain  direction, 
lies  between  x  and  x  +  dx  is 

N^i'^'dx   (1). 

2nd.     The  number  whose  actual  velocity  lies  between  v  and  v  +  dv  is 

]Sf-^^^e~^'dv   (2). 

3rd.  To  find  the  mean  value  of  v,  add  the  velocities  of  all  the  particles 

together  and  divide  by  the  number  of  particles ;  the  result  is 

mean  velocity  =  -p-   (3). 
Vtt 

4th.     To    find    the    mean    value    of    v;    add    all     the    values    together   and 

divide  by  N, 

mean  value  of  t;'  =  |a-   (4). 

This  is  greater  than  the  square  of  the  mean  velocity,  as  it  ought  to  be. 
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It  appears  from  this  proposition  that  the  velocities  are  distributed  among 

the  particles  according  to  the  same  law  as  the  errors  are  distributed  among 

the  observations  in  the  theory  of  the  "  method  of  least  squares."  The  velocities 
i-ange  from  0  to  oo ,  but  the  number  of  those  having  great  velocities  is  com- 

paratively small.  In  addition  to  these  velocities,  which  are  in  all  directions 

equally,  there  may  be  a  general  motion  of  translation  of  the  entire  system  of 

particles  which  must  be  compounded  with  the  motion  of  the  particles  relatively 
to  one  another.  We  may  call  the  one  the  motion  of  translation,  and  the  other 
the  motion  of  agitation. 

Prop.  V.  Two  systems  of  particles  move  each  according  to  the  law  stated 

in  Prop.  IV. ;  to  find  the  number  of  pairs  of  particles,  one  of  each  system, 
whose  relative  velocity  lies  between  given  limits. 

Let  there  be  N  particles  of  the  first  system,  and  N'  of  the  second,  then 
NN'  is  the  whole  number  of  such  pairs.  Let  us  consider  the  velocities  in  the 
direction  of  x  only ;  then  by  Prop.  IV.  the  number  of  the  first  kind,  whose 
velocities  are  between  x  and  x  +  dx,  is 

1      -^ N — j=e  '^  dx. 

aV-Tr 
The  number  of  the  second  kind,  whose  velocity  is  between  x  +  y  and  x  +  y  +  dy,  is 

1         (i±vl N'  — 7=  e     ̂     dy, 

where  fi  is  the  value  of  a  for  the  second  system. 

The  number  of  pairs  which  fulfil  both  conditions  is 

NN'^e'^^'^'  dxdy. 
apir 

Now  X  may  have  any  value  from  —  qo  to  +cx>  consistently  with  the  difference 
of  velocities  being  between  y  and  y  +  dy;  therefore  integrating  between  these 
limits,  we  find 

^^'7^^^"'^''^   ^'^ 
for  the  whole  number  of  pairs  whose  difference  of  velocity  lies  between  y  and 
y  +  dy. 
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This  expression,  which  is  of  the  same  form  with  (1)  if  we  put  XN'  for 
X,  a'  +  ̂   for  a',  and  y  for  x,  shews  that  the  distribution  of  relative  velocities 
is  regulated  by  the  same  law  as  that  of  the  velocities  themselves,  and  that 

the  mean  relative  velocity  is  the  square  root  of  the  sum  of  the  squares  of  tlie 

mean  velocities   of  the  two  systems. 

Since  the  direction  of  motion  of  every  particle  in  one  of  the  systems  may 

be  reversed  without  changing  the  distribution  of  velocities,  it  follows  that  the 

velocities  compounded  of  the  velocities  of  two  particles,  one  in  each  system,  .-irr 
distributed  according  to  the  same  formula  (5)  as  the  relative  velocities. 

Prop.  VI.  Two  systems  of  particles  move  in  the  same  vessel ;  to  prove 

that  the  mean  vis  viva  of  each  particle  will  become  the  same  in  the  two 

systems. 

Let  P  be  the  mass  of  each  particle  of  the  first  system,  Q  that  of  each 

particle  of  the  second.  Let  p,  q  be  the  mean  veloci- 

ties in  the  two  systems  before  impact,  and  let  p',  (( 
be  the  mean  velocities  after  one  impact.  Let  OA  =  p 

and  OB  =  q,  and  let  AOB  be  a  right  angle;  then,  by 

Prop,  v.,  AB  will  be  the  mean  relative  velocity,  OG  will 

be  the  mean  velocity  of  the  centre  of  gravity  ;  and  drawing 

aGh  at  right  angles  to  OG,  and  making  aG  =  AG  and 

bG  =  BG,  then  Oa  will  be  the  mean  velocity  of  P  after 

impact,  compounded  of  OG  and   Ga,  and  Ob  will  be  that  of  Q  after  impact. 

^~     P+Q     ' 

therefore  p' =  Oa  =  ̂ !^^±^Ipl±^: , 
^  P  +  Q 

and  q'  =  Ob  =  ̂-^M±S±El±W, 

P+Q 

and  Pp"-Qq"  =  {^)\Pp'-Qq')   C^). 
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It  appears  therefore  tKat  the  quantity  Pp'  —  Qq^  is  diminished  at  every  impact 
in  the  same  ratio,  so  that  after  many  impacts  it  will  vanish,  and  then 

Now    the   mean  vis  viva  is   f  Pa''  =  -^  Pp*    for  P,    and   ̂   Qq^   for    Q ;   and   it   is 8  8 

manifest  that  these  quantities  will  be  equal  when  Pp^  =  Qq^. 

If  any  number  of  different  kinds  of  particles,  having  masses  P,  Q,  R  and 

velocities  jp,  q,  r  respectively,  move  in  the  same  vessel,  then  after  many  impacts 

Pf^Q^  =  m^,  &c   (7). 

Prop.  VII.  A  particle  moves  with  velocity  r  relatively  to  a  number  of 
particles  of  which  there  are  N  in  imit  of  volume ;  to  find  the  number  of  these 
which  it  approaches  within  a  distance  5  in  unit  of  time. 

If  we  describe  a  tubular  surface  of  which  the  axis  is  the  path  of  the 

particle,  and  the  radius  the  distance  s,  the  content  of  this  surface  generated 

in  unit  of  time  will  be  irrs^,  and  the  number  of  particles  included  in  it  will  be 

Nirrs'   (8), 

which  is  the  number  of  particles  to  which  the  moving  particle  approaches  within 
a  distance  s. 

Prop.  VIII.  A  particle  moves  with  velocity  v  in  a  system  moving  according 
to  the  law  of  Prop.  IV.;  to  find  the  number  of  particles  which  have  a  velocity 
relative  to  the  moving  particle  between  r  and  r  +  dr. 

Let  u  be  the  actual  velocity  of  a  particle  of  the  system,  v  that  of  the 
original  particle,  and  r  their  relative  velocity^  and  6  the  angle  between  v  and  r, 
then 

u^z=v^  +  7^  —  2vr  cos  0. 

If  we  suppose,  as  in  Prop.  IV.,  all  the  particles  to  start  from  the  origin,  at 

once,  then  after  imit  of  time  the  "density"  or  number  of  particles  to  unit  of 
volume  at  distance  u  will  be 

1      -^ aM 
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From   this   we   have   to   deduce  the  number  of  particles  in  a  shell   whose  centre 

is  at  distance  v,  radius  =  r,  and  thickness  =  dr, 

^-n=l{^    *•  -«    *^  }^^'   (9)> 
which  is  the  number  required. 

CoR.  It  is  evident  that  if  we  integrate  this  expression  from  r  =  0  to 

/•  =  oo ,  we  ought  to  get  the  whole  number  of  particles  =  iV,  whence  the  following 
mathematical  result, 

dx.x{e     »'    —e~   »'   )  =  V77-aa   (lO). 

Prop.  IX.  Two  sets  of  particles  move  as  in  Prop.  V.;  to  find  the  number 

of  pairs  which  approach  within  a  distance  s  in  unit  of  time. 

The  number  of  the  second  kind  which  have  a  velocity  between  v  and  v  +  dv  ia 

4  -^ 

The    number    of   the    first   kind   whose  velocity   relative   to   these   is    between   r 
and  ri-dr  is 

iV — =  -  (e     »'   -e     »*  )dr  =  n, 

and  the  number  of  pairs  which  approach  within  distance  5  in  unit  of  time  is 

4  t.        _  ("-»•)*  (o^-r)* 

^NN'  -^.s'r've  ̂   {e      »'    -e"  «"  \drdv. 

By  the  last  proposition  we  are  able  to  integrate  with  respect  to  v,  and  get 

Integrating  this  again  from  r  =  0  to  r  =  oo  , 

2NN' J^  J'^FT^s'   (11) 

is   the   number   of  collisions   in  unit  of  time  which  take  place  in  unit  of  volume 

between   particles   of  difierent  kinds,   s  being  the  distance  of  centres  at  collision. 
vol.  I.  49 
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The   number   of  collisions   between   two   particles   of  the   first   kind,   5,  being  the 

striking  distance,  is 

and  for  the  second  system  it  is 

The   mean   velocities  in   the   two   systems  are    -7=   and   -^  ;   so   that  if  l^  and  l^ 

be    the    mean    distances   travelled  by   particles   of  the   first   and   second   systems 
between  each  collision,  then 

ii  a 

Prop.  X.  To  find  the  probability  of  a  particle  reaching  a  given  distance 

before  striking  any  other. 

Let  us  suppose  that  the  probability  of  a  particle  being  stopped  while 

passing  through  a  distance  dx,  is  adx ;  that  is,  if  iV  particles  arrived  at  a 

distance  x,  Nadx  of  them  would  be  stopped  before  getting  to  a  distance  x-^dx. 
Putting  this  mathematically, 

^=-Na,  or  N=Ce-'^. 

Putting    iV"=l    when    x  =  0,   we   find   e""*  for  the   probability   of  a   particle   not 
striking  another  before  it  reaches  a  distance  x. 

The  mean  distance  travelled  by   each  particle   before  striking  is  -  =  l.     The 

probability    of   a  particle   reaching  a  distance  =  7i?  without   being  struck   is   e"". 
(See  a  paper  by  M.  Clausius,  Philosophical  Magazine,  February  1859.) 

If  all  the  particles  are  at  rest  but  one,  then  the  value  of  a  is 

a  =  Trs'N, 

where  s  is  the   distance  between  the  centres  at  collision,   and  N  is  the   number 

of  particles   in   unit    of  volume.      If  v  be  the   velocity   of   the   moving  particle 
relatively  to  the  rest,  then  the  number  of  collisions  in  unit  of  time  wiU  be 

virs  W : 
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and  if  V,  be  the  actual  velocity,  then  the  number  will  be  r,a ;  therefore 

a  =  -7rsW, 

where  v,  is  the  actual  velocity  of  the  striking  particle,  and  v  its  velocity 

relatively  to  those  it  strikes.  If  -y,  be  the  actual  velocity  of  the  other  particles, 

then  V  —  Jv*  +  v*.     If  i\  =  i\ ,  then  v  =  sl2i\ ,  and 

a  =  j2TTS*N. 

Note*.     M.  Clausius  makes  a  =  ̂ Trs^N, 

Prop.  XI.  In  a  mixture  of  particles  of  two  different  kinds,  to  find  the 
mean  path  of  each  particle. 

Let  there  be  iV,  of  the  first,  and  N^  of  the  second  in  unit  of  volume. 

Let  Si  be  the  distance  of  centres  for  a  collision  between  two  particles  of  the 
first  set,  5j  for  the  second  set,  and  s  for  collision  between  one  of  each  kind. 

Let  r,  and  i\  be  the  coefficients  of  velocity,  M^,  M^  the  mass  of  each  particle. 

The  probability  of  a  particle  M^  not  being  struck  till  after  reaching  a 
distance  x,  by  another  particle  of  the  same  kind  is 

*  [In  the  Philosophical  Magazine  of  1860,  Vol  I.  pp.  434 — 6  Clausius  explains  the  method  by 
which  he  found  his  value  of  the  mean  relative  velocity.  It  is  briefly  as  follows:  If  u,  v  be  the 

velocities  of  two  particles  their  relative  velocity  is  >Ju*  +  v*  -  2uv  cos  6  and  the  mean  of  this  as 
regards  direction  only,  all  directions  of  v  being  equally  probable,  is  shewn  to  be 

1  w*      ,  ^  1  V*      , f  +  o  —    when   u<v,  and  w  +  ̂   —  when  u>  v. o  V  3  w 

If  r  =  M  these  expressions  coincide.  Clausius  in  applying  this  result  and  putting  u,  v  for  the 
mean  velocities  assumes  that  the  mean  relative  velocity  is  given  by  expressions  of  the  same  form, 
so  that  when  the  mean  velocities  are  each  equal  to  u  the  mean  relative  velocity  would  be  ̂ u. 

This  step  is,  however,  open  to  objection,  and  in  fact  if  we  take  the  expressions  given  above  for  the 
mean  velocity,  treating  u  and  v  as  the  velocities  of  two  particles  which  may  have  any  values  between 

0  and  00 ,  to  calculate  the  mean  relative  velocity  we  should  proceed  as  follows :    Since  the  number  of 

4  _*! 
particles  with  velocities   between  u  and  w  +  rfu  is  N   ,  ,    tt*g~«'  du,  the  mean  relative  velocity  is 

2        

This  expression,  when  reduced,   leads  to  -j=  Ja*  +  /3',   which  is  the  result  in  the  text.     Ed.] 

49—2 
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The  probability  of  not  being  struck  by  a  particle  of  the  other  kind  in  the 
 same 

distance  is    

Therefore   the   probability   of  not  being  struck  by  any  particle  before  reaching  a 
distance  x  is 

and  if  k  be  the  mean  distance  for  a  particle  of  the  first  kind, 

\  =  j27rs-N,  +  7:  ̂ f^.s^N,   (12). 

Similarly,  if  k  be  the  mean  distance  for  a  particle  of  the  second  kind, 

l=^/27r5,W,  +  7^     /l+^^/W,   (13). 

The   mean   density   of   the  particles  of   the   first   kind   is   N,M,  =  p„   and   that  of 

the  second  NJiI,  =  p,.     If  we  put 

i  =Ap,  +  Bp,,     l  =  Cp,  +  Dp,   (15), 

^^  C-Wr~<   ^       ^ 

Prop.  XII.     To  find  the  pressure  on  unit   of  area  of  the    side  of  the  vessel 

due  to  the  impact  of  the  particles  upon  it. 

Let  iV= number  of  particles  in  unit  of  volume; 

M=  mass  of  each  particle  ; 

V  =  velocity  of  each  particle ; 

I  =  mean  path  of  each  particle ; 

then  the  number  of  particles  in  unit  of  area  of  a  stratum  dz  thick  is 

Ndz   (17). 

The  number  of  colHsions  of  these  particles  in  unit  of  time  is 

Ndz  J   (18). 
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The   number   of    particles   which   after   collision  reach  a  distance  between  nl  and 

(n  4-  dn)  I  is 

Njc-^dzdn   (19). 

The  proportion  of  these  which  strike  on  unit  of  area  at  distance  z  is 

rd  —  z 

,(20); 

2nl 

the  mean  velocity  of  these  in  the  direction  of  2  is 

.'4±?   (21). 

Multiplying  together  (19),  (20),  and  (21),  and  M,  we  find  the  momentum  at 

impact 

MN-^j,(nn'-z')e-''dzdn. 

Integrating  with  respect  to  z  from  0  to  nl,  we  get 

^MNi?  nt""  dn. 
Integrating  with  respect  to  n  from  0  to  00 ,  we  get 

for  the  momentum  in  the  direction  of  z  of  the  striking  particles ;  for  the 

momentum  of  the  particles  after  impact  is  the  same,  but  in  the  opposite 

direction ;  so  that  the  whole  pressure  on  unit  of  area  is  twice  this  quantity,  or 

This  value  of  _p  is  independent  of  I  the  length  of  path.  In  applying  this 

result  to  the  theory  of  gases,  we  put  MN=p,  and  v-  =  2>h,  and  then 

which  is  Boyle  and  Mariotte's  law.     By  (4)  we  have 

^'^  =  |a^    .-.  o:  =  2k    (23). 

We  have  seen  that,  on  the  hypothesis  of  elastic  particles  moving  in  straight 

lines,  the  pressure  of  a  gas  can  be  explained  by  the  assumption  that  the  square 

of  the  velocity  is  proportional  directly  to  the  absolute  temperature,  and  inversely 

to   the    specific   gravity  of  the  gas  at  constant  temperature,   so  that  at  the  same 
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pressure    and  temperature  the   value   of   NMif  is  the  same   for  all  gases.     But 

we  found  in  Prop.  VI.  that  when  two  sets  of  particles  communicate  agitation 

to  one  another,  the  value  of  Mif  is  the  same  in  each.  From  this  it  appears 

that  N,  the  number  of  particles  in  unit  of  volume,  is  the  same  for  all  gases 
at  the  same  pressure  and  temperature.  This  result  agrees  with  the  chemical  law, 

that  equal  volumes  of  gases  are  chemically  equivalent. 

We  have  next  to  determine  the  value  of  I,  the  mean  length  of  the  path 

of  a  particle  between  consecutive  collisions.  The  most  direct  method  of  doing 
this  depends  upon  the  fact,  that  when  different  strata  of  a  gas  slide  upon 

one  another  with  different  velocities,  they  act  upon  one  another  with  a  tan- 
gential force  tending  to  prevent  this  sliding,  and  similar  in  its  results  to  the 

friction  between  two  solid  surfaces  sliding  over  each  other  in  the  same  way. 

The  explanation  of  gaseous  friction,  according  to  our  hypothesis,  is,  that  particles 

having  the  mean  velocity  of  translation  belonging  to  one  layer  of  the  gas,  pass 

out  of  it  into  another  layer  having  a  different  velocity  of  translation ;  and 

by  striking  against  the  particles  of  the  second  layer,  exert  upon  it  a  tangential 
force  which  constitutes  the  internal  friction  of  the  gas.  The  whole  friction 

between  two  portions  of  gas  separated  by  a  plane  surface,  depends  upon  the 

total  action  between  all  the  layers  on  the  one  side  of  that  surface  upon  all  the 
layers  on  the  other  side. 

Prop.  XIII.     To  find  the  internal  friction  in  a  system  of  moving  particles. 

Let  the  system  be  divided  into  layers  parallel  to  the  plane  of  xy,  and 

let  the  motion  of  translation  of  each  layer  be  u  in  the  direction  of  x,  and 

let  u  =  A+Bz.  We  have  to  consider  the  mutual  action  between  the  layers  on 
the  positive  and  negative  sides  of  the  plane  xy.  Let  us  first  determine  the 

action  between  two  layers  dz  and  dz\  at  distances  z  and  —  z'  on  opposite  sides 
of  this  plane,  each  unit  of  area.  The  number  of  particles  which,  starting  from 

dz  in  unit  of  time,  reach  a  distance  between  nl  and  (n-{-dn)l  is  by  (19), 

N  J  e"**  dz  dn. 

The  number  of  these  which  have  the  ends  of  their  paths  in  the  layer  dz'  is 

N  — -jt  e""  dz  dz'  dn. 

The  mean  velocity  in  the  direction  of  x  which  each  of  these  has  before  impact 

is    A  +  Bz,    and    after    impact    A+Bz';    and    its   mass   is   M,    so  that  a  mean 
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momentum  =MB{z-z)  is  communicated  by  each  particle.     The   whole  action  due 
to  these  collisions  is  therefore 

NMB  ̂ ,  (z  -  z)  e-**  dz  dz  dn. 

We  must  first  integrate  with  respect   to  z'  between  z'  =  0  and  z'  =  z  —  nl;  this 

gives 

^NMB  2^  (nH'  -z')e-''dz  dn for    the    action    between    the   layer  dz   and   all   the  layers   below   the    plane    xy. 

Then  integrate  from  z  =  0  to  z  =  nl, 

^MNBlm'e-''  dn. Integrate    from    n  =  0    to   n  =  oo ,   and   we   find   the   whole  friction   between   unit 
of  area  above  and  below  the  plane  to  be 

where  /x  is  the  ordinary  coefficient  of  internal  friction, 

-i'^^-iTlS"   •   ^^^>' 
where   p   is   the   density,    I  the   mean   length   of  path   of  a   particle,   and   v   the 

...  2a     ̂      lYk 
mean  velocity  v  =  -j=  =  2  J  — , 

'=I^V.T   (^^)- 
Now  Professor  Stokes  finds  by  experiments  on  air. 

J: 
'^  =  •116. 

If  we  suppose  n/^  =  930  feet  per  second  for  air  at  60°,  and  therefore  the  mean 
velocity  1^  =  1505  feet  per  second,  then  the  value  of  I,  the  mean  distance 

travelled  over  by  a  particle  between  consecutive  collisions,  =447^000^^  ̂ ^  ̂ ^ 
inch,  and  each  particle  makes  8,077,200,000  collisions  per  second. 

A  remarkable  result  here  presented  to  us  in  equation  (24),  is  that  if  this 

explanation  of  gaseous  friction  be  true,  the  coefficient  of  friction  is  independent 

of  the  density.  Such  a  consequence  of  a  mathematical  theory  is  very  startling, 

and  the  only  experiment  I  have  met  with  on  the  subject  does  not  seem  to 
confirm  it.  We  must  next  compare  our  theory  with  what  is  known  of  the 
difiusion  of  gases,  and  the  conduction  of  heat  through  a  gas. 
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PART  II. 

*  On  the  Process  of  Diffusion  of  two  or  more  kinds  of  moving  particles 

AMONG   one   AI^OTHER. 

We  have  shewn,  in  the  first  part  of  this  paper,  that  the  motions  of  a 

system  of  many  small  elastic  particles  are  of  two  kinds  :  one,  a  general  motion 

of  translation  of  the  whole  system,  which  may  be  called  the  motion  in  mass; 

and  the  other  a  motion  of  agitation,  or  molecular  motion,  in  virtue  of  which 

velocities  in  all  directions  are  distributed  among  the  particles  according  to  a 

certain  law.  In  the  cases  we  are  considering,  the  collisions  are  so  frequent  that 
the  law  of  distribution  of  the  molecular  velocities,  if  disturbed  in  any  way, 

will  be  re-established  in  an  inappreciably  short  time;  so  that  the  motion  will 

always  consist  of  this  definite  motion  of  agitation,  combined  with  the  general 
motion  of  translation. 

When  two  gases  are  in  communication,  streams  of  the  two  gases  might 
run  freely  in  opposite  directions,  if  it  were  not  for  the  collisions  which  take 

place  between  the  particles.  The  rate  at  which  they  actually  interpenetrate  each 
other  must  be  investigated.  The  diffusion  is  due  partly  to  the  spreading  of  the 

particles  by  the  molecular  agitation,  and  partly  to  the  actual  motion  of  the 

two    opposite    currents   in   mass,    produced   by   the   pressure  behind,   and   resisted 

*  [The  methods  and  results  of  this  paper  have  been  criticised  by  Clausius  in  a  memoir  published 

in  PoggendorflTs  Anncden,  VoL  cxv.,  and  in  the  Philosophical  Magazine,  Vol  xxiiL  His  main  objec- 
tion is  that  the  various  circumstances  of  the  strata,  discussed  in  the  paper,  have  not  been  sufficiently 

represented  in  the  equations.  In  particular,  if  there  be  a  series  of  strata  at  different  temperatures 

perpendicular  to  the  axis  of  x,  then  the  proportion  of  molecules  whose  directions  form  with  the 
axis  of  X  angles  whose  cosines  lie  between  /a  and  /i  +  <?/x  is  not  \dfj.  sa  has  been  assumed  by  Maxwell 

throughout  his  work,  but  \Hdfi.  where  £f  is  a  factor  to  be  determined.  In  discussing  the  steady 
conduction  of  heat  through  a  gas  Clausius  assumes  that,  in  addition  to  the  velocity  attributed  to 

the  molecule  according  to  Maxwell's  theory,  we  must  also  suppose  a  velocity  normal  to  the  stratum 

and  depending  on  the  temperature  of  the  stratum.  On  this  assumption  the  factor  H  is  iuA'estigated 
along  with  other  modifications,  and  an  expression  for  the  assumed  velocity  is  determined  from  the 
consideration  that  when  the  flow  of  heat  is  steady  there  is  no  movement  of  the  mass.  Clausius 
combining  his  own  results  with  those  of  Maxwell  points  out  that  the  expression  contained  in  (28) 

of  the  paper  involves  as  a  result  the  motion  of  the  gas.  He  also  disputes  the  accuracy  of  ex- 
pression (59)  for  the  Conduction  of  Heat.  In  the  introduction  to  the  memoir  published  in  the 

Phil  Trans.,  1866,  it  will  be  found  that  Maxwell  expresses  dissatisfaction  with  his  former  theory 
of  the  Diffusion  of  Gases,  and  admits  the  force  of  the  objections  made  by  Clausius  to  his  expression 
for  the  Conduction  of  Heat.     Ed.l 
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by    the    collisions   of    the    opposite   stream.      When   the   densities   are   equal,    the 
diffusions  due  to  these  two  causes  respectively  are  as  2  to  3. 

Prop.  XIV.  In  a  system  of  particles  whose  density,  velocity,  &c.  are 

functions  of  x,  to  find  the  quantity  of  matter  transferred  across  the  plane  of  yz, 
due  to  the  motion  of  agitation  alone. 

If  the  number  of  particles,  their  velocity,  or  their  length  of  path  is  greater 

on  one  side  of  this  plane  than  on  the  other,  then  more  particles  will  cross  the 

plane  in  one  direction  than  in  the  other  ;  and  there  will  be  a  transference  of 
matter  across  the  plane,  the  amount  of  which  may  be  calculated. 

Let  there  be  taken  a  stratum  whose  thickness  is  dx,  and 

area  unity,  at  a  distance  x  from  the  origin.  The  number  of 

collisions  taking  place  in  this  stratum  in  unit  of  time  will  be 

Njdx.  
'^^ 

The   proportion   of  these   which  reach  a  distance  between  nl  and  {n-^dn)l  before 
they  strike  another  particle  is 

e""  dji. 

The  proportion  of  these  which  pass  through  the  plane  yz  is 

nl  +  x 

2nl when  X  is  between   —nl  and  0, 

and    ^r-T-  when  x  is  between  0  and  +  nl ; 2nl 

the  sign  being  negative  in  the  latter  case,  because  the  particles  cross  the  plane 

in  the  negative  direction.  The  mass  of  each  particle  is  M ;  so  that  the  quantity 
of  matter  which  is  projected  from  the  stratum  dx,  crosses  the  plane  yz  in.  a. 

positive    direction,    and    strikes     other    particles    at    distances    between    nl    and 

(n  +  dn)  I  is 
MNvlxTnl)  J     _„,  ,^-s 

  2^^   -dxe  ""dn   (26), 

where  x  must  be  between  ±nl,  and  the  upper  or  lower  sign  is  to  be  taken 
according  as  x  is  positive  or  negative. 

In  integrating  this  expression,  we  must  remember  that  N,  v,  and  I  are 
functions  of  x,  not  vanishing  with  x,  and  of  which  the  variations  are  very 
small  between  the  limits  x=  —nl  and  x=  +nl. 

VOL.  L  50 
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As  we  may  have  occasion  to  perform  similar  integrations,  we  may  state 

here,  to  save  trouble,  that  if  U  and  r  are  functions  of  x  not  vanishing  with  x, 

whose  variations  are  very  small  between  the  limits  x=  +r  and  x=  —r, 

/>^^^  =  sf2^(^'"")   (^^)- 
When  m  is  an  odd  number,  the  upper  sign  only  is  to  be  considered; 

when  m  is  even  or  zero,  the  upper  sign  is  to  be  taken  with  positive  values 

of  X,  and  the  lower  with  negative  values.     Applying  this  to  the  case  before  us, 

We  have  now  to  integrate 

n  being  taken  from   0   to    oo .     We  thus  find  for  the  quantity  of  matter  trans- 
ferred across  unit  of  area  by  the  motion  of  agitation  in  unit  of  time, 

«=-*s('"'^)   (^^)' 

where  p  =  MN  is  the  density,  v  the  mean  velocity  of  agitation,  and  I  the  mean 

length  of  path. 

Prop.  XV.  The  quantity  transferred,  in  consequence  of  a  mean  motion  of 
translation   V,  would  obviously  be 

Q^Vp   (29). 

Prop.  XVI.  To  find  the  resultant  dynamical  effect  of  all  the  collisions 
which  take  place  in  a  given  stratum. 

Suppose  the  density  and  velocity  of  the  particles  to  be  functions  of  x, 
then  more  particles  will  be  thrown  into  the  given  stratum  from  that  side 

on  which  the  density  is  greatest ;  and  those  particles  which  have  greatest 
velocity  will  have  the  greatest  effect,  so  that  the  stratum  will  not  be  generally 
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in  equilibrium,  and  the  dynamical  measure  of  the  force  exerted  on  the  stratum 
will  be  the  resultant  momentum  of  all  the  particles  which  lodge  in  it  during 
unit  of  time.  We  shall  first  take  the  case  in  which  there  is  no  mean  motion 

of  translation,  and  then  consider  the  effect  of  such  motion  separately. 

Let  a  stratum  whose  thickness  is  a  (a  small  quantity 

compared  with  I),  and  area  unity,  be  taken  at  the  origin, 
perpendicular  to  the  axis  of  x ;  and  let  another  stratum,  of 
thickness  dx,  and  area  unity,  be  taken  at  a  distance  x  from 
the  first. 

If  M^  be  the  mass  of  a  particle,  N  the  number  in  unit  of  volume,  v  the 

velocity  of  agitation,-  I  the  mean  length  of  path,  then  the  number  of  collisions 
which  take  place  in  the  stratum  dx  is 

Njdx, 
The  proportion  of  these  which  reach  a  distance  between  n/  and  (n  +  dn)  I  is e""  dn. 

The  proportion  of  these  which  have  the  extremities  of  their  paths  in  the 
stratum  a  is 

a 

2nl'
 

The  velocity  of  these  particles,  resolved  in  the  direction  of  x,  is 

vx 

^nl' 

and  the  mass  is  M ;   so  that  multiplying  all  these  terms  together,  we  get 

NMv'ax    _„  ,    J  /„-.x 

-2^?^'     ''^''"   <3°> 

for  the  momentum  of  the  particles  fulfilling  the  above  conditions. 

To  get  the  whole  momentum,  we  must  first  integrate  with  respect  to  x 
from  x=  —nl  to  x  =  +  nl,  remembering  that  I  may  be  a  function  of  x,  and  is  a 
very  small  quantity.     The  result  is 

50-2 
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Integrating  with  respect  to  n  from  n  =  0  to  n  =  co ,  the  result  is 

-4A^>^^   ^^^> 
as    the    -whole    resultant    force    on    the   stratum   a  arising   from   these   collisions, 

jyjow  =p   by   Prop.    XII.,  and  therefore   we   may  write  the  equation 

dp 

the  
ordinary  

hydrodynamical  

equation. 

-1=^"   (^^)' 

Prop.  XVII.  To  Jind  the  resultant  effect  of  the  collisions  upon  each  of 
several  different  systems  of  particles  mixed  together. 

Let  M^,  Mj,  &c.  be  the  masses  of  the  different  kinds  of  particles,  N„ 
N,,  &c.  the  number  of  each  kind  in  unit  of  volume,  v^,  v^,  &c.  their  velocities 

of  agitation,  Z,,  l^  their  mean  paths,  p^,  p^,  &c.  the  pressures  due  to  each 
system  of  particles ;  then 

J  =  Ap^  +  Bp^  +  &c. 

\=Cp,  +  Dp,  +  kc. (33). 

The  number  of  collisions  of  the   first   kind   of  particles  with  each  other  in  unit 
of  time  will  be 

N{OiAp^. 

The  number  of  collisions  between  particles  of  the  first  and  second  kinds  will  be 

N{o^Bp^,   or  N^vJJp^y  because  v^B=v*C. 

The    number    of   colHsions    between    particles    of    the   second   kind  will   be 

N^vJ)pi,  and  so  on,  if  there  are  more  kinds  of  particles. 

Let  us  now  consider  a  thin  stratum  of  the  mixture  whose  volume  is  unity. 

The   resultant   momentum   of  the   particles  of  the   first  kind  which  lodge  in 
it  during  unit  of  time  is 

dx  '
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The  proportion  of  these  which  strike  particles  of  the  first  kind  is 

The   whole   momentum   of  these   remains   among   the   particles   of  the  first  kind. 

The  proportion  wliich  strike  particles  of  the  second  kind  is 

BpA. 

The   momentum   of  these  is   divided  between   the   striking  particles   in   the  ratio 
M 

of    their    masses ;    so   that    p^ — W   of  the   whole   goes   to   particles   of  the   first 

M 
kind,  and  -^t^ — ^^,  to  particles  of  the  second  kind. 

Jtf  1  +  M,        ̂  

The  effect  of  these  collisions  is  therefore  to  produce  a  force 

on  particles  of  the  first  system,  and 

on  particles  of  the  second  system. 

The   effect   of  the   collisions   of  those   particles   of  the  second   system  whic^i 
strike  into  the  stratum,  is  to  produce  a  force 

on  the  first  system,  and 

on  the  second. 

The  whole  effect  of  these  collisions  is  therefore  to  produce  a  resultant  force 

- 1  (^M.^M  ̂ )  - 1  W.^/^c   (3.) 
on  the  first  system, 

on  the  second,  and  so  on. 
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Prop.  XVIII.  To  find  the  mechanical  effect  of  a  difference  in  the  mean 

velocity  of  translation  of  two  systems  of  moving  particles. 

Let     F,,    Fj    be     the    mean    velocities    of    translation    of    the    two   systems 
MM 

respectively,    then     ̂   '    '    ( Fj  —  Fj)   is   the  mean   momentum   lost  by  a  particle 
of  the  first,  and  gained  by  a  particle  of  the  second  at  collision.  The  number 
of  such  collisions  in  unit  of  volume  is 

NjBp^v,,  or  N^Cp^v,; 

therefore  the  whole  effect  of  the  collisions  is  to  produce  a  force 

=  -^'^''="-]^^.  ('"■-'"•)   (*«) 
on  the  first  system,  and  an  equal  and  opposite  force 

=  +^=C'p.t..-^^^  (F.-  V,)   (37) 
on  unit  of  volume  of  the  second  system. 

Prop.  XIX.  To  find  the  law  of  diffusion  in  the  case  of  two  gases  diffu^ng 

into  each  other  through  a  plug  made  of  a  porous  material,  as  in  the  case  of 
the  experiments  of  Graham. 

The  pressure  on  each  side  of  the  plug  being  equal,  it  was  found  by  Graham 

that  the  quantities  of  the  gases  which  passed  in  opposite  directions  through  the 
plug  in  the  same  time  were  directly  as  the  square  roots  of  their  specific  gravities. 

We  may  suppose  the  action  of  the  porous  material  to  be  similar  to  that 

of  a  number  of  particles  fixed  in  space,  and  obstructing  the  motion  of  the 
particles  of  the  moving  systems.  If  Z,  is  the  mean  distance  a  particle  of  the 

first  kind  would  have  to  go  before  striking  a  fixed  particle,  and  L^  the  distance 
for  a  particle  of  the  second  kind,  then  the  mean  paths  of  particles  of  each 
kind  will  be  given  by  the  equations 

J  =  ̂^,  +  -Bp,  +  i,   l  =  Cp,  +  Z>^,  +  -i   (38). 

The  mechanical  effect  upon  the  plug  of  the  pressures  of  the  gases  on  each  side, 
and  of  the  percolation  of  the  gases  through  it,  may  be  found  by  Props.  XVII. 
and  XVIII.  to  be 

M,N,v,V,  ̂   MJs[,v,V,     dp,  I      dp,  k^^    ,3^. 
L,  Zj  dx  Li      dx  L.i          
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and  this  must  be  zero,  if  the  pressures  are  equal  on  each  side  of  the  plug. 

Now  if  Q,,  Qj  be  the  quantities  transferred  through  the  plug  by  the  mean 

motion  of  translation,  ̂ ,  =  PiV,  =  J/jiV, F, ;  and  since  by  Graham's  law 

we  shall  have 

M^N{Ui  Fi  =  -  MJSf^i\  F,  =  Z7  suppose ; 

and   since   the   pressures  on  the   two  sides   are   equal,  -p=  ~~j^>   ̂ ^^  ̂ ^®  ̂ ^^7 

way  in  which  the  equation  of  equilibrium  of  the  plug  can  generally  subsist  is 

when  L^  =  L^  and  l^  =  ly      This   implies   that  A  =  C  and   B  =  D.     Now  we   know 

that  ViB  =  v*C.     Let   K=^  —.,  then  we  shall  have 

A  =  C=^Kv,\    B  =  D  =  ̂ Kv^   (40), 

and  i=i=K{v,p,  +  i\p,)^-j^   (41). 

The  diffusion  is  due  partly  to  the  motion  of  translation,  and  partly  to  that  of 
agitation.     Let  us  find  the  part  due  to  the  motion  of  translation- 

The  equation  of  motion  of  one  of  the  gases  through  the  plug  is  found  by 

adding  the  forces  due  to  pressures  to  those  due  to  resistances,  and  equating 
these  to  the  moving  force,  which  in  the  case  of  slow  motions  may  be  neglected 

altogether.     The  result  for  jthe  first  is 

dx (^M+^M^^j  +  fcpA^li,, 

+  ̂-^'''*''  -^k  (^■-  ̂ =)+  -i-'  =  '>   (*2). 

Making  use  of  the  simplifications  we  have  just  discovered,  this  becomes 

^  ̂^  {v,%  +  v:p:)  +  K  -^,  (p,v,  +p,v,)  U  +  yU   (43), 

whence  l^= -^   ia(v,^p,^v,%)    
A^iVj  {p^V^  +i?aVi)  +        f~ 
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whence  the  rate  of  diffusion  due  to  the  motion  of  translation  may  be  found ;  for 

(?.  =  J,  andft=-J   (45). 
To    find   the   difiusion   due   to   the   motion   of  agitation,   we    must  find   the 

value  of  q^. 

L  d  p. 

V,  dx  1+  KL  (v,p^  +  v^p,) ' 

^'--.t1I^i+^^^(^^-^^^»   ('')• 

SimHarly,  q,=  +  l^^{l+KLi^{p,+p:)}   (47). 

The   whole   diffusions   are   Q^  +  q,   and    Q,  +  q,.      The   values  of  q,   and   q,  have   a 

term   not   following   Graham's  law   of  the   square   roots   of  the   specific   gravities, 
but  following  the   law   of  equal  volumes.     The   closer   the  material  of  the  plug, 
the  less  will  this  term  affect  the  result. 

Our  assumptions  that  the  porous  plug  acts  like  a  system  of  fixed  particles, 

and  that  Graham's  law  is  fulfilled  more  accurately  the  more  compact  the 
material  of  the  plug,  are  scarcely  sufficiently  well  verified  for  the  foundation  of 

a  theory  of  gases  ̂   and  even  if  we  admit  the  original  assumption  that  they  are 

systems  of  moving  elastic  particles,  we  have  not  very  good  evidence  as  yet  for 

the  relation  among  the  quantities  A,  B,  C,  and  D. 

Prop.  XX.  To  find  the  rate  of  diffusion  between  two  vessels  connected  hy  a 
tube. 

When  diffusion  takes  place  through  a  large  opening,  such  as  a  tube  con- 

necting two  vessels,  the  question  is  simplified  by  the  absence-  of  the  porous 

diffusion  plug;  and  since  the  pressure  is  constant  throughout  the  apparatus,  the 

volumes  of  the  two  gases  passing  opposite  ways  through  the  tube  at  the  same 

time  must  be  equal  Now  the  quantity  of  gas  which  passes  through  the  tube 

is  due  partly  to  the  motion  of  agitation  as  in  Prop.  XIV.,  and  partly  to  the 
mean  motion  of  translation  as  in  Prop.  XV. 
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Let   US   suppose    the    volumes   of  the  two  vessels   to   be   a   and    h,    and   the 

length    of  the   tube    between    them  c,   and   its   trans- 

verse  section  s.     Let   a  be   filled   with   the   first   gas,         /^  *     ̂        /^ and    h    with    the    second    at    the    commencement    of 

the    experiment,    and     let    the     pressure     throughout 
the  apparatus  be  P. 

Let  a  volume  y  of  the  first  gas  pass  from  a  to  6,  and  a  volume  y  of  the 

second  pass  from  h  to  a  \  then  if  p,  and  p^  represent  the  pressures  in  a.  due 

to  the  first  and  second  kinds  of  gas,  and  p\  and  p\  the  same  in  the  vessel  h, 

r>='±^:yp       r)=y-P       r>'=y-P      V'^—^P  {i%\ 

Since  there  is  still  equilibrium, 

which  gives  y  =  y   and  p^  +^,  =  P  =p\  ■\-p„   (49). 

The    rate    of    diffusion    will    be  +-^    for    the   one   gas,   and  —-—  for  the   other, 

measured  in  volume  of  gas  at  pressure  P. 

Now  the  rate  of  diflfusion  of  the  first  gas  will  be 

dji_^iji,±pj,_^-±yp^'^^^^ dt~'  p  -' — p —   (50)' 
and  that  of  the  second, 

-di='   p     (='i)- 

We  have  also  the  equation,  derived  from  Props.  XVI.  and  XVIL, 

^  {Ap,l,  (M,  +  if,)  +  BplM,  -  CpJ^M}  +  Bp,p,vM{ F.  -  F,)  =  0   (52). 

From    these   three   equations   we    can   eliminate    F,   and    V.,   and   find   -^    in ift 

terms  of  p  and  -j-  ,  so  that  we  may  w^rite 

S=/(^"S)   (-)• 
VOL.  I.  51 
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Since   the   capacity  of  the  tube  is  small  compared  with  that  of  the  vessels, 

we  may   consider  -^  constant  through  the  whole  length  of  the  tube.     "We  may 
then  solve  the  differential  equation  in  p  and  x;  and  then  making  p=Pi  when 
x  =  0,  and  p=Pi  when  x  =  c,  and  substituting  for  p^  and  p\  their  values  in 
terms  of  y,  we  shall  have  a  differential  equation  in  y  and  t,  which  being  solved, 
will  give  the  amount  of  gas  diffused  in  a  given  time. 

The  solution  of  these  equations  would  be  difficult  unless  we  assume  rela- 

tions among  the  quantities  Ay  B,  C,  D,  which  are  not  yet  sufficiently  estab- 
lished in  the  case  of  gases  of  different  density.  Let  us  suppose  that  in  a 

particular  case  the  two  gases  have  the  same  density,  and  that  the  four  quan- 
tities A,  B,  Cy  D  are  all  equal. 

The  volume  diffused,  owing  to  the  motion  of  agitation  of  the  particles,  is 
then 

3  P  dx  '''' 
and  that  due  to  the   motion   of  translation,

   
or  the  interpenetr

ation  
of  the  two 

gases  in  opposite  streams,  is 
5   dp  kl 

P  dx  V  ' The    values    of  v    are    distributed   according   to   the   law   of   Prop.    IV.,   so   that 

the   mean   value   oi  v  is   -i^ ,   and   that  of  -  is  -7=- ,  that  of  k  being  \a^.     The VTT  V         Vira 

diffusions   due   to   these    two   causes   are   therefore   in  the   ratio   of  2   to   3,   and 
their  sum  is 

dy  _     ̂      J2k  si  dp  ,     . 

di-~^s]~^Pdx   ^^^^• 
If  we  suppose  -^  constant  throughout  the  tube,  or,  in  other  words,  if  we 

regard  the  motion  as  steady  for  a  short  time,  then  -r-  will  be  constant  and 

equal  to  — — —\   or  substituting  from  (48), 

ah    ,,       ~t^ (a+6)^ 

whence  y  =  — /(I— e""    "***        )   (56). 
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By  choosing  pairs  of  gases  of  equal  density,  and  ascertaining  the  amount 

of  diffusion  in  a  given  time,  we  might  determine  the  value  of  I  in  this  expres- 
sion. The  diffusion  of  nitrogen  into  carbonic  oxide  or  of  deutoxide  of  nitrogen 

into  carbonic  acid,  would  be  suitable  cases  for  experiment.  The  only  existing 

experiment  which  approximately  fulfils  the  conditions  is  one  by  Graham,  quoted 

by  Herapath  from  Brande's  Quarterly  Journal  of  Science,  Vol.   xviiL  p.  7Q. 

A  tube  9  inches  long  and  0*9  inch  diameter,  communicated  with  the 
atmosphere  by  a  tube  2  inches  long  and  0'12  inch  diameter;  152  parts  of 
olefiant  gas  being  placed  in  the  tube,  the  quantity  remaining  after  four  hours 
was  9 9. parts. 

In   this   case   there   is   not   much   difference   of  specific   gravity   between   the 

and    we    have     a  =  9  x  (0'9)'' -     cubic    inches,     2^=00,     c  =  2     inches,    and 

(0*12)' -  square  inches; 

^^  log.  10.^.  log..  (^^)   (57); 

.-.  ̂  =  0-00000256  inch  =39^000  i"ch   (58). 

Prop.  XXI.  To  Jind  the  amount  of  energy  which  crosses  unit  of  area  in 

unit  of  time  when  the  velocity  of  agitation  is  greater  on  one  side  of  the  area 
than  on  the  other. 

The  energy  of  a  single  particle  is  composed  of  two  parts, — the  vis  viva 
of  the  centre  of  gravity,  and  the  vis  viva  of  the  various  motions  of  rotation 

round  that  centre,  or,  if  the  particle  be  capable  of  internal  motions,  the  vis 
viva  of  these.  We  shall  suppose  that  the  whole  vis  viva  bears  a  constant 

proportion  to  that  due  to  the  motion  of  the  centre   of  gravity,  or 

where  )8  is  a  coefficient,  the  experimental  value  of  which  is  1*634.  Substituting 

E  for  Ji"  in  Prop.  XIV.,  we  get  for  the  transference  of  energy  across  unit 
of  area  in  unit  of  time, 

51—2 
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where    J   is    the    mechanical    equivalent   of    heat   in   foot-pounds,    and   q[   is   the 
transfer  of  heat  in  thermal  units. 

Now  MN=p,  and  l  =  -i-,  so  that  MNl  =  -.  ; '^^  Ap  A 

••••^^=-*'^l   (-)■ 

Also,  if  T  is  the  absolute  temperature, 

1    dT^2dv^^ 

T  dx~  V  dx' 

.■.Jq= -ify.lv  ̂ "^   (60), 

where  p  must  be  measured  in  dynamical  units  of  force. 

Let  J  =772  foot-pounds,  _p  =  2116  pounds  to  square  foot,  ̂   =  4:ooVoo  i^^^^' 

v=1505   feet  per  second,   T=522   or   62"  Fahrenheit;  then 

2=;«   (">' 

where   q   is   the   flow  of  heat  in  thermal  units  per  square  foot  of  area ;  and    T' 
and  T  are  the  temperatures  at  the  two  sides  of  a  stratum  of  air  x  inches  thick. 

In  Prof.  Rankine's  work  on  the  Steam-engine,  p.  259,  values  of  the  thennal 
resistance,  or  the  reciprocal  of  the  conductivity,  are  given  for  various  substances 

as  computed  from  a  Table  of  conductivities  deduced  by  M.  Peclet  from  experi- 
ments by  M.  Despretz  :  — 

Resistance. 

Gold,  Platinum,  Silver   0-0036 

Copper   0-0040 
Iron   0-0096 

Lead    0-0198 
Brick   0-3306 

Ail'  by  our  calculation   40000 

It  appears,  therefore,  that  the  resistance  of  a  stratum  of  air  to  the  con- 
duction   of   heat   is   about    10,000,000   times   greater   than   that   of  a   stratum   of 
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copper  of  equal  thickness.  It  would  be  almost  impossible  to  establish  the  value 

of  the  conductivity  of  a  gas  by  direct  experiment,  as  the  heat  radiated  from  the 

sides  of  the  vessel  would  be  far  greater  than  the  heat  conducted  through  the 

air,  even  if  currents  could  be  entirely  prevented*. 

PART  III. 

ON     THE    COLLISION    OF    PERFECTLY    ELASTIC    BODIES    OF    ANY    FORM. 

When  two  perfectly  smooth  spheres  strike  each  other,  the  force  which  acts 

between  them  always  passes  through  their  centres  of  gravity ;  and  therefore  their 

motions  of  rotation,  if  they  have  any,  are  not  affected  by  the  collision,  and 

do  not  enter  into  our  calculations.  But,  when  the  bodies  are  not  spherical, 

the  force  of  compact  will  not,  in  general,  be  in  the  line  joining  their  centres 

of  gravity ;  and  therefore  the  force  of  impact  will  depend  both  on  the  motion 

of  the  centres  and  the  motions  of  rotation  before  impact,  and  it  will  affect 

both  these  motions  after  impact.    . 

In  this  way  the  velocities  of  the  centres  and  the  velocities  of  rotation 

will  act  and  react  on  each  other,  so  that  finally  there  will  be  some  relation 

established  between  them  ;  and  since  the  rotations  of  the  particles  about  their 

three  axes  are  quantities  related  to  each  other  in  the  same  way  as  the  three 

velocities  of  their  centres,  the  reasoning  of  Prop.  IV.  will  apply  to  rotation  as 

well  as  velocity,  and  both  will  be  distributed  according  to  the  law 

dN     ̂ r     1      -- 
-T-  =  i  V  — j^  e  *' . 
ax  a.  'Ju 

*  [Clausius,  in  the  memoir  cited  in  the  last  foot-note,  has  pointed  out  two  oversights  in  this 
calculation.  In  the  first  place  the  numbers  have  not  been  proi^erly  reduced  to  English  measure, 

and  have  still  to  be  multiplied  by  4356,  the  ratio  of  the  English  pound  to  the  kilogramme.  The 
numbers  have,  further,  been  calculated  with  one  hour  as  the  unit  of  time,  whereas  Maxwell  h>\s 

used  them  as  if  a  second  had  been  the  unit.  Taking  account  of  these  circumstarces  and  using  his 

own  expression  for  the  conduction  which  differs  from  (59)  only  in  haNnng  ̂ V  in  place  of  ̂   on  the 

right-hand  side,  Clausius  finds  that  the  resistance  of  a  stratum  of  air  to  the  conduction  of  heat  is 
1400  times  greater  than  that  of  a  stratum  of  lead  of  the  same  thickness,  or  about  7000  times  greater 

than  that  of  copper.     Ed.] 
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Also,  by  Prop.  V.,  if  a;  be  tbe  average  velocity  of  one  set  of  particles,  and  y 
that  of  another,  then  the  average  value  of  the  sum  or  difference  of  the  velocities  is 

from  which  it  is  easy  to  see  that,  if  in  each  individual  case 
w  =  ax  +  fey  +  cz, 

where  x,  y,  z  are  independent  quantities  distributed  according  to  the  law  above 
stated,  then  the  average  values  of  these  quantities  will  be  connected  by  the equation 

Prop.  XXII.  Two  perfectly  elastic  bodies  of  any  form  strike  each  other: 
given  their  motions  before  impact,  and  the  line  of  i^npact,  to  find  their  motions after  impact. 

Let   M,  and  M,  be  the  centres  of  gravity  of  the  two  bodies.     M,X„  M,Y„ 
and  i¥jZ,  the  principal   axes  of  the  first;   and   MJC^, 
M,Y,  and  M^,  those  of  the  second.      Let  /  be  the 
point  of  impact,  and  EJE,  the  line  of  impact. 

Let  the  co-ordinates  of  /  with  respect  to  if,  be 
x^,z„  and  with  respect  to  M^  let  them  be  x.^.jt,. 

Let  the  direction-cosines  of  the  line  of  impact 
RJR,  be  l,m,n,  with  respect  to  M„  and  l,7n,n,  with 
respect  to  M^. 

^  Let  M,  and  M,  be  the  masses,  and  A.B^  and  A,BA  the  moments  of 
inertia  of  the  bodies  about  their  principal  axes. 

Let  the  velocities  of  the  centres  of  gravity,  resolved  in  the  direction  of 
the  principal  axes  of  each  body,  be 

Z7„   F„  W„    and   U,,   V„   Tr„  before  impact, 

^^^  ^»  y»  W\,   and   ir„  F„  W'„  after  impact. 

Let  the  angular  velocities  round  the  same  axes  be 

Pi,  q^  r„   and  p„  q„  r„  before  impact, 

^^^  P\>  ?'i.  f^'i,  and  p\,  q\,  r^  after  impact. 
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Let  R  be  the  impulsive  force  between  the  bodies,  measured  by  the  momentum 

it  produces  in  each. 

Then,   for  the   velocities   of  the    centres   of  gravity,    we   have  the   following 

equations  : 

^'■=  ̂ '+f''    ̂'•=  ̂ '-K   (^2), 
with   two  other  pairs  of  equations  in    V  and    W. 

The  equations  for  the  angular  velocities  are 

p\  =Pi  +  -J  (y^n,  -  z,m,),     p,  =p,  -  -J  (y,n,  -  z,m,)   (63), 

with  two  other  pairs  of  equations  for  q  and  r. 

The   condition   of  perfect   elasticity  is   that  the   whole   vis  viva  shall  be  the 

same  after  impact  as  before,  which  gives  the  equation 

M,  ( U\  -  U\)  +  M,  ( U'\  -  U\)  +  A,  {p\  -p\)  +  A,  {p\  -p\)  +  &c.  =  0. . . . (64). 
The  terms  relating  to  the  axis  of  x  are  here  given ;  those  relating  to  y  and 

z  may  be  easily  written  down. 

Substituting  the  values  of  these  terms,  as  given  by  equations  (62)  and  (63), 

and  dividing  by  R,  we  find 

h{U\+  U,)-k{U\+  U,)  +  (y,n,-z,m,)(p\+p,)-{y,n,-z,m,)  (p\+p,)  +  &c.  =  0...{e5). 

Now    if   v^  be    the    velocity    of  the   striking-point   of  the   first  body   before 

impact,  resolved  along  the  line  of  impact, 

v^  =  lJJ^-\-  (y^Tii  —  z^mi)  pi  +  &c. ; 

and  if  we  put  v^  for  the  velocity  of  the  other  striking-point  resolved  along  the 
same  line,  and  v\  and  v\  the  same  quantities  after  impact,  we  may  write, 

equation  (65), 
v^-\-v\  —  v^  —  v\  =  0    (66), 

or  v^-Vj  =  v\-v\   (67), 

which  shows  that  the  velocity  of  separation  of  the  striking-points  resolved  in 
the  line  of  impact  is  equal  to  that  of  approach. 
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Substituting  the  values  of  the  accented  quantities  in  equation  (65)  by  means 
of  equations   (63)   and  (64),    and  transposing  terms  in  J?,  we  find 

2  {UJ,  -  UJ,  +Pi  {y,n,  -  z,m,)  -p,  {y,n,  -  zjn,)}  4-  &c. 

the  other  terms  being  related  to  y  and  z  as  these  are  to  x.  From  this  equation 
we  may  find  the  value  of  E ;  and  by  substituting  this  in  equations  (63),  (64), 
we  may  obtain  the  values  of  all  the  velocities  after  impact. 

"We  may,  for  example,  find  the  value  of  U\  from  the  equation 

ir  (^'   ,   4'   ,  {y.n,-z,m,Y  .  {y.n.-z.'m^Y  ]  M,    ] 
^^\M^M^        A,   +   A,   ^^7T 

-^a    M^M^ — A — ^ — A — "^^'TT 
+  2  U,l,  -  2p,  {y,n,  -  z,m,)  +  2p,  (y^i,  -  z,m,)  -  &c. 

(69). 

Prop.  XXIII.  To  find  the  relations  between  the  average  velocities  of  trans- 
lation and  rotation  after  many  collisions  among  many  bodies. 

Taking  equation  (69),  which  applies  to  an  individual  collision,  we  see  that 
U\  is  expressed  as  a  linear  function  of  Z7„  U„  p„  p„  &c.,  all  of  which  are 
quantities  of  which  the  values  are  distributed  among  the  different  particles 
according  to  the  law  of  Prop.  IV.  It  follows  from  Prop.  V.,  that  if  we  square 
every  term  of  the  equation,  we  shall  have  a  new  equation  between  the  average 
values  of  the  different  quantities.  It  is  plain  that,  as  soon  as  the  required 
relations  have  been  estabUshed,  they  will  remain  the  same  after  collision,  so  that 

we  may  put  Z7;"=  U,'  in  the  equation  of  averages.  The  equation  between  the 
average  values  may  then  be  written 

Now  since  there  are  collisions  in  every  possible  way,  so  that  the  values  of 
I,  m,  n,  &c.  and  x,  y,  z,  &c.  are  infinitely  varied,  this  equation  cannot  subsist unless 

The  final  state,  therefore,  of  any  number  of  systems  of  moving  particles  of 
any  form  is  that  in   which   the   average   vis  viva  of  translation  along  each  of  the 
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three  axes  ia  the  same  in  all  the  systems,  and  equal  to  the  average  vis  viva 

of  rotation  about  each  of  the  three  principal  axes  of  each  particle. 

Adding  the  tires  vivcn  with  respect  to  the  other  axes,  we  find  that  the 

whole  via  viva  of  translation  is  equal  to  that  of  rotation  in  each  system  of 

particles,  and  is  also  the  same  for  different  systems,  as  was  proved  in  Prop.  VI. 

This  result  (which  is  true,  however  nearly  the  bodies  approach  the  spherical 

form,  provided  the  motion  of  rotation  is  at  all  afiected  by  the  collisions)  seems 

decisive  against  the  unqualified  acceptation  of  the  hypothesis  that  gases  are  such 

systems  of  hard  elastic  particles.  For  the  ascertained  fact  that  y,  the  ratio  of 

the  specific  heat  at  constant  pressure  to  that  at  constant  volume,  is  equal  to 

1-408,  requires  that  the  ratio  of  the  whole  vis  viva  to  the  vis  viva  of  translation 
should  be 

^  =  3(^)  =  '-
«^^^ whereas,  according  to  our  hypothesis,  )S  =  2 . 

We  have  now  followed  the  mathematical  theory  of  the  collisions  of  hard 

elastic  particles  through  various  cases,  in  which  there  seems  to  be  an  analogy 

with  the  phenomena  of  gases.  We  have  deduced,  as  others  have  done  already, 

the  relations  of  pressure,  temperature,  and  density  of  a  single  gas.  We  have 

also  proved  that  when  two  different  gases  act  freely  on  each  other  (that  is,  when 

at  the  same  temperature),  the  mass  of  the  single  particles  of  each  is  inversely 

proportional  to  the  square  of  the  molecular  velocity  ;  and  therefore,  at  equal 

temperature  and  pressure,  the  number  of  particles  in  unit  of  volume  is  the  same. 

We  then  offered  an  explanation  of  the  internal  friction  of  gases,  and  deduced 

from  experiments  a  value  of  the  mean  length  of  path  of  a  particle  between 
successive  collisions. 

We  have  applied  the  theory  to  the  law  of  diffusion  of  gases,  and,  from  an 

experiment  on  olefiant  gas,  we  have  deduced  a  value  of  the  length  of  path  not 

very  different  from  that  deduced  from  experiments  on  friction. 

Using  this  value  of  the  length  of  path  between  collisions,  we  found  that  the 

resistance  of  air  to  the  conduction  of  heat  is  10,000,000  times  that  of  copper,  a 

result  in  accordance  with  experience. 

Finally,  by  establishing  a  necessary  relation  between  the  motions  of  trans- 

lation and  rotation  of  all  particles  not  spherical,  we  proved  that  a  system  of 

such  particles  could  not  possibly  satisfy  the  known  relation  between  the  two 

specific  heats  of  all  gases. 



[From  the  Philosophical  Transactions,  MDCCCLX.] 

XXI.      On    the    Theory   of  Compound   Colours,   and   the   Relations   of  the    Colours 

of  the  Spectrum.    Communicated  by  Professor  Stokes,  Sec.  R.S. 

(Received  January  5,— Read  March  22,  1860.) 

§  I.     Introduction. 

According  to  Newton's  analysis  of  light ̂ ',  every  colour  in  nature  is  pro- 
duced by  the  mixture,  in  various  proportions,  of  the  different  kinds  of  light 

into  which  white  %ht  is  divided  by  refraction.  By  means  of  a  prism  we  may 

analyse  any  coloured  light,  and  determine  the  proportions  in  which  the  different 

homogeneous  rays  enter  into  it;  and  by  means  of  a  lens  we  may  recombine 

these   rays,    and  reproduce   the   original   coloured   light. 
Newton  has  also  shewnt  how  to  combine  the  different  rays  of  the  spectrum 

80  as  to  form  a  single  beam  of  light,  and  how  to  alter  the  proportions  of  the 

different  colours  so  as  to  exhibit  the  result  of  combining  them  in  any  arbitrary 

manner. 

The  number  of  different  kinds  of  homogeneous  light  being  infinite,  and  the 

proportion  in  which  each  may  be  combined  being  also  variable  indefinitely,  the 
results  of  such  combinations  could  not  be  appreciated  by  the  eye,  unless  the 

chromatic  effect  of  every  mixture,  however  complicated,  could  be  expressed  in 

some  simpler  form.  Colours,  as  seen  by  the  human  eye  of  the  normal  type,  can 

all  be  reduced  to  a  few  classes,  and  expressed  by  a  few  well-known  names;  and 

even  those  colours  which  have  different  names  have  obvious  relations  among  them- 

selves.    Every  colour,  except   purple,  is  similar  to  some  colour   of  the   spectrum |, 

*  Optics,  Book  I.   Part  2,   Prop.  7. 
t  Lectiones  Opticce,  Part  2,  §  1,  pp.   100  to  105;   and  Optics,  Book  i.  Part  2,  Prop.   11. 
X  Optica,  Book  L  Part  2,  Prop.   4. 
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although  less  intense ;  and  all  purples  may  be  compounded  of  blue  and  red, 

and  diluted  with  white  to  any  required  tint.  Brown  colours,  which  at  first 

sight  seem  different,  are  merely  red,  orange  or  yellow  of  feeble  intensity,  more 
or  less  diluted  with  white. 

It  appears  therefore  that  the  result  of  any  mixture  of  colours,  however 

complicated,  may  be  defined  by  its  relation  to  a  certain  small  number  of 

well-known  colours.  Having  selected  our  standard  colours,  and  determined  the 

relations  of  a  given  colour  to  these,  we  have  defined  that  colour  completely  as 

to  its  appearance.  Any  colour  which  has  the  same  relation  to  the  standard 

colours,  will  be  identical  in  appearance,  though  its  optical  constitution,  as 

revealed   by   the    prism,    may   be    very   different. 

We  may  express  this  by  saying  that  two  compound  colours  may  be  chro- 

matically identical,  but  optically  different.  The  optical  properties  of  light  are 

those  which  have  reference  to  its  origin  and  propagation  through  media,  till  it 

falls  on  the  sensitive  organ  of  vision;  the  chromatical  properties  of  light  are 

those  which  have  reference  to  its  power  of  exciting  certain  sensations  of  colour, 

perceived  through  the  organ  of  vision. 

The  investigation  of  the  chromatic  relations  of  the  rays  of  the  spectrum 

must  therefore  be  founded  upon  observations  of  the  apparent  identity  of  com- 

pound colours,  as  seen  by  an  eye  either  of  the  normal  or  of  some  abnormal 

type;  and  the  results  to  which  the  investigation  leads  must  be  regarded  as 

partaking  of  a  physiological,  as  well  as  of  a  physical  character,  and  as  indicating 

certain  laws  of  sensation,  depending  on  the  constitution  of  the  organ  of  vision, 

which  may  be  different  in  different  individuals.  We  have  to  determine  the 

laws  of  the  composition  of  colours  in  general,  to  reduce  the  number  of  standard 

colours  to  the  smallest  possible,  to  discover,  if  we  can,  what  they  are,  and  to 

ascertain  the  relation  which  the  homogeneous  light  of  different  parts  of  the 

spectrum   bears   to   the   standard   colours. 

§  II.     History   of  the    Theory   of  Compound   Colours. 

The  foundation  of  the  theory  of  the  composition  of  colours  was  laid  by 

Newton*.  He  first  shews  that,  by  the  mixture  of  homogeneal  light,  colours 

may  be  produced  which  are  "like  to  the  colours  of  homogeneal  light  as  to 

the   appearance    of  colour,  but   not   as   to  the   immutabOity  of  colour  and  consti- 

*  Optics,  Book  I.  Part  2,  Props.   4,  5,  6. 
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tution  of  light."  Red  and  yellow  give  an  orange  colour,  which  is  chromatically 
similar  to  the  orange  of  the  spectrum,  but  optically  different,  because  it  is 

resolved  into  its  component  colours  by  a  prism,  while  the  orange  of  the  spectrum 

remains  unchanged.  When  the  colours  to  be  mixed  lie  at  a  distance  from  one 

another  in  the  spectrum,  the  resultant  appears  paler  than  that  intermediate 

colour  of  the  spectrum  which  it  most  resembles;  and  when  several  are  mixed, 

the  resultant  may  appear  white.  Newton*  is  always  careful,  however,  not  to 
call  any  mixture  white,  unless  it  agrees  with  comnon  white  light  in  its  optical 

as  well  as  its  chromatical  properties,  and  is  a  mixture  of  all  the  homogeneal 

colours.  The  theory  of  compound  colours  is  first  presented  in  a  mathematical 

form  in  Prop.  6,  "  In  a  mixture  of  priinary  colours,  the  quantity  arid  quality 

of  each  being  given,  to  know  the  colour  of  the  compound."  He  divides  the 
circumference  of  a  circle  into  seven  parts,  proportional  to  the  seven  musical 

intervals,  in  accordance  with  his  opinion  about  the  proportions  of  the  colours 

in  the  spectrum.  At  the  centre  of  gravity  of  each  of  these  arcs  he  places  a 

little  circle,  whose  area  is  proportional  to  the  number  of  rays  of  the  corre- 

sponding colour  which  enter  into  the  given  mixture.  The  position  of  the  centre 

of  gravity  of  all  these  circles  indicates  the  nature  of  the  resultant  colour.  A 

radius  drawn  through  it  points  out  that  colour  of  the  spectrum  which  it  most 

resembles,  and  the  distance  from  the  centre  determines  the  fulness  of  its  colour. 

With  respect  to  this  construction,  Newton  says,  "  This  rule  I  conceive 

accurate  enough  for  practice,  though  not  mathematically  accurate."  He  gives  no 
reasons  for  the  different  parts  of  his  rule,  but  we  shall  find  that  his  method 

of  finding  the  centre  of  gravity  of  the  component  colours  is  completely  con- 

firmed by  my  observations,  and  that  it  involves  mathematically  the  theory  of  three 

elements  of  colour  ;  but  that  the  disposition  of  the  colours  on  the  circumference 

of  a  circle  was  only  a  provisional  arrangement,  and  that  the  true  relations  of 

the  colours  of  the  spectrum  can  only  be  determined  by  direct  observation. 

Young  t  appears  to  have  originated  the  theory,  that  the  three  elements  of 

colour  are  determined  as  much  by  the  constitution  of  the  sense  of  sight  as  by 

anything  external  to  us.  He  conceives  that  three  different  sensations  may  be 

excited  by  light,  but  that  the  proportion  in  which  each  of  the  three  is  excited 

depends   on   the   nature   of  the   light.     He  conjectures  that  these  primary  sensa- 

*  7th  and  8th  Letters  to  Oldenburg. 

+  Young's  Lectures  on  Natural  Philosophy,  Kelland's   Edition,  p.    345,    or    Quarto,    1807,    Vol.    i. 
p.  441  ;  see  also  Young  in  Philosophical  Transaction,   1801,  or  Works  in  Quarto,  Vol  il.  p.   617. 
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tions  correspond  to  red,  green,  and  violet.  A  blue  ray,  for  example,  though 

homogeneous  in  itself,  he  conceives  capable  of  exciting  both  the  green  and  the 

violet  sensation,  and  therefore  he  would  call  blue  a  compound  colour,  though 

the  colour  of  a  simple  kind  of  light.  The  quality  of  any  colour  depends, 

according  to  this  theory,  on  the  ratios  of  the  intensities  of  the  three  sensations 

which  it  excites,  and  its  bHghtness  depends  on  the  sum  of  these  three  intensities. 

Sir  David  Brewster,  in  his  paper  entitled  "  On  a  New  Analysis  of  Solar 
Light,  indicating  three  Primary  Colours,  forming  Coincident  Spectra  of  equal 

length*,"  regards  the  actual  colours  of  the  spectrum  as  arising  from  the  inter- 
mixture, in  various  proportions,  of  three  primary  kinds  of  light,  red,  yellow, 

and  blue,  each  of  which  is  variable  in  intensity,  but  uniform  in  colour,  from 

one  end  of  the  spectrum  to  the  other ;  so  that  every  colour  in  the  spectrum 

is  really  compound,  and  might  be  shewn  to  be  so  if  we  had  the  means  of 

separating  its  elements. 

Sir  David  Brewster,  in  his  researches,  employed  coloured  media,  which, 

according  to  him,  absorb  the  three  elements  of  a  single  prismatic  colour  in 

different  degrees,  and  change  their  proportions,  so  as  to  alter  the  colour  of  the 

light,  without  altering  its  refrangibility. 

In  this  paper  I  shall  not  enter  into  the  very  important  questions  affecting 

the  physical  theory  of  light,  which  can  only  be  settled  by  a  careful  inquiry 

into  the  phenomena  of  absorption.  The  physiological  facts,  that  we  have  a 

threefold  sensation  of  colour,  and  that  the  three  elements  of  this  sensation  are 

affected  in  different  proportions  by  light  of  different  refrangibilities,  are  equally 

true,  whether  we  adopt  the  physical  theory  that  there  are  three  kinds  of  light 

corresponding  to  these  three  colour-sensations,  or  whether  we  regard  light  of 

definite  refrangibility  as  an  undulation  of  known  length,  and  therefore  variable 

only  in  intensity,  but  capable  of  producing  difierent  chemical  actions  on  different 

substances,  of  being  absorbed  in  different  degrees  by  different  media,  and  of 

exciting  in  different  degrees  the  three  different  colour-sensations  of  the  human 

eye. 

Sir  David  Brewster  has  given  a  diagram  of  three  curves,  in  which  the 

base-line  represents  the  length  of  the  spectrum,  and  the  ordinates  of  the  curves 

represent,  by  estimation,  the  intensities  of  the  three  kinds  of  light  at  each  point 

of  the   spectrum.     I   have  employed  a  diagram  of  the  same  kind  to  express  the 

*   Transactions  of  the  Royal  Society  of  Edivimrgh,  Vol.   xii.   p.    123. 
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results  arrived  at  in  this  paper,  the  ordinates  being  made  to  represent  the 
intensities  of  each  of  the  three  elements  of  colour,  as  calculated  from  the 

experiments. 

The  most  complete  series  of  experiments  on  the  mixture  of  the  colours  of 

the  spectrum,  is  that  of  Professor  Helmholtz*,  of  Konlgsberg.  By  using  two 
sHts  at  right  angles  to  one  another,  he  formed  two  pure  spectra,  the  fixed 

lines  of  which  were  seen  crossing  one  another  when  viewed  in  the  ordinary- 
way  by  means  of  a  telescope.  The  colours  of  these  spectra  were  thus  combined 

in  every  possible  way,  and  the  effect  of  the  combination  of  any  two  could  be 

seen  separately  by  drawing  the  eye  back  from  the  eye-piece  of  the  telescope^ 

when  the  compound  colour  was  seen  by  itself  at  the  eye-hole.  The  proportion 
of  the  components  was  altered  by  turning  the  combined  slits  round  in  their 

own  plane. 

One  result  of  these  experiments  was,  that  a  colour,  chromatically  identical 

with  white,  could  be  formed  by  combining  yellow  with  indigo.  M.  Helmholtz. 

was  not  then  able  to  produce  white  with  any  other  pair  of  simple  colours,  and 

considered  that  three  simple  colours  were  required  in  general  to  produce  white^ 

one  from  each  of  the  three  portions  into  which  the  spectrum  is  divided  by 

the  yellow  and  indigo. 

Professor  Grassmannf  shewed  that  Newton's  theory  of  compound  colours 
implies  that  there  are  an  infinite  number  of  pairs  of  complementary  colours  in 

the  spectrum,  and  pointed  out  the  means  of  finding  them.  He  also  shewed 

how  colours  may  be  represented  by  lines,  and  combined  by  the  method  of  the 

parallelogram. 

In  a  second  memoirj,  M.  Helmholtz  describes  his  method  of  ascertaining 

these  pairs  of  complementary  colours.  He  formed  a  pure  spectrum  by  means 

of  a  slit,  a  prism,  and  a  lens ;  and  in  this  spectrum  he  placed  an  apparatus 

having  two  parallel  slits  which  were  capable  of  adjustment  both  in  position 

and  breadth,  so  as  to  let  through  any  two  portions  of  the  spectrum,  in  any 

proportions.  Behind  this  slit,  these  rays  were  united  in  an  image  of  the  prism, 

which  was  received  on  paper.  By  arranging  the  slits,  the  colour  of  this  image 

may  be  reduced  to  white,  and  made  identical  with  that  of  paper  illuminated  with 

white  light.  The  wave-lengths  of  the  component  colours  were  then  measured  by 

observing  the   angle   of   diffraction   through   a  grating.      It   was   found   that    the 

*  Poggendorffs  Anncden,  Band  lxxxvil  {Philosophical  Magazine,  1852,  December). 
t  Ibid.  Band  lxxxix.  (Philosophical  Magazine,  1854,  April).  J  Ibid.   Band  xciv. 
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colours  from  red  to  green-yellow  (X=2082)  were  complementary  to  colours  ranging 

from  green-blue  (X=1818)  to  violet,  and  that  the  colours  between  green-yellow 

and  green-blue  have  no  homogeneous  complementaries,  but  must  be  neutralized 

by  mixtures  of  red  and  violet. 

M.  Helmholtz  also  gives  a  provisional  diagram  of  the  curve  formed  by  the 

spectrum  on  Newton's  diagram,  for  which  his  experiments  did  not  furnish  him 
with  the  complete  data. 

Accounts  of  experiments  by  myself  on  the  mixture  of  artificial  colours  by 

rapid  rotation,  may  be  found  in  the  Transactions  of  the  Royal  Society  of 

Edinburgh,  Vol.  xxi.  Pt.  2  (1855);  in  an  appendix  to  Professor  George  Wilson's 
work  on  Coloiu--Blindness ;  in  the  Report  of  the  British  Association  for  1856, 

p.  12;  and  in  the  Philosophical  Magazine,  July  1857,  p.  40.  These  experiments 

shew  that,  for  the  normal  eye,  there  are  three,  and  only  three,  elements  of 

colour,  and  that  in  the  colour-blind  one  of  these  is  absent.  They  also  prove 

that  chromatic  observations  may  be  made,  both  by  normal  and  abnormal  eyes, 

with  such  accuracy,  as  to  warrant  the  employment  of  the  results  in  the  calcu- 

lation of   colour-equations,  and  in  laying  down  colour-diagrams  by  Newton's  rule. 
The  first  instrument  which  I  made  (in  1852)  to  examine  the  mixtures  of 

the  colours  of  the  spectrum  was  similar  to  that  which  I  now  use,  but  smaller, 

and  it  had  no  constant  light  for  a  term  of  comparison.  The  second  was  6^  feet 

long,  made  in  1855,  and  shewed  tico  combinations  of  colour  side  by  side.  I  have 

now  succeeded  in  making  the  mixture  much  more  perfect,  and  the  comparisons 

more  exact,  by  using  white  reflected  light,  instead  of  the  second  compound 

colour.  An  apparatus  in  which  the  light  passes  through  the  prisms,  and  is 

reflected  back  again  in  nearly  the  same  path  by  a  concave  mirror,  was  shewn 

by  me  to  the  British  Association  in  1856.  It  has  the  advantage  of  being 

portable,  and  need  not  be  more  than  half  the  length  of  the  other,  in  order 

to  produce  a  spectrum  of  equal  length.  I  am  so  well  satisfied  with  the  working 

of  this  form  of  the  instrument,  that  I  intend  to  make  use  of  it  in  obtaining 

equations  from  a  gi-eater  variety  of  observers  than  I  could  meet  with  when  I 
was  obliged  to  use  the  more  bulky  instrument.  It  is  difficult  at  first  to  get 

the  observer  to  believe  that  the  compound  light  can  ever  be  so  adjusted  as  to 

appear  to  his  eyes  identical  with  the  white  light  in  contact  with  it.  He  has  to 

learn  what  adjustments  are  necessary  to  produce  the  requisite  alteration  under 

all  circumstances,  and  he  must  never  be  satisfied  till  the  two  parts  of  the 

field   are   identical   in   colour   and   illumination.      To    do   this   thoroughly,   implies 



416  ON  THE  THEORY  OF  COMPOUND  COLOURS. 

not  merely  good  eyes,  but  a  power  of  judging  as  to  the  exact  nature  of  the 

difference  between  two  very  pale  and  nearly  identical  tints,  whether  they  differ 

in  the  amount  of  red,  green,  or  blue,  or  in  brightness  of  illumination. 

In  the  following  paper  I  shall  first  lay  down  the  mathematical  theory  of 

Newton's  diagram,  with  its  relation  to  Young's  theory  of  the  colour-sensation. 
I  shall  then  describe  the  experimental  method  of  mixing  the  colours  of  the 

spectrum,  and  determining  the  wave-lengths  of  the  colours  mixed.  The  results 

of  my  experiments  will  then  be  given,  and  the  chromatic  relations  of  the 

spectrum  exhibited  in  a  system  of  colour-equations,  in  Newton's  diagram,  and 

in  three  curves  of  intensity,  as  in  Brewster's  diagram.  The  differences  between 
the  results  of  two  observers  will  then  be  discussed,  shewing  on  what  they 

depend,  and  in  what  way  such  differences  may  affect  the  vision  of  persons 

othei-wise   free    from    defects   of  sight. 

§  III.     Mathematical    Theory   of  Newton's   Diagram  of  Colours. 

Newton's  diagram  is  a  plane  figure,  designed  to  exhibit  the  relations  of 
colours   to   each   other. 

Every  point  in  the  diagram  represents  a  colour,  simple  or  compound,  and 

we  may  conceive  the  diagram  itself  so  painted,  that  every  colour  is  found  at 

its  corresponding  point.  Any  colour,  differing  only  in  quantity  of  illumination 
from  one  of  the  colours  of  the  diagram,  is  referred  to  it  as  a  unit,  and  is 

measured  by  the  ratio  of  the  illumination  of  the  given  colour  to  that  of  the 

corresponding  colour  in  the  diagram.  In  this  way  the  quantity  of  a  colour  is 
estimated.  The  resultant  of  mixing  any  two  colours  of  the  diagram  is  found 
by  dividing  the  line  joining  them  inversely  as  the  quantity  of  each;  then,  if 
the  sum  of  these  quantities  is  unity,  the  resultant  will  have  the  illumination 

as  weU  as  the  colour  of  the  point  so  found;  but  if  the  sum  of  the  components 
is  different  from  unity,  the  quantity  of  the  resultant  will  be  measured  by  the 
sum  of  the  components. 

This  method  of  determining  the  position  of  the  resultant  colour  is  mathe- 

matically identical  with  that  of  finding  the  centre  of  gravity  of  two  weights, 
and  placing  a  weight  equal  to  their  sum  at  the  point  so  found.  We  shall 
therefore  speak  of  the  resultant  tint  as  the  sum  of  its  components  placed  at 
their  centre  of  gravity. 
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By  compounding  this  resultant  tint  with  some  other  colour,  we  may  find  the 

position  of  a  mixture  of  three  colours,  at  the  centre  of  gravity  of  its  components ; 

and  by  taking  these  components  in  different  proportions,  we  may  obtain  colours 

corresponding  to  every  part  of  the  triangle  of  which  they  are  the  angular  points. 

In  this  way,  by  taking  any  three  colours  we  should  be  able  to  construct  a 

triangular  portion  of  Newton's  diagram  by  painting  it  with  mixtures  of  the  three 
colours.  Of  course  these  mixtures  must  be  made  to  correspond  with  optical 

mixtures  of  light,  not  with  mechanical  mixtures  of  pigments. 

Let  us  now  take  any  colour  belonging  to  a  point  of  the  diagram  outside 

this  triangle.  To  make  the  centre  of  gravity  of  the  three  weights  coincide  with 

this  point,  one  or  more  of  the  weights  must  be  made  negative.  This,  though 

following  from  mathematical  principles,  is  not  capable  of  direct  physical  inter- 
pretation, as  we  cannot  exhibit  a  negative  colour. 

The  equation  between  the  three  selected  colours,  x,  y,  z,  and  the  new  colour 
u,  may  in  the  first  case  be  written 

u  =  x  +  y-\-z   (1), 

05,  y,  %  being  the  quantities  of  colour  required  to  produce  u.  In  the  second  case 

suppose  that  z  must  be  made  negative, 

u  =  x-^-y  —  z   (2). 

As  we  cannot  realize  the  term  —  z  as  a  negative  colour,  we  transpose  it  to  the 
other  side  of  the  equation,  which  then  becomes 

u-\-z  =  x-\-y   (3), 

which  may  be  interpreted  to  mean,  that  the  resultant  tint,  u  +  z,  is  identical 

with  the  resultant,  x-\-y.  We  thus  find  a  mixture  of  the  new  colour  with  one 
of  the  selected  colours,  which  is  chromatically  equivalent  to  a  mixture  of  the 
other  two  selected  colours. 

When  the  equation  takes  the  form 

u  —  x  —  y  —  z   (4), 

two  of  the  components  being  negative,  we  must  transpose  them  thus, 

u  +  y-\-z  =  x   (5), 

which  means  that  a  mixture  of  certain  proportions  of  the  new  colour  and  two 

of  the  three  selected,  is  chromatically  equivalent  to  the  third.  We  may  thus  in 

all  cases  find  the   relation  between  any  three  colours  and  a  fourth,  and  exhibit 
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this  relation  in  a  form  capable  of  experimental  verification;  and  by  proceeding 

in  this  way  we  may  map  out  the  positions  of  all  colours  upon  Newton's  diagram. 
Every  colour  in  nature  will  then  be  defined  by  the  position  of  the  corresponding 
colour  in  the  diagram,  and  by  the  ratio  of  its  illumination  to  that  of  the 

colour  in  the  diagram. 

§  lY.     Method  of  representing  Colours  by  Straight  Lines  drawn  from  a  Point. 

To  extend  our  ideas  of  the  relations  of  colours,  let  us  form  a  new  geome- 
trical conception  by  the  aid  of  solid  geometry. 

Let  us  take  as  origin  any  point  not  in  the  plane  of  the  diagram,  and  let 

us  draw  lines  through  this  point  to  the  different  points  of  the  diagram;  then 
the  direction  of  any  of  these  lines  will  depend  upon  the  position  of  the  point 

of  the  diagram  through  which  it  passes,  so  that  we  may  take  this  line  as  the 

representative  of  the  corresponding  colour  on  the  diagram. 

In  order  to  indicate  the  quantity  of  this  colour,  let  it  be  produced  beyond 

the  plane  of  the  diagram  in  the  same  ratio  as  the  given  colour  exceeds  in 
illumination  the  colour  on  the  diagram.  In  this  way  every  colour  in  nature  will 

be  represented  by  a  line  drawn  through  the  origin,  whose  direction  indicates 
the  quality  of  the  colour,  while  its  length  indicates  its  quantity. 

Let  us  find  the  resultant  of  two  colours  by  this 

method  Let  O  be  the  origin  and  AB  be  a  section 

of  the  plane  of  the  diagram  by  that  of  the  paper. 
Let    OP,  0^  be  lines  representing  colours,  A,  B  the OP 

corresponding  points  in   the  diagram ;   then   the   quantity  of  P   will   be   jr-^  —P> 

and   that   of  Q  will   be  jyD  =  9.-     The   resultant   of  these  will   be  represented  in 

the  diagram  by  the  point  C,  where  AC  :  CB  wq-.p,  and  the  quantity  of  the 
resultant  will  be  p  +  q,  so  that  if  we  produce  OC  to  R,  so  that  OR  =  (p-\-q)OC, 
the  line  OR  will  represent  the  resultant  of  OP  and  OQ  in  direction  and 

magnitude.  It  is  easy  to  prove,  from  this  construction,  that  OR  is  the  diagonal 
of  the  parallelogram  of  which  OP  and  OQ  are  two  sides.  It  appears  therefore 
that  if  colours  are  represented  in  quantity  and  quality  by  the  magnitude  and 
direction   of  straight   lines,    the   rule   for  the   composition   of   colours  is   identical 
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witli  that  for  the  composition  of  forces  in  mechanics.  This  analogy  has  been 

well  brought  out  by  Professor  Grassmann  in  Poggendorflf's  Annalen,  Bd.  lxxxix. 
We  may  conceive  an  arrangement  of  actual  colours  in  space  founded  upon 

this  construction.  Suppose  each  of  these  radiating  lines  representing  a  given 

colour  to  be  itself  illuminated  with  that  colour,  the  brightness  increasing  from 

zero  at  the  origin  to  unity,  where  it  cuts  the  plane  of  the  diagram,  and 

becoming  continually  more  intense  in  proportion  to  the  distance  from  the  origin. 

In  this  way  every  colour  in  nature  may  be  matched,  both  in  quaUty  and 

quantity,    by   some   point   in   this   coloured   space. 

If  we  take  any  three  lines  through  the  origin  as  axes,  we  may,  by  co-ordi- 

nates parallel  to  these  lines,  express  the  position  of  any  point  in  space.  That 

point  will  correspond  to  a  colour  which  is  the  resultant  of  the  three  colours 

represented  by  the  three  co-ordinates. 

This  system  of  co-ordinates  is  an  illustration  of  the  resolution  of  a  colour 

into  three  components.  According  to  the  theory  of  Young,  the  human  eye  is 

capable  of  three  distinct  primitive  sensations  of  colour,  which  by  their  composition 

in  various  proportions,  produce  the  sensations  of  actual  colour  in  all  their  varieties. 

Whether  any  kinds  of  light  have  the  power  of  exciting  these  primitive  sensations 

separately,  has  not  yet  been  determiaed. 

If  colours  corresponding  to  the  three  primitive  sensations  can  be  exhibited, 

then  all  colours,  whether  produced  by  light,  disease,  or  imagination,  are  com- 

pounded of  these,  and  have  their  places  within  the  triangle  formed  by  joining 

the  three  primaries.  If  the  colours  of  the  pure  spectrum,  as  laid  down  on  the 

diagram,  form  a  triangle,  the  colours  at  the  angles  may  correspond  to  the  primitive 

sensations.  K  the  curve  of  the  spectrum  does  not  reach  the  angles  of  the  circum- 

scribing triangle,  then  no  coloiir  in  the  spectrum,  and  therefore  no  colour  in 

nature,  corresponds  to  any  of  the  three  primary  sensations. 

The  only  data  at  present  existing  for  determining  the  primary  colours,  are 

derived  from  the  comparison  of  observations  of  colour-equations  by  colour-blind, 

and  by  normal  eyes.  The  colour-blind  equations  ditfer  from  the  others  by  the 

non-existence  of  one  of  the  elements  of  colour,  the  relation  of  which  to  known 

colours  can  be  ascertained.  It  appears,  from  observations  made  for  me  by  two 

colour-blind  persons*,  that  the  elementary  sensation  which  they  do  not  possess 
is  a  red  approaching  to  crimson,  lying  beyond  both  vermilion  and  carmine.     These 

♦  Trfmsactiona  of  the  Royal  Society  of  Edinburgh,  Vol.  xiL   Pt   2,  p.   286. 
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observations  are  confirmed  by  those  of  Mr  Pole,  and  by  others  which  I  have 
obtained  since.  I  have  hopes  of  being  able  to  procure  a  set  of  colour-blind 

equations  between  the  colours  of  the  spectrum,  which  will  indicate  the  missing 
primary  in  a  more  exact  manner. 

The  experiments  which  I  am  going  to  describe  have  for  their  object  the 

determination  of  the  position  of  the  colours  of  the  spectrum  upon  Newton's 
diagram,  from  actual  observations  of  the  mixtures  of  those  colours.  They  were 
conducted  in  such  a  way,  that  in  every  observation  the  judgment  of  the  observer 
was  exercised  upon  two  parts  of  an  illuminated  field,  one  of  which  was  so 

adjusted  as  to  be  chromatically  identical  with  the  other,  which,  during  the  whole 

series  of  observations,  remained  of  one  constant  intensity  of  white.  In  this  way 

the  efiects  of  subjective  colours  were  entirely  got  rid  of,  and  all  the  observa- 
tions were  of  the  same  kind,  and  therefore  may  claim  to  be  equally  accurate ; 

which  is  not  the  case  when  comparisons  are  made  between  bright  colours  of 
different  kinds. 

The  chart  of  the  spectrum,  deduced  from  these  observations,  exhibits  the 

colours  arranged  very  exactly  along  two  sides  of  a  triangle,  the  extreme  red  and 

violet  forming  doubtful  portions  of  the  third  side.  This  result  greatly  simplifies 

the  theory  of  colour,  if  it  does  not  actually  point  out  the  three  primary  colours 
themselves. 

§  V.     Description  of  an  Instruinent  for  making  definite  Mixtures  of  the 
Colours  of  the  Spectrum. 

The  experimental  method  which  I  have  used  consists  in  forming  a  combi- 
nation of  three  colours  belonging  to  different  portions  of  the  spectrum,  the  quantity 

of  each  being  so  adjusted  that  the  mixture  shall  be  white,  and  equal  in  intensity 

to  a  given  white.  Fig.  1,  Plate  VI.  p.  444,  represents  the  instrument  for 
making  the  observations.  It  consists  of  two  tubes,  or  long  boxes,  of  deal,  of 

rectangular  section,  joined  together  at  an  angle  of  about  100". 
The  part  AK  is  about  five  feet  long,  seven  inches  broad,  and  four  deep  ; 

KN  is  about  two  feet  long,  five  inches  broad,  and  four  deep  ;  BD  is  a  partition 

parallel  to  the  side  of  the  long  box.  The  whole  of  the  inside  of  the  instrument 

is  painted  black,  and  the  only  openings  are  at  the  end  AC,  and  at  E.  At  the 

angle  there  is  a  Hd,  which  is  opened  when  the  optical  parts  have  to  be  adjusted 
or   cleaned. 
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At  -£^  is  a  fine  vertical  slit ;  Z  is  a  lens ;  at  P  there  are  two  equilateral 

prisms.  The  slit  E,  the  lens  L,  and  the  prisms  P  are  so  adjusted,  that  when 

light  is  admitted  at  -fiJ  a  pure  spectrum  \a  formed  at  AB,  the  extremity  of  the 
long  box.  A  mirror  at  M  is  also  adjusted  so  as  to  reflect  the  light  from  E 

along  the  narrow  compartment  of  the  long  box  to  BC.     See  Fig.  3. 

At  ̂ 5  is  placed  the  contrivance  shewn  in  Fig.  2,  Plate  I.  ̂ '^  is  a  rect- 
angular frame  of  brass,  having  a  rectangular  aperture  of  6  x  1  inches.  On  this 

frame  are  placed  six  brass  sliders,  A',  Y,  Z.  Each  of  these  carries  a  knife-edge 
of  brass  in  the  plane  of  the  surface  of  the  frame. 

These  six  moveable  knife-edges  form  three  sUts,  X,  Y,  Z,  which  may  be 

so  adjusted  as  to  coincide  with  any  three  portions  of  the  pure  spectrum  formed 

by  Hght  from  E.  The  intervals  behind  the  sliders  are  closed  by  hinged  shutters, 
which  allow  the  sliders  to  move  without  letting  hght  pass  between  them. 

The  inner  edge  of  the  brass  frame  is  graduated  to  twentieths  of  an  inch, 
so  that  the  position  of  any  slit  can  be  read  off.  The  breadth  of  the  slit  is 

ascertained  by  means  of  a  wedge-shaped  piece  of  metal,  six  inches  long,  and 
tapering  to  a  point  from  a  breadth  of  half  an  inch.  This  is  gently  inserted  into 
each  sht,  and  the  breadth  is  determined  by  the  distance  to  which  it  enters,  the 

divisions  on  the  wedge  corresponding  to  the  200th  of  an  inch  difference  in 

breadth,  so  that  the  unit  of  breadth  is  '005  inch. 
Now  suppose  hght  to  enter  at  E,  to  pass  through  the  lens,  and  to  be 

refracted  by  the  two  prisms  at  P;  a  pure  spectrum,  shewing  Fraunhofer's  lines, 
is  formed  at  AB,  but  only  that  part  is  allowed  to  pass  which  faUs  on  the  three 

slits  X,  Y,  Z.  The  rest  is  stopped  by  the  shutters.  Suppose  that  the  portion 

faUing  on  X  belongs  to  the  red  part  of  the  spectrum ;  then,  of  the  white  Hght 

entering  at  E,  only  the  red  will  come  through  the  slit  X.  If  we  were  to  admit 
red  Hght  at  X  it  would  be  refracted  to  E,  by  the  principle  in  Optics,  that  the 
course  of  any  ray  may  be  reversed.  If,  instead  of  red  light,  we  were  to  admit 

white  light  at  X,  still  only  red  Hght  would  come  to  E ;  for  aU  other  light 
would  be  either  more  or  less  refracted,  and  would  not  reach  the  slit  at  E. 

Applying  the  eye  at  the  slit  E,  we  should  see  the  prism  P  uniformly  illuminated 

with  red  Hght,  of  the  kind  corresponding  to  the  part  of  the  spectrum  which 
falls  on  the  slit  X  when  Hght  is  admitted  at  E. 

Let  the  sHt  Y  correspond  to  another  portion  of  the  spectrum,  say  the  green  ; 

then,  if  white  light  is  admitted  at  Y,  the  prism,  as  seen  by  an  eye  at  E,  will 

be  uniformly  illuminated  with  green  Hght;   and  if  white  Hght  be  admitted  at  X 
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and  Y  simultaneously,  tlie  colour  seen  at  E  will  be  a  compound  of  red  and  green, 

the  proportions  depending  on  the  breadth  of  the  sUts  and  the  intensity  of  the 

Hght  which  enters  them.  The  third  sHt  Z,  enables  us  to  combine  any  three  kinds 

of  light  in  any  given  proportions,  so  that  an  eye  at  E  shall  see  the  face  of  the 

prism  at  P  uniformly  illuminated  with  the  colour  resulting  from  the  combination 

of  the  three.  The  position  of  these  three  rays  in  the  spectrum  is  found  by 

admitting  the  light  at  E,  and  comparing  the  position  of  the  slits  with  the 

position  of  the  principal  fixed  lines  ;  and  the  breadth  of  the  sHts  is  determined 

by  means  of  the  wedge. 

At  the  same  time  white  light  is  admitted  through  BC  to  the  mirror  of  black 

glass  at  M,  whence  it  is  reflected  to  E,  past  the  edge  of  the  prism  at  P,  so  that 

the  eye  at  E  sees  through  the  lens  a  field  consisting  of  two  portions,  separated 

by  the  edge  of  the  prism;  that  on  the  left  hand  being  compounded  of  three 

colours  of  the  spectrum  refracted  by  the  prism,  while  that  on  the  right  hand  is 

white  light  reflected  from  the  mirror.  By  adjusting  the  slits  properly,  these  two 

portions  of  the  field  may  be  made  equal,  both  in  colour  and  brightness,  so  that 

the  edge  of  the  prism  becomes  almost  invisible. 

In  making  experiments,  the  instrument  was  placed  on  a  table  in  a  room 

moderately  lighted,  with  the  end  AB  turned  towards  a  large  board  covered  with 

white  paper,  and  placed  in  the  open  air,  so  as  to  be  uniformly  illuminated  by 

the  sun.  In  this  way  the  thi'ee  sHts  and  the  mirror  M  were  all  illuminated 

with  white  light  of  the  same  intensity,  and  all  were  affected  in  the  same  ratio 

by  any  change  of  illumination;  so  that  if  the  two  halves  of  the  field  were 

rendered  equal  when  the  sun  was  under  a  cloud,  they  were  found  nearly  correct 

when  the  sun  again  appeared.  No  experiments,  however,  were  considered  good 

unless  the  sun  remained  uniformly  bright  during  the  whole  series  of  experiments. 

After  each  set  of  experiments  light  was  admitted  at  E,  and  the  position  of 

the  fixed  lines  D  and  F  of  the  spectrum  was  read  off  on  the  scale  at  AB.  It 

was  found  that  after  the  instrument  had  been  some  time  in  use  these  positions 

were  invariable,  shewing  that  the  eye-hole,  the  prisms,  and  the  scale  might  be 

considered  as  rigidly  connected. 
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§  VI.     Method  of  determining  the   Wave-length  corresponding  to  any  point 

of  the  Spectrum  on  the  Scale  AB. 

Two  plane  surfaces  of  glass  were  kept  apart  by  two  parallel  strips  of  gold- 
beaters' leaf,  so  as  to  enclose  a  stratum  of  air  of  nearly  uniform  thickness.  Light 

reflected  from  this  stratum  of  air  was  admitted  at  E,  and  the  spectrun  formed 

by  it  was  examined  at  AB  by  means  of  a  lens.  This  spectrum  consists  of  a 

large  number  of  bright  bands,  separated  by  dark  spaces  at  nearly  uniform  intervals, 
these  intervals,  however,  being  considerably  larger  as  we  approach  the  violet  end 
of  the  spectrum. 

The  reason  of  these  alternations  of  brightness  is  easily  explained.  By  the 

theory  of  Newton's  rings,  the  light  reflected  from  a  stratum  of  air  consists  of 
two  parts,  one  of  which  has  traversed  a  path  longer  than  that  of  the  other,  by 

an  interval  depending  on  the  thickness  of  the  stratum  and  the  angle  of  incidence. 

Whenever  the  interval  of  retardation  is  an  exact  multiple  of  a  wave-length,  these 

two  portions  of  light  destroy  each  other  by  interference ;  and  when  the  interval 
is  an  odd  number  of  half  wave-lengths,  the  resultant  light  is  a  maximum. 

In  the  ordinary  case  of  Newton's  rings,  these  alternations  depend  upon  the 
varying  thickness  of  the  stratum ;  while  in  this  case  a  pencil  of  rays  of  different 

wave-lengths,  but  aU  experiencing  the  same  retardation,  is  analysed  into  a  spectrum, 

in  which  the  rays  are  arranged  in  order  of  their  respective  wave-lengths.  Every 
ray  whose  wave-length  is  an  exact  submultiple  of  the  retardation  will  be  destroyed 

by  interference,  and  its  place  will  appear  dark  in  the  spectrum;  and  there  will 

be  as  many  dark  bands  seen  as  there  are  rays  whose  wave-lengths  ftdfil  this 
condition. 

If,  then,  we  observe  the  positions  of  the  dark  bands  on  the  scale  AB, 

tlie  wave-lengths  corresponding  to  these  positions  will  be  a  series  of  submultiples 
of  the  retardation. 

Let  us  call  the  first  dark  band  visible  on  the  red  side  of  the  spectrum  zero, 

and  let  us  number  them  in  order  1,  2,  3,  &c.  towards  the  violet  end.  Let  N 

be  the  number  of  undulations  corresponding  to  the  band  zero  which  are  con- 
tained in  the  retardation  R;  then  if  n  be  the  number  of  any  other  band,  N+n 

wiU  be  the  number  of  the  corresponding  wave-lengths  in  the  retardation,  or  in 

symbols, 
R  =  (N+n)\   (6). 
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Now  observe  the  position  of  two  of  Fraunhofer's  fixed  lines  with  respect  to 
the  dark  bands,  and  let  n„  n^  be  their  positions  expressed  in  the  number  of 

bands,  whole  or  fractional,  reckoning  from  zero.  Let  Xj,  X,  be  the  wave-lengths 
of  these  fixed  lines  as  determined  by  Fraunhofer,  then 

R  =  (N+n,)K  =  (N+n,)K    (7); 

whence  N^-^^Jj^X^^n,   (8), 

and  -R  =  v'  _  jj  KK   W 

Having  thus  found  N  and  R,  we  may  find  the  wave-length  corresponding  to 
the  dark  band  n  from  the  formula 

X  =  ̂    (10). 

In  my  experiments  the  line  D  corresponded  with  the  seventh  dark  band,  and 

F  was  between  the  15th  and  16th,  so  that  n^=15'7.     Here  then  for  D, 

.  „      „  ^'~,'rr«    ̂ ~■.►rn.r  '^  Fraunhofcr's  measure    (11), and  for  F,  7i,=  15-7,  X,=  1794J  "^     ' 

whence  we  find  iV=34,  i2  =  89175   (12). 

There   were   22  bands  visible,  corresponding  to  22  different  positions  on  the 
scale  AB,  as  determined  4th  August,  1859. 

Table  I. 

Band. Scale. Band. Scale. Band. Scale. 

n=    1 17 «=    9 
36 

n=   16 

57 

2 19 10 39 

17 

61 
3 

21i 

11 
42 

18 65 
4 

23J 

12 

45 
19 

69 

5 26 
13 

48 

20 

73 

6 

28^ 

U 51 21 77 
7 31 15 54 22 

82 8 

33| 

Sixteen  equidistant  points  on  the  scale  were  chosen  for  standard  colours 

in  the  experiments  to  be  described.  The  following  Table  gives  the  reading  on 

the  scale  AB,  the  value  of  N+n,  and  the  calculated  wave-length  for  each  of 
these : — 
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Table  II. 

oale. (N+«). Wave-length. Ck)lour. 

20 

36-4 

2450 
Red. 

24 

38-3 

2328 Scarlet 

28 

39-8 

2240 Orange. 

32 

41-4 

2154 Yellow. 

36 

42-9 

2078 Yellow-Green. 

40 

44-3 

2013 Green. 
44 

45^7 
1951 Green. 

48 

47-0 

1879 Bluish  green. 

52 

48-3 

1846 Blue-green. 
56 

49-6 

1797 Greenish  blue. 
60 

50-8 

1755 
Blue. 

64 

51-8 

1721 
Blue. 

68 

52-8 

1688 Blue. 

72 
53-7 

1660 Indigo. 

76 
54-7 

1630 
Indigo. 

80 

55-6 

1604 

Indiga 

Having  thus  selected  sixteen  distinct  points  of  the  spectrum  on  which  to 

operate,  and  determined  their  wave-lengths  and  apparent  colours,  I  proceeded 
to  ascertain  the  mathematical  relations  between  these  colours  in  order  to  lay 

them  down  on  Newton's  diagram.  For  this  purpose  I  selected  three  of  these 
as  points  of  reference,  namely,  those  at  24,  44,  and  68  of  the  scale.  I  chose 

these  points  because  they  are  weU  separated  from  each  other  on  the  scale,  and 
because  the  colour  of  the  spectrum  at  these  points  does  not  appear  to  the  eye 

to  vary  very  rapidly,  either  in  hue  or  brightness,  in  passing  from  one  point  to 
another.  Hence  a  small  error  of  position  will  not  make  so  serious  an  alteration 

of  colour  at  these  points,  as  if  we  had  taken  them  at  places  of  rapid  variation ; 

and  we  may  regard  the  amount  of  the  illumination  produced  by  the  light 
entering  through  the  slits  in  these  positions  as  sensibly  proportional  to  the 
breadth  of  the  slits. 

(24)  corresponds  to  a  bright  scarlet  about  one-third  of  the  distance  from 

C  to  D;  (44)  is  a  green  very  near  the  line  E;  and  (68)  is  a  blue  about  one- 
third  of  the  distance  from  F  to  G. 
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§  VII.     Method  of  Observation. 

The  instrument  is  turned  with  the  end  AB   towards   a   board,  covered  with 

white  paper,  and  illuminated   by  sunlight.     The  operator  sits  at  the  end  AB,  to 

move    the   sliders,    and    adjust  the    sHts ;   and   the    observer    sits   at  the   end   E, 

which    is   shaded   from   any   bright  light.     The   operator   then   places   the   sHts   so 

that    their    centres    correspond  to  the   three   standard    colours,   and   adjusts   their 

breadths  till   the  observer   sees   the   prism   iQuminated   with   pure  white   light   of 

the   same  intensity   with   that  reflected  by  the  mirror  M.     In   order   to  do  this, 

the  observer  must  tell  the  operator  what  difference  he  observes  in  the  two  halves 

of  the   illuminated    field,    and  the   operator    must  alter   the    breadth   of  the  slits 

accordingly,    always  keeping   the   centre   of  each   sKt   at   the  proper  point    of  the 

scale.      The   observer   may  call   for  more   or   less   red,   blue   or   green;    and   then 

the   operator  must   increase  or   diminish    the   width    of   the    slits    X,    Y,   and   Z 

respectively.     If  the   variable   field   is  darker   or   lighter   than   the  constant   field, 

the  operator  must  Aviden  or  narrow    all  the  slits  in  the  same   proportion.     When 

the   variable    part  of   the    field    is    nearly    adjusted,    it    often   happens    that    the 

constant   white   light   from   the    mirror    appears    tinged    with   the    complementary 

colour.     This    is  an    indication   of  what    is    required  to   make  the    resemblance    of 

the  two  parts  of  the  field  of  view  perfect.     When   no  difference  can   be  detected 

between  the  two  parts  of  the  field,  either  in  colour  or  in  brightness,  the  observer 

must  look  away  for   some   time,  to   relieve  the  strain  on  the  eye,  and  then  look 

again.     If  the   eye   thus   refreshed   still  judges  the  two  parts  of  the  field  to   be 

equal,  the  observation  may  be  considered  complete,  and  the  operator  must  measure 

the  breadth  of  each  slit  by  means   of  the  wedge,  as  before  described,  and  write 

down  the  result  as  a  colour-equation,  thus — 

Oct.   18,  J.  18-5  (24) +  27  (44) +  37  (68)  =  W-^'^   (13). 

This  equation  means  that  on  the  18th  of  October  the  observer  J.  (myself)  made 

an  observation  in  which  the  breadth  of  the  slit  X  was  18-5,  as  measured  by 

the  wedge,  while  its  centre  was  at  the  division  (24)  of  the  scale  ;  that  the  breadths 

of  Y  and  Z  were  27  and  37,  and  their  positions  (44)  and  (68)  ;  and  that  the 

illumination  produced  by  these  slits  was  exactly  equal,  in  my  estimation  as  an 

observer,  to  the  constant  white  W. 
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The  position  of  'the  slit  A"  was  then  shifted  from  (24)  to  (28),  and  when 
the  proper  adjustments  were  made,  I  found  a  second  colour-equation  of  this  form — 

Oct.   18,  J.  16  (28) +  21  (44) +  37  (68)  =  W   (14). 

Subtracting  one  equation  from  the  other  and  remembering  that  the  figures  in 

brackets  are  merely  symbols  of  position,  not  of  magnitude,  we  find 

16(28)  =  18-5  (24)  +  6(44)   (15), 

shewing  that  (28)  can  be  made  up  of  (24)  and  (44),  in  the  proportion  of  IS'o 
to  6. 

In  this  way,  by  combining  each  colour  with  two  standard  colours,  we  may 

produce  a  white  equal  to  the  constant  white.  The  red  and  yellow  colours  from 

(20)  to  (32)  must  be  combined  with  green  and  blue,  the  greens  from  (36)  to  (52) 

with  red  and  blue,  and  the  blues  from  (56)  to  (80)  with  red  and  green. 

The  following  is  a  specimen  of  an  actual  series  of  observations  made  in  this 

way  by  another  observer  (K.) : — 

Table  III. 

Oct.  13,  1859.  Observer  (K.). 

(X)  {Y)  {Z) 

18|(24)  + 32^(44) +  32  (68)  =  W* 
17|(24)  +  32|(44)  +  63  (80)  =  W. 
18  (24)  +  32|(44)  +  35  (72)  =  W. 

19  (24) +  32  (44)  +  31|(68)  =  W* 
19  (24)  +  30|(44)  +  35  (64)  =  W. 
20  (24) +  23  (44) +  39  (60)  =  W. 
21  (24) +  14  (44) +  58  (56)  =  W. 
22  (24) +  62  (52)  + 11  (68)  =  W. 

22  (24) +  42  (48)  +  29|(68)  =  W. 

19  (24)  +  31|(44)  +  33  (68)  =  W*. 
16  (24) +  28  (40)  + 32^(68)  =  W. 

6  (24) +  27  (36)  + 32^(68)  =  W. 

23  (32)+ 11|(44)  + 821(68)  =  W. 
17  (28) +  26  (44)  + 32^(68)  =  W. 

20  (24)  +  33|(44)  +  32|(68)  =  W». 
46  (20) +  33  (44) +  30  (68)  =  W. 

The  equations  marked  with  an  asterisk  (*')  are  those  which  involve  the 
three  standard  colours,  and  since  every  other  equation  must  be  compared  with 

them,  they  must  be  often  repeated. 
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The  following   Table   contains   the   means   of' four  sets  of   observations  by  the 
same  observer  (K.) : — 

Table  IV.     (K.) 

44-3  (20)  +  31  -0  (44)  +  27-7  (68)  =  W. 

16-1  (28)  +  25-6  (44)  +  30-6  (68)  =  W. 

22-0  (32)  +  12-1  (44)  +  30-6  (68)  =  W. 
6-4  (24) +  25-2  (36) +  31 -3  (68)  =  W. 

15-3  (24)  +  26 -0  (40)  +  307  (68)  =  W. 
19-8  (24)  +  35-0  (46)  +  30-2  (68)  =  W. 
21-2  (24)  +  41  -4  (48)  ̂   27-0  (68)  =  W. 

22-0  (24) +  62-0  (52) +  13-0  (68)  =  W. 

21 -7  (24)  +  10-4  (44)  +  61 -7  (56)  =  W. 
20-5  (24)  +  23-7  (44)  +  40-5  (60)  =  W. 

19-7  (24)  +  30-3  (44)  +  33-7  (64)  =  W. 
18-0  (24)  +  31-2  (44)  +  32-3  (72)  =  W. 

17-5  (24)  +  30-7  (44)  +  44-0  (76)  =  W. 

18-3  (24)  +  33-2  (44)  +  63-7  (80)  =  W. 

§  VIII.     Detet-mination  of  the  Average  Error  in  Observations  of  different  kinds. 

In  order  to  estimate  the  degree  of  accuracy  of  these  observations,  I  have 
taken  the  differences  between  the  values  of  the  three  standard  colours  as 

originally  observed,  and  their  means  as  given  by  the  above  Table.  The  sum 

of  all  the  errors  of  the  red  (24)  from  the  means,  was  31 '1,  and  the  number 
of  observations  was  42,  which  gives  the  average  error  74. 

The  sum  of  errors  in  green  (44)  was  48-0,  and  the  number  of  observa- 

tions 31,  giving  a  mean  error  1-55. 

The  sum  of  the  errors  in  blue  (68)  was  46-9,  and  the  number  of  observa- 

tions 35,  giving  a  mean  error  1*16. 
It  appears  therefore  that  in  the  observations  generally,  the  average  error 

does  not  exceed  1*5  ;  and  therefore  the  results,  if  confirmed  by  several  obser- 

vations, may  safely  be  trusted  to  that  degree  of  accuracy. 

The  equation  between  the  three  standard  colours  was  repeatedly  observed, 

in  order  to  detect  any  alteration  in  the  character  of  the  light,  or  any  other 

change  of  condition  which  would  prevent  the  observations  from  being  comparable 

with   one   another;   and   also   because   this   equation  is  used   in   the  reduction    of 



(R)=    -54 (G-B)=-99 

(B-R)=-85 

(R-G)=-86 

G  +  B)  =  2-67 

(G  +  B)  =  2-31 

(B  +  R)  =  l-59 

(R  +  G)  =  l-57 

VG'4.B'  = 

(G)  =  l-22 

JB'  +  R' (B)  =  M5 
jR'  +  ii'- 

(R  + 

sfR'  +  G 
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all  the  others,  and  therefore  requires  to  be  carefully  observed.     There  are  twenty 

observations  of  this  equation,  the  mean  of  which  gives 

18-6(24)  +  31'4(44)  +  30-5(68)  =  W*      (16) 
as  the  standard  equation. 

We  may  use  the  twenty  observations  of  this  equation  as  a  means  of 

determining  the  relations  between  the  errors  in  the  diflferent  colours,  and  thus 

of  estimating  the  accuracy  of  the  observer  in  distinguishing  colours. 

The  following  Table  gives  the  result  of  these  operations,  where  R  stands 

for  (24),   G  for  (44),  and  B   for  (68):— 

Table  V. — Mean  Errors  in  the  Standard  Equation. 
1-26 

1-33 

The  first  column  gives  the  mean  difference  between  the  observed  value  of 
each  of  the  colours  and  the  mean  of  all  the  observations.  The  second  column 

shews  the  average  error  of  the  observed  differences  between  the  values  of  the 
standards,  from  the  mean  value  of  those  differences.  The  third  column  shews 

the  average  error  of  the  sums  of  two  standards,  from  the  mean  of  such  sums. 

The  fourth  column  gives  the  square  root  of  the  sum  of  the  squares  of  the 

quantities  in  the  first  column.  I  have  also  given  the  average  error  of  the 

sum  of  R,  G  and  B,  from  its  mean  value,  and  the  value  of  ̂ R^  +  G'  +  B'. 
It  appears  from  the  first  column  that  the  red  is  more  accurately  observed 

than  the  green  and  blue. 

§  IX.     Relative  Accuracy  in  Observations  of  Colour  and  of  Brightness. 

If  the  errors  in  the  different  colours  occun^ed  perfectly  independent  of  each 
other,  then  the  probable  mean  error  in  the  sum  or  difference  of  any  two  colours 

would  be  the  square  root  of  the  sum  of  their  squares,  as  given  in  the  fourth 
column.  It  will  be  seen,  however,  that  the  number  in  the  second  column  is 

always  less,  and  that  in  the  third  always  greater,  than  that  in  the  fourth ; 

shewing  that  the  errors  are  not  independent  of  each  other,  but  that  positive 

errors  in  any  colour  coincide  more  often  with  positive  than  with  negative  errors 
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in  another  colour.  Now  the  hue  of  the  resultant  depends  on  the  ratios  of  the 

components,  while  its  brightness  depends  on  their  sum.  Since,  therefore,  the 

difference  of  two  colours  is  always  more  accurately  observed  than  their  sum, 

variations  of  colour  are  more  easily  detected  than  variations  in  brightness,  and 

the  eye  appears  to  be  a  more  accurate  judge  of  the  identity  of  colour  of  the 

two  parts  of  the  field  than  of  their  equal  illumiiiation.  The  same  conclusion  may 

be  drawn  from  the  value  of  the  mean  error  of  the  sum  of  the  three  standards, 

which  is  2-67,  while  the  square  root  of  the  sum  of  the  squares  of  the  errors 
is    176. 

§  X.     Reduction  of  the  Observations. 

By  eliminating  W  from  the  equations  of  page  428  by  means  of  the  standard 

equation,  we  obtain  equations  involving  each  of  the  fourteen  selected  colours  of 
the  spectrum,  along  with  the  three  standard  colours;  and  by  transposing  the 
selected  colour  to  one  side  of  the  equation,  we  obtain  its  value  in  terms  of 

the  three  standards.  If  any  of  the  terms  of  these  equations  are  negative,  the 

equation  has  no  physical  interpretation  as  it  stands,  but  by  transposing  the 

negative  term  to  the  other  side  it  becomes  positive,  and  then  the  equation  may 
be  verified. 

The  following  Table  contains  the  values  of  the  fourteen  selected  tints  in 
terms  of  the  standards.  To  avoid  repetition,  the  symbols  of  the  standard  colours 

are  placed  at  the  head  of  each  colunm. 

Table VI. 
Observer  (K,). 

(24.) 
(44.) (68.) 44-3(20)  = 

18-6 +   0-4 +    2-8 

16-1(28)  = 

18-6 
+   5-8 

-   01 

22-0(32)  = 

18-6 +  19-3 

-   01 

25-2(36)  = 

12-2 +  31-4 

-   0-8 
26-0(40)  = 

3-3 

+  31-4 

-   0-2 
35-0(46)  = -    1-2 

+  31-4 +   0-3 
41-4(48)  = -   2-6 

+  31-4 
+   3-5 

62-0(52)  = -   3-4 

+  31-4 +  17-5 
61-7(56)  = -   3-1 

+  21-0 +  30-5 
40-5(60)  = -    1-9 

+  7-7 
+  30-5 

33-7(64)  = 

-   11 

+   M 

+  30-5 

32-3(72)  = 

+  0-6 +  0-2 +  30-5 
44-0(76)  = 

+  1-1 +   0-7 
+  30-5 

63-7(80)  = 

+  0-3 
-   1-8 

+  30-6 
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From  these  equations  we  may  lay  down  a  chart  of  the  spectrum  on  Newton's 
diagram  by  the  following  method  : — Take  any  three  points,  A,  B,  C,  and  let  A 

represent  the  standard  colour  (24),  B  (44),  and  C  (68).  Then,  to  find  the  position 

of  any  other  colour,  say  (20),  divide  AC  in  P  so  that  (18'6)  ̂ P=  (28)  PC,  and 

then  divide  BP  in  Q  so  that  (IS'G +  2-8)  P^  =  (0-4)  (?P.  At  the  point  Q  the 
colour  corresponding  to  (20)  must  be  placed.  In  this  way  the  diagram  of  fig.  4, 

Plate  VI.,  p.  444,  has  been  constructed  from   the  observations  of  all  the  colours. 

§  XL     Tlie  Spectrum  as  laid  down  on  Newton's  Diagram. 

The  curve  on  which  these  points  lie  has  this  striking  feature,  that  two 

portions  of  it  are  nearly,  if  not  quite,  straight  lines.  One  of  these  portions 

extends  from  (24)  to  (46),  and  the  other  from  (48)  to  (64).  The  colour  (20) 

and  those  beyond  (64),  are  not  far  from  the  line  joining  (24)  and  (68).  The 

spectrum,  therefore,  as  exhibited  in  Newton's  diagram,  forms  two  sides  of  a 
triangle,  with  doubtful  fi-agments  of  the  third  side.  Now  if  three  colours  in 

Newton's  diagram  lie  in  a  straight  line,  the  middle  one  is  a  compound  of  the 
two  others.  Hence  all  the  colours  of  the  spectrum  may  be  compounded  of 

those  which  lie  at  the  angles  of  this  triangle.  These  correspond  to  the  following 

colours  : — 

Table  VII. 

Scale. Wave-length. 
Index 

in  water. 

Wave-length 

in  water. 

R Scarlet      . .     24 2328 

1-332 
1-747 

G Green .     . 
.     46f 

1914 

1-334 
1-435 

B Blue    .     . .     64i 1717 

1-3.39 
1-282 

All  the  other  colours  of  the  spectrum  may  be  produced  by  combinations  of 

these;  and  since  all  natural  colours  are  compounded  of  the  colours  of  the  spec- 

trum, they  may  be  compounded  of  these  three  primary  colours.  I  have  strong 

reason  to  believe  that  these  are  the  three  primary  colours  corresponding  to  three 

modes  of  sensation  in  the  organ  of  vision,  on  which  the  whole  system  of  colour, 

as  seen  by  the  normal  eye,  depends. 

§  XII.     Results  found  hy  a  second  Observer. 

"We  may  now  consider  the  results  of  three  series  of  observations  made  by 
myself  (J.)   as   observer,    in    order   to   determine   the    relation  of  one   observer  to 



432 ON    THE    THEORY    OF    COMPOUND    COLOURS. 

another  in  the  perception  of  colour.     The  standard  colours  are  connected  by  the 
following  equation,  as  determined  by  six  observations : — 

18-l(24)  +  27-5(44)  +  37(68)  =  W*    (17). 
The  average  errors  in  these  observations  were — 

Table  VIII. 

R,  -28 
G,  -83 
B,    -16 

G  +  B,    -83 
B  +  R,    -42 

R  +  G,    -95 

G  -  B,  -83 
B-R,  -28 
R-G,    -72 

R  +  G  +  B,    -95 

shewing  that  in  this  case,   also,  the  power  of  distinguishing  colour  is  more  to  be 

depended  on  than  that  of  distinguishing  degrees  of  illumination. 

The  average  error  in  the  other  observations  from  the  means  was  '64  for  red, 
76  for  green,  and   1*02  for  blue. 

Table  IX. 

Observations  by J.,  October 
1859. 

(24.) 
(44.) (68.) 

44-3(20)=    18-1 -    2-5 

+    2-3 
16-0(28)=    18-1 

+    6-2 

-   0-7 
21-5(32)=    18-1 

+  25-2 

-   0-7 

19-3(36)=      8-1 

+  27-5 

-   0-3 

20-7(40)=      2-1 

+  27-5 

-   0-5 
52-3(48)  =  -  1-4 

+  27-5 ^10-7 95-0(52)  =  -  2-4 

+  27-5 +  37-0 
51-7(56)  =  -  2-2 

+   4-8 +  37-0 
37-2(60)  =  -  1-2 

+   0-8 

+  370 

36-7(64)  =  -  0-2 

+   0-8 +  37-0 350(72)  =  +  0-6 -   0-2 

+  37-0 400(76)  =  +  0-9 
+   0-5 +  37-0 

51-0(80)  =  +  1-1 

+   0-5 
+  37-0 

§  XIII.     Comparison  of  Results  hy  Newton's  Diagram. 

The  relations  of  the  colours,  as  given  by  these  observations,  are  laid  down 

in  fig.  5,  Plate  VI.,  p.  444.  It  appears  from  this  diagram,  that  the  positions  of 
the  colours  lie  nearly  in  a  straight  line  from  (24)  to  (44),  and  from  (48)  to  (60). 
The  colours  beyond  (60)  are  crowded  together,  as  in  the  other  diagram,  and 

the  observations  are  not  yet  suflaciently  accurate  to  distinguish  their  relative 
positions  accurately.     The  coloiir  (20)  at  the  red  end  of  the  spectrum  is  further 
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from  tlie  line  joining  (24)  and  (68)  than  in  the  other  diagram,  but  I  have  not 

obtained  satisfactory  observations  of  these  extreme  colours.  It  will  be  observed 

that  (32),  (36),  and  (40)  are  placed  further  to  the  right  in  fig.  5  than  in  fig.  4, 

shewing  that  the  second  observer  (J.)  sees  more  green  in  these  colours  than 

the  first  (K.),  also  that  (48),  (52),  (56),  and  (60)  are  much  further  up  in  fig.  5, 

shewing  that  to  the  second  observer  they  appear  more  blue  and  less  green. 

These  differences  were  well  seen  in  making  an  observation.  When  the  instru- 

ment was  adjusted  to  suit  the  first  observer  (K.),  then,  if  the  selected  colour 

were  (32),  (36),  or  (40),  the  second  (J.),  on  looking  into  the  instrument,  saw  it 

too  green  ;  but  if  (48),  (52),  (56),  or  (60)  were  the  selected  colour,  then,  if  right 

to  the  first  observer,  it  appeared  too  blue  to  the  second.  If  the  instrument 

were  adjusted  to  suit  the  second  observer,  then,  in  the  first  case,  the  other  saw 

red,  and  in  the  second  green ;  shewing  that  there  was  a  real  difference  in  the 

eyes  of  these  two  individuals,  producing  constant  and  measurable  differences  in 

the  apparent  colour  of  objects. 

§  XIV.     Comparison   hy    Curves   of  Intensity   of  the   Primaries. 

Figs.  6  and  7,  Plate  VI.  p.  444,  are  intended  to  indicate  the  intensities  of 

the  three  standard  colours  at  different  points  of  the  spectrum.  The  curve  marked 

(R)  indicates  the  intensity  of  the  red  or  (24),  (G)  that  of  green  or  (44),  and  (B) 

that  of  blue  or  (68).  The  curve  marked  (S)  has  its  ordinates  equal  to  the 

sum  of  the  ordinates  of  the  other  three  curves.  The  intensities  are  found  by 

dividing  every  colour-equation  by  the  coefficient  of  the  colour  on  the  left-hand 

side.  Fig.  6  represents  the  results  of  observations  by  K.,  and  fig.  7  represents 

those  of  J.  It  will  be  observed  that  the  ordinates  in  fig.  7  are  smaller  between 

(48)  and  (56)  than  in  fig.  6.  This  indicates  the  feeble  intensity  of  certain  kinds 

of  light  as  seen  by  the  eyes  of  J.,  which  made  it  impossible  to  get  observations 

of  the  colour  (52)  at  all  without  making  the  slit  so  wide  as  to  include  all 

between  (48)  and  (56). 

This  blindness  of  my  eyes  to  the  parts  of  the  spectrum  between  the  fixed 

lines  E  and  F  appears  to  be  confined  to  the  region  surrounding  the  axis  of 

vision,  as  the  field  of  view,  when  adjusted  for  my  eyes  looking  directly  at  the 

colour,  is  decidedly  out  of  adjustment  when  I  view  it  by  indirect  vision,  turning 

the  axis  of  my  eye  towards  some  other   point.     The  prism  then  appears  greener 
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and  brighter  than  the  mirror,  shewing  that  the  parts  of  my  eye  at  a"  distance 
from  the  axis  are  more  sensitive  to  this  blue-green  light  than  the  parts  close 
to  the  axis. 

It  is  to  be  noticed  that  this  insensibility  is  not  to  all  light  of  a  green 

or  blue  colour,  but  to  Hght  of  a  definite  refrangibility.  If  I  had  a  species  of 

colour-blindness  rendering  me  totally  or  partially  insensible  to  that  element  of 

colour  which  most  nearly  corresponds  with  the  light  in  question,  then  the  light 

from  the  mirror,  as  well  as  that  from  the  prism,  would  appear  to  me  deficient 

in  that  colour,  and  I  should  still  consider  them  chromatically  identical ;  or  if 

there  were  any  difierence,  it  would  be  the  same  for  ail  colours  nearly  the  same 

in  appearance,  such  as  those  just  beyond  the  line  F,  which  appear  to  me  quite 

bright. 
We  must  also  observe  that  the  peculiarity  is  confined  to  a  certain  portion 

of  the  retina,  which  is  known  to  be  of  a  yellow  colour,  and  which  is  the  seat 

of  several  ocular  phenomena  observed  by  Purkinje  and  Wheatstone,  and  of  the 

sheaf  or  brushes  seen  by  Haidinger  in  polarized  light ;  and  also  that  though, 

of  the  two  observers  whose  results  are  given  here,  one  is  much  more  affected 

with  this  peculiarity  than  the  other,  both  are  less  sensible  to  the  light  between 
E  and  F  than  to  that  on  either  side;  and  other  observers,  whose  results  are 

not  here  given,  confirm  this. 

§  XV.     Explanation   of  the   Differences   between   the   two    Observers. 

I  think,  therefore,  that  the  yellow  spot  at  the  foramen  centrale  of  Soemmering 

will  be  found  to  be  the  cause  of  this  phenomenon,  and  that  it  absorbs  the  rays 

between  E  and  F,  and  would,  if  placed  in  the  path  of  the  incident  light, 

produce  a  corresponding  dark  band  in  the  spectrum  formed  by  a  prism. 

The  reason  why  white  light  does  not  appear  yellow  in  consequence,  is  that 

this  absorbing  action  is  constant,  and  we  reckon  as  white  the  mean  of  all  the 

colours  we  are  accustomed  to  see.  This  may  be  proved  by  wearing  spectacles 

of  any  strong  colour  for  some  time,  when  we  shall  find  that  we  judge  white 

objects  to  be  white,  in   spite  of  the  rays  which  enter  the  eye  being  coloured. 

Now  ordinary  white  light  is  a  mixture  of  all  kinds  of  light,  including  that 

between  E  and  F,  which  is  partially  absorbed.  If,  therefore,  we  compound  an 

artificial    white   containing   the   absorbed   ray  as    one    of  its    three    components,   it 
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will  be  much  more  altered  by  the  absorption  than  the  ordinary  light,  which 

contains  many  rays  of  nearly  the  same  colour,  which  are  not  absorbed.  On  the 

other  hand,  if  the  artificial  light  do  not  contain  the  absorbed  ray,  it  will  be 

less  altered  than  the  ordinary  light  which  contains  it.  Hence  the  greater  the 

absorption  the  less  green  will  those  colours  appear  which  are  near  the  absorbed 

part,  such  as  (48),  (52),  (56),  and  the  more  green  will  the  colours  appear  which 

are  not  near  it,  such  a^  (32),  (36),  (40).  And  these  are  the  chief  differences 

between  fig.  4  and  fig.   5. 

I  first  observed  this  peculiarity  of  my  eyes  when  observing  the  spectrum 

formed  by  a  very  long  vertical  slit.  I  saw  an  elongated  dark  spot  running  up 

and  down  in  the  blue,  as  if  confined  in  a  groove,  and  following  the  motion 

of  the  eye  as  it  moved  up  or  down  the  spectrum,  but  refusing  to  pass  out 

of  the  blue  into  other  colours.  By  increasing  the  breadth  of  the  spectrum,  the 

dark  portion  was  found  to  correspond  to  the  foramen  centrale,  and  to  be  visible 

only  when  the  eye  is  turned  towards  the  blue-green  between  E  and  F.  The 

spot  may  be  well  seen  by  first  looking  at  a  yellow  paper,  and  then  at  a  blue 

one,  when  the  spot  will  be  distinctly  seen  for  a  short  time,  but  it  soon  dis- 

appears when  the  eye  gets  accustomed  to  the  blue*. 
I  have  been  the  more  careful  in  stating  this  peculiarity  of  my  eyes,  as  I 

have  reason  to  believe  that  it  affects  most  persons,  especially  those  who  can  see 

Haidinger's  brushes  easily.  Such  persons,  in  comparing  their  vision  with  that 
of  others,  may  be  led  to  think  themselves  affected  with  partial  colour-blindness, 

whereas  their  colour-vision  may  be  of  the  ordinary  kind,  but  the  rays  which 

reach  their  sense  of  sight  may  be  more  or  less  altered  in  their  proportions  by 

passing  through  the  media  of  the  eye.  .  The  existence  of  real,  though  partial 

colour-blindness  will  make  itself  apparent,  in  a  series  of  observations,  by  the 
discrepancy  between  the  observed  values  and  the  means  being  greater  in  certain 
colours  than  in  others. 

§  XVI.     General    Conclusions. 

Neither  of  the  observers  whose  results  are  given  here  shew  any  indications 

of  colour-blindness,  and  when  the  differences  arising  from  the  absorption  of  the 

rays  between  E  and  F  are  put  out  of  account,  they  agree  in  proving  that  there 

are    three    colours    in    the    spectrum,    red,    green,    and    blue,    by    the    mixtures    of 

*  See  the  Report  of  tlie  British  Association  for  1856,  p.  12. 
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which  colours  chromatically  identical  with  the  other  colours  of  the  spectrum 

may  be  produced.  The  exact  position  of  the  red  and  blue  is  not  yet  ascer- 

tained;  that  of  the  green  is  ̂   from  E  towards  F. 

The  orange  and  yellow  of  the  spectrum  are  chromatically  equivalent  to 

mixtures  of  red  and  green.  They  are  neither  richer  nor  paler  than  the  corre- 

sponding mixtures,  and  the  only  difference  is  that  the  mixture  may  be  resolved 

by  a  prism,  whereas  the  colour  in  the  spectrum  cannot  be  so  resolved.  This 

result  seems  to  put  an  end  to  the  pretension  of  yellow  to  be  considered  a 

primary  element  of  colour. 

In  the  same  way  the  colours  from  the  primary  green  to  blue  are  chro- 
matically identical  with  mixtures  of  these ;  and  the  extreme  ends  of  the  spectrum 

are  probably  equivalent  to  mixtures  of  red  and  blue,  but  they  are  so  feeble 

in  illumination  that  experiments  on  the  same  plan  with  the  rest  can  give  no 

result,  but  they  must  be  examined  by  some  special  method.  When  observations 

have  been  obtained  from  a  greater  number  of  individuals,  including  those  whose 

vision  is  dichromatic,  the  chart  of  the  spectrum  may  be  laid  down  independently 

of  accidental  differences,  and  a  more  complete  discussion  of  the  laws  of  the 

sensation  of  colour  attempted. 

POSTSCRIPT. 

[Keceived  May  8,— Read  May  24,  I860.] 

Since  sending  the  above  paper  to  the  Royal  Society,  I  have  obtained 

some  observations  of  the  colour  of  the  spectrum  by  persons  whose  vision  is 

"dichromic,"    and    who    are   therefore    said   to    be    "  colour-bhnd." 
The  instrument  used  in  making  these  observations  was  similar  in  principle 

to  that  formerly  described,  except  that,  in  order  to  render  it  portable,  the  rays 

are  reflected  back  through  the  prisms,  nearly  in  their  original  direction ;  thus 

rendering  one  of  the  limbs  of  the  instrument  unnecessary,  and  allowing  the 

other  to  be  shortened  considerably  on  account  of  the  greater  angular  dispersion. 

The  principle  of  reflecting  light,  so  as  to  pass  twice  through  the  same  prism, 

was  employed  by  me  in  an  instrument  for  combining  colours  made  in  1856, 

and  a  reflecting  instrument  for  observing  the  spectrum  has  been  constructed 

independently   by   M.    Porro. 
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Light  from  a  sheet  of  paper  illuminated  by  sunlight  is  admitted  at  the  slits 

X,  Y,  Z  (fig.  8,  Plate  VIL  p.  444),  falls  on  the  prisms  P  and  F  (angles  =  45"), 
then  on  a  concave  silvered  glass,  S,  radius  34  inches.  The  light,  after  reflexion, 

passes  again  through  the  prisms  R  and  P,  and  is  reflected  by  a  small  mirror, 

e,  to  the  slit  E,  where  the  eye  is  placed  to  receive  the  light  compounded  of 

the  colours  corresponding  to  the  positions  and  breadths  of  the  slits  X,  Y,  and  Z. 

At  the  same  time,  another  portion  of  the  light  from  the  illuminated  paper 

enters  the  instrument  at  BC,  is  reflected  at  the  mirror  M,  passes  through  the 

lens  L,  is  reflected  at  the  mirror  M',  passes  close  to  the  edge  of  the  prism  P, 
and  is  reflected  along  with  the  coloured  light  at  e,  to  the  eye-slit  at  E. 

In  this  way  the  compound  colour  is  compared  with  a  constant  white  light 

in  optical  juxtaposition  with  it.  The  mirror  M  is  made  of  silvered  glass,  that 

at  M'  is  made  of  glass  roughened  and  blackened  at  the  back,  to  reduce  the 
intensity  of  the  constant  light  to  a  convenient  value  for  the  experiments. 

This  instrument  gives  a  spectrum  in  which  the  lines  are  very  distinct, 

and  the  length  of  the  spectrum  from  A  to  H  is,  3-6  mches.  The  outside 
measure  of  the  box  is  3  feet  6  inches,  by  11  inches  by  4  inches,  and  it  can 

be  carried  about,  and  set  up  in  any  position,  without  readjustment.  It  was 

made  by  Messrs  Smith  and  Ramage  of  Aberdeen. 

In  obtaining  observations  from  colour-blind  persons,  two  sHts  only  are 

required  to  produce  a  mixture  chromatically  equivalent  to  white;  and  at  one 

point  of  the  spectrum  the  colour  of  the  pure  rays  appears  identical  with  white. 

This  point  is  near  the  line  F,  a  little  on  the  less  refrangible  side.  From  this 

point  to  the  more  refrangible  end  of  the  spectrum  appears  to  them  "blue." 
The  colours  on  the  less  refrangible  side  appear  to  them  all  of  the  same  quahty, 

but  of  different  degrees  of  brightness;  and  when  any  of  them  are  made 

sufficiently  bright,  they  are  called  "yellow."  It  is  convenient  to  use  the  term 

"yellow"  in  speaking  of  the  colours  from  red  to  green  inclusive,  since  it  will 

be  found  that  a  dichromic  person  in  speaking  of  red,  green,  orange,  and  brown, 

refers  to  different  degrees  of  brightness  or  purity  of  a  single  colour,  and  not 

to  different  colours  perceived  by  him.  This  colour  we  may  agree  to  call 

"yellow,"  though  it  is  not  probable  that  the  sensation  of  it  is  like  that  of 

yellow  as  perceived   by  us. 

Of  the  three  standard  colours  which  I  formerly  assumed,  the  red  appears 

to  them  "yellow,"  but  so  feeble  that  there  is  not  enough  in  the  whole  red 

division  of  the  spectrum  to  form  an  equivalent  to  make  up  the  standard  white. 
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The  green  at  E  appears  a  good  "yellow,"  and  the  blue  at  f  from  F  towards 

G  appears  a  good  "blue."  I  have  therefore  taken  these  as  standard  colours  for 
reducing  dichromic  observations.  The  three  standard  colours  will  be  referred  to 

as  (104),  (88),  and  (68),  these  being  the  positions  of  the  red,  green,  and  blue  on 
the  scale  of  the  new  instrument. 

Mr  James  Simpson,  formerly  student  of  Natural  Philosophy  in  my  class,  has 

ftimished  me  with  thirty-three  observations  taken  in  good  sunlight.  Ten  of 

these  were  between  the  two  standard  colours,  and  give  the  following  result : — 

337  (88) +  33-1  (68)  =  W   (1). 

The  mean  errors  of  these  observations  were  as  follows : — 

Error  of  (88)  =  2-5;  of  (68)  =  2-3;  of  (88)  +  (68)  =  4'8  ;  of  (88)-(68)  =  1-3. 

The  fact  that  the  mean  error  of  the  sum  was  so  much  greater  than  the  mean 

error  of  the  difference  indicates  that  in  this  case,  as  in  all  others  that  I  have 

examined,  observations  of  equality  of  tint  can  be  depended  on  much  more  than 

observations  of  equality  of  illumination  or  brightness. 

From  six  observations  of  my  own,  made  at  the  same  time,  I  have  deduced 

the   "  trichromic  "  equation 

22-6  (104)4-26  (88) +  37-4  (68)  =  W   (2). 

If  we   suppose   that   the   light   which   reached   the   organ   of  vision   was   the 

same  in  both  cases,  we  may  combine  these  equations  by  subtraction,  and  so  find 

22-6(104)-77(88)  +  4-3(68)  =  i>    (3), 

where  D  is  that  colour,  the  absence  of  the  sensation  of  which  constitutes  the 

defect  of  the  dichromic  eye.  The  sensation  which  I  have  in  addition  to 

those  of  the  dichromic  eye  is  therefore  similar  to  the  full  red  (104),  but 

different  from  it,  in  that  the  red  (104)  has  7'7  of  green  (88)  in  it  which  must 

be  removed,  and  4*3  of  blue  (68)  substituted.  This  agrees  pretty  well  with  the 

colour  which  Mr  Pole*  describes  as  neutral  to  him,  though  crimson  to  others. 
It  must  be  remembered,  however,  that  different  persons  of  ordinary  vision  require 

different  proportions  of  the  standard  colours,  probably  owing  to  differences  in  the 

absorptive  powers  of  the  media  of  the  eye,  and  that  the  above  equation  (2),  if 

observed  by  K.,  would  have  been 

23(104)  +  32(88)  +  3l(68)  =  W    (4). 

♦  Philosophical  Transactions,  1859,  Part  I.  p.  329. 
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and  the  value  of  D,  as  deduced  from  these  observers,  would  have  been 

23(104)- 17  (88)- ri  (68)  =  Z)   (5), 

in  which  the  defective  sensation  is  much  nearer  to  the  red  of  the  spectrum.  It 

is  probably  a  colour  to  which  the  extreme  red  of  the  spectrum  tends,  and 

which  differs  from  the  extreme  red  only  in  not  containing  that  small  proportion 

of  "yellow"  light  which  renders  it  visible  to  the  colour-blind. 
From    other    observations    by    Mr   Simpson    the   following   results    have    been 

deduced  : — 

Table  a. 

(88.) (68.) 

(99-2  + )  = 
337 1-9 

31-3(96)  = 
33-7 

2-1 
28  (92)  = 

33-7 1-4 
33-7(88)  = 

33-7 

0 

54-7(84)  = 
33-7 6-1 

71  (82)  = 
33-7 

15-1 99  (80)  = 
33-7 

33-1 70  (78)  = 
15-7 

33-1 56  (76)  = 5-7 331 
36  (72)  = -  0-3 

33-1 33-1(68)  = 0 

33-1 40  (64)  = 0-2 
33-1 55-5(60)  = 1-7 
33-1 (57-)  = 

-  0-3 

33-1 

(88.) (68.) 
100(96)  = 

108 7 

100(92)  = 
120 6 

100(88)  = 
100 0 

100(84)  = 
61 11 

100(82)  = 
47 21 

100(80)  = 
34 

33 100(78)  = 
22 47 

100(76)  = 10 59 

100(72)  = 

-   1 

92 100(68)  = 0 100 

100(64)  = 0 

83 

100(60)  = 3 60 

In  the  Table  on  the  left  side  (99*2  +  )  means  the  whole  of  the  spectrum  beyond 

(99'2)  on  the  scale,  and  (57-)  means  the  whole  beyond  (57)  on  the  scale.  The 

position  of  the  fixed  lines  with  reference  to  the  scale  was  as  follows : — 

A,  116;   a,  112;   B,  110;    C,  106;   D,  98-3;   E,  88;   F,  79;    G,  61;   H,  44. 

The  values  of  the  standard  colours  in  different  parts  of  the  spectrum  are  given 

on  the  right  side  of  the  above  Table,  and  are  represented  by  the  cai-ves  of 

fig.  9,  Plate  VII.  p.  444,  where  the  left-hand  curve  represents  the  intensity 

of  the  "yellow"  element,  and  the  right-hand  curve  that  of  the  "blue"  element 
of  colour  as  it  appears  to  the   colour-blind. 

The  appearance  of  the  spectrum  to  the  colour-blind  is  as  follows: — 

From    A    to    E    the    colour    is    pure    "  yellow "    very   faint    up    to    D,  and 
reaching  a  maximum  between  D  and  E.     From  E  to  one-third  beyond  F  towards 
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G  the  colour  is  mixed,  varying  from  "  yellow "  to  "  blue,"  and  becoming  neutral 

or  "white"  at  a  point  near  F.  In  this  part  of  the  spectrum,  the  total  inten- 
sity, as  given  by  the  dotted  line,  is  decidedly  less  than  on  either  side  of  it,  and 

near  the  line  F,  the  retina  close  to  the  "yellow  spot"  is  less  sensible  to  light 
than  the  parts  further  from  the  axis  of  the  eye.  This  peculiarity  of  the  light 

near  F  is  even  more  marked  in  the  colour-blind  than  in  the  ordinary  eye. 

Beyond  F  the  "  blue "  element  comes  to  a  maximum  between  F  and  G,  and 
then  diminishes  towards  H ;  the  spectrum  from  this  maximum  to  the  end  being 

pure  "blue." 
In  fig.  10,  Plate  VII.  p.  444,  these  results  are  represented  in  a  different 

manner.  The  point  D,  corresponding  to  the  sensation  wanting  in  the  colour-blind, 

is  taken  as  the  origin  of  coordinates,  the  "yellow"  element  of  colour  is  represented 

by  distances  measured  horizontally  to  the  right  from  D,  and  the  "blue"  element 
by  distances  measured  vertically  from  the  horizontal  line  through  D.  The 

numerals  indicate  the  different  colours  of  the  spectrum  according  to  the  scale 

shewn  in  fig.  9,  and  the  coordinates  of  each  point  indicate  the  composition  of 

the  corresponding  colour.  The  triangle  of  colours  is  reduced,  in  the  case  of 

dichromic  vision,  to  a  straight  line  "B"  "Y,"  and  the  proportions  of  "blue" 

and  "yellow"  in  each  colour  are  indicated  by  the  ratios  in  which  this  line  is 
cut  by  the  line  from  D  passing  through  the   position  of  that   colour. 

The  results  given  above  were  all  obtained  with  the  light  of  white  paper, 

placed  in  clear  simshine.  I  have  obtained  similar  results,  when  the  sun  was 

hidden,  by  using  the  light  of  uniformly  illuminated  clouds,  but  I  do  not  consider 

these  observations  suflficiently  free  from  disturbing  circumstances  to  be  employed 

in  calculation.  It  is  easy,  however,  by  means  of  such  observations,  to  verify  the 

most  remarkable  phenomena  of  colour-blindness,  as  for  instance,  that  the  colours 

from  red  to  green  appear  to  differ  only  in  brightness,  and  that  the  brightness 

may  be  made  identical  by  changing  the  width  of  the  slit;  that  the  colour 

near  F  is  a  neutral  tint,  and  that  the  eye  in  viewing  it  sees  a  dark  spot  in 

the  direction  of  the  axis  of  vision ;  that  the  colours  beyond  are  all  blue  of 

different  intensities,  and  that  any  "blue"  may  be  combined  with  any  "yellow" 

in  such  proportions  as  to  form  "white."  These  results  I  have  verified  by  the 
observations  of  another  colour-blind  gentleman,  who  did  not  obtain  sunlight  for 

bis  observations;  and  as  I  have  now  the  means  of  carrying  the  requisite 

apparatus  easily,  I  hope  to  meet  with  other  colour-blind  observers,  and  to  obtain 
their  observations  under  more  favourable  circumstances. 
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On  the  Comparison  of  Colour-blind  with  ordinary  Vision  by  means  of  Observations 
with   Coloured  Papers. 

In  March  1859  I  obtained  a  set  of  observations  by  Mr  Simpson,  of  the 

relations  between  six  coloured  papers  as  seen  by  him.  The  experiments  were 

made  with  the  colour-top  in  the  manner  described  in  my  paper  in  the  Trans- 
actions of  the  Royal  Society  of  Edinburgh,  Vol.  xxi.  pt.  2,  p.  286;  and  the 

colour-equations  were  arranged  so  as  to  be  equated  to  zero,  as  in  those  given 

in  the  Philosophical  Magazine,  July,  1857.  The  colours  were — Vermilion  (V), 

ultramarine  (U),  emerald-green  (G),  ivory-black  (B),  snow-white  (W),  and  pale 

chrome-yellow  (Y).  These  six  colours  afford  fifteen  colour-blind  equations,  since 
four  colours  enter  into  each  equation.  Fourteen  of  these  were  observed  by 

Mr  Simpson,  and  from  these  I  deduced  three  equations,  giving  the  relation  of 
the  three  standards  (V),  (U),  (G)  to  the  other  colours,  according  to  his  kind  of 
vision.  From  these  three  equations  I  then  deduced  fifteen  equations,  admitting 

of  comparison  with  the  observed  equations,  and  necessarily  consistent  in 
themselves. 

The  comparison  of  these  equations  furnishes  a  test  of  the  truth  of  the  theory 

that  the  colour-blind  see  by  means  of  two  colour-sensations,  and  that  therefore 
eveiy  colour  may  be  expressed  in  terms  of  two  given  colours,  just  as  in  ordinary 

vision  it  may  be  expressed  in  terms  of  three  given  colours.  The  one  set  of 

equations  are  each  the  result  of  a  single  observation ;  the  other  set  are  deduced 
from  three  equations  in  accordance  with  this  theory,  and  the  two  sets  agree  to 

within  an  average  error  =  2*1. 

Table  b. V. 

U. 
G. B. 

W. 

Y. 

1. Observed  .  . 0 0 

-100 

+  45 
+  22 

+  33     =0. 

Calculated  . 0 0 

-100 

+  37-5 +  26-5 

+  36     =0. 

2. Observed  .  . 0 +  58 0 

-69 
-31 

-42     =0. 

Calculated  . 0 

+  58-3 

0 -67-3 -32-7 +  41-7  =  0. 

3. Observed  .  . 0 +  32 

-100 

0 +  12 
+  56     =0. 

Calculated  . 0 

+  32-3 

-100 

0 

+    8-3 

+  59-4  =  0. 

4. Observed  .  . 0 +  38 

-    89 

-11 

0 +  62     =0. 
Calculated  . 0 +  40 

-   85 

-15 

0 
+  60     =0. 

5. Observed  .  . 0 
+  32 

+    68 

-60 
-40 

0     -0. 

Calculated  . 0 +  34 
+    66 -63-5 -36-5 0     =0. 
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Table  b  (continued). V. 
U. 

G. B. 

W. 

Y. 

6. Observed  .  . .-100 0 0 

+  82 
+    5 

+  13     =0. 

Calculated  . .-100 0 0 

+  83-9 +    4-5 

+  11-6  =  0. 

7. Observed  .  . .+   47 0 - 100 
0 

+  22 
+  31     =  0. 

Calculated  . 
.+   44-7 

0 - 100 
0 

+  24-5 

+  30-8  =  0. 
8. Observed  .  . .-100 0 + 

20 
+  77 0 +    3     =0. 

Calculated  . .-100 0 + 
17 

+  77-5 

0 +    5-5=0. 

9. Not  Observed 
Calculated  . .+   96 0 - 31 

-69 

+   4 
0     =0. 

10. Observed  .  . .-   70 
+  53 

0 0 

-30 

+  47     =0. 
Calculated  . 

.-   73-5 +  53 
0 0 -26-5 

+  47     =0. 

11. Observed  .  . .-100 +   8 0 +  71 0 +  21     =0. 
Calculated  . .-100 +   8 0 

+  74-5 

0 +  17-5  =  0. 

12. Observed  .  . .+   85 
+  15 

0 

-88 -12 

0    =0. 
Calculated  . .+   86 

+  14 
0 -88-5 -11-5 0    =0. 

13. Observed  .  . .-    20 
+  39 

_ 80 0 0 +  61     =0. 
Calculated  . .-    19 +  40 - 81 0 0 +  60    =0. 

14. Observed  .  . .-   66 
+  30 

+ 

70 

0 

-34 

0     =0. 
Calculated  . .-   70 

+  27 + 

73 

0 

-30 

0    =0. 

15. Observed  .  . .  +  100 

-   2 

_ 
27 

-71 

0 0    =0. 

Calculated  . .+   96 +   4 
- 24 

-76 

0 0    =0. 

But,  axjcording  to  our  theory,  colour-blind  vision  is  not  only  dichromic,  but 
the  two  elements  of  colour  are  identical  with  two  of  the  three  elements  of 

colour  as  seen  by  the  ordinary  eye ;  so  that  it  differs  from  ordinary  vision 

only  in  not  perceiving  a  particular  colour,  the  relation  of  which  to  known  colours 

may  be  numerically  defined.     This  colour  may  be  expressed  under  the  form 

aV  +  6U  +  cG  =  D    (16), 

where  V,  U,  and  G  are  the  standard  colours  used  in  the  experiments,  and  D  is 

the  colour  which  is  visible  to  the  ordinary  eye,  but  invisible  to  the  colour- 

blind. If  we  know  the  value  of  D,  we  may  always  change  an  ordinary  colour- 

equation  into  a  colour-blind  equation  by  subtracting  from  it  nD  (n  being  chosen 
so  that  one  of  the  standard  colours  is  eliminated),  and  adding  n  of  black. 

In  September  1856  I  deduced,  from  thirty-six  observations  of  my  own,  the 
chromatic  relations  of  the  same  set  of  six  coloured  papers.  These  observations, 
with  a  comparison  of  them  with  the  trichromic  theory  of  vision,  are  to  be 

found    in    the    Philosophical    Magazine    for    July   1857.      The    relations    of   the 
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six   colours  may  be  deduced   from  two   equations,   of  which   the   most   convenient 
form   is 

V.  U.  G.  B.  W.  Y. 

+  397  +2G-6  +337  -227  -77-3           0     =0   (17). 
-62-4  +18-6  -37-6  0  +457      +357  =  0   (18). 

The   value  of    D,    as    deduced   from    a   comparison    of    these    equations   with   the 

colour-blind  equations,   is 

1-198  V  +  0-078U-0-276G  =  D    (19). 

By  making  D  the  same  thing  as  black  (B),  and  eliminating  W  and  Y 

respectively  from  the  two  ordinary  colour-equations  by  means  of  D,  we  obtain 

three  colour-blind  equations,  calculated  from  the  ordinary  equations  and  con- 

sistent with  them,  supposing  that  the  colour  (D)  is  black  to  the  colour-blind. 

The  following  Table  is  a  comparison  of  the  colour-bhnd  equations  deduced 

from  Mr  Simpson's  observations  alone,  with  those  deduced  from  my  observations 
and  the  value  of  D. 

Table 
C. V. 

u. 
G. 

B. 
w. 

Y. (15)  Calculated .      +96 +    4 

-24 
-76 

0 0 

By  (19)  .     .     . .      +93-9 

+    6-1 

-21-7 
-78-3 

0 0 

(U)  Calculated .     -70 +  27 
+  73 

0 

-30 

0 

By  (17)  and  (19) .      -70 

+  27-2 

-72-8 0 

-30 

0 

(13)  Calculated .      -19 +  40 

-81 

0 0 
+  60 

By  (18)  and  (19) .      -13-6 
+  38-5 

-86-4 0 0 

+  61-5 The  average  error  here  is  1*9,  smaller  than  the  average  error  of  the  indi- 

vidual colour-blind  observations,  shewing  that  the  theory  of  colour-blindness  being 

the  want  of  a  certain  colour-sensation  which  is  one  of  the  three  ordinary  colour- 

sensations,   agrees  with  observation  to  within  the  limits  of  error. 

In  fig.  11,  Plate  VII.  p.  444,  I  have  laid  down  the  chromatic  relations  of  these 

colours  according  to  Newton's  method.  V  (vermilion),  U  (ultramarine),  and  G 
(emerald-green)  are  assumed  as  standard  colours,  and  placed  at  the  angles  of 

an  equilateral  triangle.  The  position  of  W  (white)  and  Y  (pale  chrome-yellow) 
with  respect  to  these  are  laid  down  from  equations  (17)  and  (18),  deduced 

from  my  own  observations.  The  positions  of  the  defective  colour,  of  white,  and 

of  yellow,  as  deduced  from  Mr  Simpson's  equations  alone,  are  given  at  "  c7," 
"w"  and   "y."      The  positions    of   these   points,  as    deduced    from  a  combination 
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of  these  equations  with  my  o\7n,  are  given  at  "D,"  *'W,"  and  "Y."  The 

difference  of  these  positions  from  those  of  "c?,"  "w;,"  and  "3/,"  shews  the  amount 
of  discrepancy  between  observation  and  theory. 

It  will  be  observed  that  D  is  situated  near  V  (vermilion),  but  that  a  line 
from  D  to  W  cuts  UV  at  C  near  to  V.  D  is  therefore  a  red  colour,  not 

scarlet,  but  further  from  yellow.  It  may  be  called  crimson,  and  may  be  imitated 
by  a  mixture  of  86  vermiHon  and  14  ultramarine.  This  compound  colour  will  be 
of  the  same  hue  as  D ;  but  since  C  hes  between  D  and  W,  C  must  be 

regarded  as  D  diluted  with  a  certain  amount  of  white ;  and  therefore  D  must 

be  imagined  to  be  like  C  in  hue,  but  without  the  intermixture  of  white  which 
is  unavoidable  in  actual  pigments,  and  which  reduces  the  purity  of  the  tint. 

Lines  drawn  from  D  through  "W"  and  "Y,"  the  colour-blind  positions  of 
white  and  yeUow,  pass  through  W  and  Y,  their  positions  in  ordinary  vision. 
The  reason  why  they  do  not  coincide  with  W  and  Y,  is  that  the  white  and 

yeUow  papers  are  much  brighter  than  the  colours  corresponding  to  the  points 

W  and  Y  of  the  triangle  V,  U,  G;  and  therefore  lines  from  D,  which  represent 
them  in  intensity  as  well  as  in  quality,  must  be  longer  than  DW  and  DY  in 

the  proportion  of  their  brightness. 
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[Lecture  at  the  Royal  Institution  of  Great  Britain.     May  17,  1861.] 

XXII.     On  the  Theory  of  Three  Primary  Colours. 

The  speaker  commenced  by  shewing  that  our  power  of  vision  depends 

entirely  on  our  being  able  to  distinguish  the  intensity  and  quality  of  colours. 
The  forms  of  visible  objects  are  indicated  to  us  only  by  differences  in  colour 

or  brightness  between  them  and  surrounding  objects.  To  classify  and  arrange 

these  colours,  to  ascertain  the  physical  conditions  on  which  the  dijfferences  of 

coloured  rays  depend,  and  to  trace,  as  far  as  we  are  able,  the  physiological 

process  by  which  these  different  rays  excite  in  us  various  sensations  of  colour, 

we  must  avail  ourselves  of  the  united  experience  of  paintei-s,  opticians,  and 

physiologists.  The  speaker  then  proceeded  to  state  the  results  obtained  by  these 

three  classes  of  inquirers,  to  explain  their  apparent  inconsistency  by  means  of 

Young's  Theory  of  Primary  Colours,  and  to  describe  the  tests  to  which  he  had 
subjected   that   theory. 

Painters  have  studied  the  relations  of  colours,  in  order  to  imitate  them  by 

means  of  pigments.  As  there  are  only  a  limited  number  of  coloured  substances 

adapted  for  painting,  while  the  number  of  tints  in  nature  is  infinite,  painters 

are  obliged  to  produce  the  tints  they  require  by  mixing  their  pigments  in 

proper  proportions.  This  leads  them  to  regard  these  tints  as  actually  com- 

pounded of  other  colours,  corresponding  to  the  pure  pigments  in  the  mixture. 

It  is  found,  that  by  using  three  pigments  only,  we  can  produce  all  colours 

lying  within  certain  limits  of  intensity  and  purity.  For  instance,  if  we  take 

carmine  (red),  chrome  yellow,  and  ultramarine  (blue),  we  get  by  mixing  the 
carmine  and  the  chrome,  all  varieties  of  orange,  passing  through  scarlet  to 

crimson  on  the  one  side,  and  to  yeUow  on  the  other;  by  mixing  chrome  and 

ultramarine  we  get  all  hues  of  green;  and  by  mixing  ultramarine  with  carmine, 

we  get  all  hues  of  purple,  from  violet  to  mauve  and  crimson.  Now  these  are 

all  the   strong   colours   that   we   ever   see   or    can    imagine :    all   others   are    like 
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these,  only  less  pure  in  tint.  Our  three  colours  can  be  mixed  so  as  to  form 

a  neutral  grey;  and  if  this  grey  be  mixed  with  any  of  the  hues  produced  by 

mixing  two  colours  only,  all  the  tints  of  that  hue  will  be  exhibited,  from  the 

pure  colour  to  neutral  grey.  If  we  could  assume  that  the  colour  of  a  mixture 

of  different  kinds  of  paint  is  a  true  mixture  of  the  colours  of  the  pigments, 

and  in  the  same  proportion,  then  an  analysis  of  colour  might  be  made  with 

the  same  ease  as  a  chemical  analysis  of  a  mixture  of  substances. 

The  colour  of  a  mixture  of  pigments,  however,  is  often  very  different  from 

a  true  mixture  of  the  colours  of  the  pure  pigments.  It  is  found  to  depend  on 

the  size  of  the  particles,  a  finely  ground  pigment  producing  more  effect  than 

one  coarsely  ground.  It  has  also  been  shewn  by  Professor  Helmholtz,  that  when 

light  falls  on  a  mixture  of  pigments,  part  of  it  is  acted  on  by  one  pigment 

only,  and  part  of  it  by  another ;  while  a  third  portion  is  acted  on  by  both  pig- 
ments in  succession  before  it  is  sent  back  to  the  eye.  The  two  parts  reflected 

directly  from  the  pure  pigments  enter  the  eye  together,  and  form  a  true  mixture 

of  colours ;  but  the  third  portion,  which  has  suffered  absorption  from  both 

pigments,  is  often  so  considerable  as  to  give  its  own  character  to  the  resulting 

tint.  This  is  the  explanation  of  the  green  tint  produced  by  mixing  most  blue 

and  yellow  pigments. 

In  studying  the  mixture  of  colours,  we  must  avoid  these  sources  of  error, 

either  by  mixing  the  rays  of  light  themselves,  or  by  combining  the  impressions 

of  colours  within  the  eye  by  the  rotation  of  coloured  papers  on  a  disc. 

The  speaker  then  stated  what  the  opticians  had  discovered  about  colour. 

White  light,  according  to  Newton,  consists  of  a  great  number  of  different  kinds 

of  coloured  light  which  can  be  separated  by  a  prism.  Newton  divided  these 

into  seven  classes,  but  we  now  recognize  many  thousand  distinct  kinds  of  light 

in  the  spectrum,  none  of  which  can  be  shewn  to  be  a  compound  of  more 

elementary  rays.  If  we  accept  the  theory  that  light  is  an  undulation,  then, 

as  there  are  undulations  of  every  different  period  from  the  one  end  of  the 

spectrum  to  the  other,  there  are  an  infinite  number  of  possible  kinds  of  Hght, 

no  one  of  which  can  be  regarded  as  compounded  of  any  others. 

Physical  optics  does  not  lead  us  to  any  theory  of  three  primary  colours, 

but  leaves  us  in  possession  of  an  infinite  number  of  pure  rays  with  an  infinitely 

more  infinite  number  of  compound  beams  of  Hght,  each  containing  any  propor- 
tions of  any  number  of  the  pure  rays. 

These  beams  of  light,  passing  through  the  transparent  parts  of  the  eye,  fall 
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on  a  sensitive  membrane,  and  we  become  aware  of  various  colours.  We  know 

that  the  colour  we  see  depends  on  the  nature  of  the  light;  but  the  opticians 

say  there  are  an  infinite  number  of  kinds  of  light ;  while  the  painters,  and  all 
who  pay  attention  to  what  they  see,  tell  us  that  they  can  account  for  all 
actual  colours  by  supposing  them  mixtures  of  three  primary  colours. 

The  speaker  then  next  drew  attention  to  the  physiological  difficulties  in 

accounting  for  the  perception  of  colour.  Some  have  supposed  that  the  different 
kinds  of  light  are  distinguished  by  the  time  of  their  vibration.  There  are 

about  447  billions  of  vibrations  of  red  light  in  a  second;  and  577  billions  of 

vibrations  of  green  light  in  the  same  time.  It  is  certainly  not  by  any  mental 

process  of  which  we  are  conscious  that  we  distinguish  between  these  infini- 
tesimal portions  of  time,  and  it  is  difficult  to  conceive  any  mechanism  by  which 

the  vibrations  could  be  counted  so  that  we  should  become  conscious  of  the 

results,  especially  when  many  rays  of  different  periods  of  vibration  act  on  the 
same  part  of  the  eye  at  once. 

Besides,  all  the  evidence  we  have  on  the  nature  of  nervous  action  goes 

to  prove  that  whatever  be  the  nature  of  the  agent  which  excites  a  nerve,  the 

sensation  will  differ  only  in  being  more  or  less  acute.  By  acting  on  a  nerve 

in  various  ways,  we  may  produce  the  faintest  sensation  or  the  most  violent 

pain ;  but  if  the  intensity  of  the  sensation  is  the  same,  its  quality  must  be 
the  same. 

Now,  we  may  perceive  by  our  eyes  a  faint  red  light  which  may  be  made 

stronger  and  stronger  till  our  eyes  are  dazzled.  We  may  then  perform  the 

same  experiment  with  a  green  light  or  a  blue  light.  We  shall  thus  see  that 

our  sensation  of  colour  may  differ  in  other  ways,  besides  in  being  stronger  or 
fainter.     The  sensation  of  colour,  therefore,  cannot  be  due  to  one  nerve  only. 

The  speaker  then  proceeded  to  state  the  theory  of  Dr  Thomas  Young,  as 

the  only  theory  which  completely  reconciles  these  difficulties  in  accounting  for 
the  perception  of  colour. 

Young  supposes  that  the  eye  is  provided  with  three  distinct  sets  of  nervous 

fibres,  each  set  extending  over  the  whole  sensitive  surface  of  the  eye.  Each 
of  these  three  systems  of  nerves,  when  excited,  gives  us  a  different  sensation. 

One  of  them,  which  gives  us  the  sensation  we  call  red,  is  excited  most  by 

the  red  rays,  but  also  by  the  orange  and  yellow,  and  slightly  by  the  violet ; 

another  is  acted  on  by  the  green  rays,  but  also  by  the  orange  and  yellow  and 

part  of  the  blue;   while  the  third  is  acted  on  by  the  blue  and  violet  rays. 
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If  we  could  excite  one  of  these  sets  of  nerves  without  acting  on  the 

others,  we  should  have  the  pure  sensation  corresponding  to  that  set  of  nerves. 

This  would  be  truly  a  primary  colour,  whether  the  nerve  were  excited  by  pure 

or  by  compound  light,  or  even  by  the  action  of  pressure  or  disease. 

If  such  experiments  could  be  made,  we  should  be  able  to  see  the  primary- 
colours  separately,  and  to  describe  their  appearance  by  reference  to  the  scale 

of  colours  in  the  spectrum. 
But  we  have  no  direct  consciousness  of  the  contrivances  of  our  own  bodies, 

and  we  never  feel  any  sensation  which  is  not  infinitely  complex,  so  that  we 
can  never  know  directly  how  many  sensations  are  combined  when  we  see  a 
colour.  Still  less  can  we  isolate  one  or  more  sensations  by  artificial  means,  so 

that  in  general  when  a  ray  enters  the  eye,  though  it  should  be  one  of  the 

pure  rays  of  the  spectrum,  it  may  excite  more  than  one  of  the  three  sets  of 
nerves,  and  thus  produce  a  compound  sensation. 

The  terms  simple  and  compound,  therefore,  as  applied  to  colour-sensation, 
have  by  no  means  the  same  meaning  as  they  have  when  appHed  to  a  ray  of 
light. 

The  speaker  then  stated  some  of  the  consequences  of  Young's  theory,  and 
described  the  tests  to  which  he  had  subjected  it: — 

1st.     There  are  three  primary  colours. 

2nd.  Every  colour  is  either  a  primary  colour,  or  a  mixture  of  primary 
colours. 

3rd.  Four  colours  may  always  be  arranged  in  one  of  two  ways.  Either 
one  of  them  is  a  mixture  of  the  other  three,  or  a  mixture  of  two  of  them 

can  be  found,  identical  with  a  mixture  of  the  other  two. 

4th.  These  results  may  be  stated  in  the  form  of  colour-equations,  giving 
the  numerical  value  of  the  amount  of  each  colour  entering  into  any  mixture. 

By  means  of  the  Colour  Top'",  such  equations  can  be  obtained  for  coloured 
papers,  and  they  may  be  obtained  with  a  degree  of  accuracy  shewing  that  the 
colour-judgment  of  the  eye  may  be  rendered  very  perfect. 

The  speaker  had  tested  in  this  way  more  than  100  different  pigments  and 
mixtures,    and   had   found  the   results   agree   with   the   theory  of  three  primaries 

*  Described  in  the  Trans,  of  the  Royal  Society  of  Edinburgh,  Vol.  xxi.,  and  in  the  Phil.  Mag. 
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in  every  case.  He  had  also  examined  all  the  colours  of  the  spectrum  with 
the  same  result. 

The  experiments  with  pigments  do  not  indicate  what  colours  are  to  be 

considered  as  primary ;  but  experiments  on  the  prismatic  spectrum  shew  that 

all  the  colours  of  the  spectrum,  and  therefore  all  the  colours  in  nature,  are 

equivalent  to  mixtures  of  three  colours  of  the  spectrum  itself,  namely,  red, 

green  (near  the  line  E),  and  blue  (near  the  line  G).  Yellow  was  found  to  be 

a  mixture  of  red  and  green. 

The  speaker,  assuming  red,  green,  and  blue  as  primary  colours,  then  exhi- 
bited them  on  a  screen  by  means  of  three  magic  lanterns,  before  which  were 

placed  glass  troughs  containing  respectively  sulphocyanide  of  iron,  chloride  of 

copper,  and  ammoniated  copper. 

A  triangle  was  thus  illuminated,  so  that  the  pure  colours  appeared  at  its 

angles,  while  the  rest  of  the  triangle  contained  the  various  mixtures  of  the 

colours  as  in  Young's  triangle  of  colour. 
The  graduated  intensity  of  the  primary  colours  in  different  parts  of  the 

spectrum  was  exhibited  by  three  coloured  images,  which,  when  superposed  on 
the  screen,  gave  an  artificial  representation  of  the  spectrum. 

Three  photographs  of  a  coloured  ribbon  taken  through  the  three  coloured 

solutions  respectively,  were  introduced  into  the  camera,  giving  images  represent- 

ing the  red,  the  green,  and  the  blue  parts  separately,  as  they  would  be  seen 

by  each  of  Young's  three  sets  of  nerves  separately.  When  these  were  super- 
posed, a  coloured  image  was  seen,  which,  if  the  red  and  green  images  had 

been  as  fully  photographed  as  the  blue,  would  have  been  a  truly-coloured  image 

of  the  ribbon.  By  finding  photographic  materials  more  sensitive  to  the  less 

refrangible  rays,  the  representation  of  the  colours  of  objects  might  be  greatly 

improved. 

The  speaker  then  proceeded  to  exhibit  mixtures  of  the  colours  of  the  pure 

spectrum.  Light  from  the  electric  lamp  was  passed  through  a  narrow  slit,  a 

lens  and  a  prism,  so  as  to  throw  a  pure  spectrum  on  a  screen  containing  three 

moveable  slits,  through  which  three  distinct  portions  of  the  spectrum  were 

suffered  to  pass.  These  portions  were  concentrated  by  a  lens  on  a  screen  at 
a  distance,  forming  a  large,  uniformly  coloured  image  of  the  prism. 

When  the  whole  spectrum  was  allowed  to  pass,  this  image  was  white,  as 

in  Newton's  experiment  of  combining  the  rays  of  the  spectrum.  When  portions 
of  the  spectrum  were  allowed  to  paas  through  the  moveable  slits,  the  image  was 

VOL.  L  57 
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uniformly  illuminated  with  a  mixture  of  the  corresponding  colours.  In  order 
to  see  these  colours  separately,  another  lens  was  placed  between  the  moveable 

slits  and  the  screen.  A  magnified  image  of  the  sHts  was  thus  thrown  on  the 

screen,  each  sHt  shewing,  by  its  colour  and  its  breadth,  the  quality  and  quantity 
of  the  colour  which  it  suffered  to  pass.  Several  colours  were  thus  exhibited, 

first  separately,  and  then  in  combination.  Red  and  blue,  for  instance,  produced 

purple ;  red  and  green  produced  yellow ;  blue  and  yellow  produced  a  pale  pink  ; 
red,  blue,  and  green  produced  white;  and  red  and  a  bluish  green  near  the 

line  F  produced  a  colour  which  appears  very  different  to  different  eyes. 

The  speaker  concluded  by  stating  the  peculiarities  of  colour-blind  vision, 
and  by  shewing  that  the  investigation  into  the  theory  of  colour  is  truly  a 

physiological  inquiry,  and  that  it  requires  the  observations  and  testimony  of 
persons  of  every  kind  in  order  to  discover  and  explain  the  various  peculiarities 
of  vision. 



[From   the   Philosophical   Magazine,   Vol.   xxi.] 

XXIII.     On   Physical   Lines   of  Force. 

PART   I. 

The  Theory  of  Molecular  Vortices  applied  to  Magnetic  Phenomena. 

In  all  phenomena  involving  attractions  or  repulsions,  or  any  forces  depend- 
ing on  the  relative  position  of  bodies,  we  have  to  determine  the  magnitude  and 

direction  of  the  force  which  would  act  on  a  given  body,  if  placed  in  a  given 

position. 
In  the  case  of  a  body  acted  on  by  the  gravitation  of  a  sphere,  this  force 

is  inversely  as  the  square  of  the  distance,  and  in  a  straight  line  to  the  centre 

of  the  sphere.  In  the  case  of  two  attracting  spheres,  or  of  a  body  not  spherical, 

the  magnitude  and  direction  of  the  force  vary  according  to  more  complicated 
laws.  In  electric  and  magnetic  phenomena,  the  magnitude  and  direction  of  the 

resultant  force  at  any  point  is  the  main  subject  of  investigation.  Suppose  that 

the  direction  of  the  force  at  any  point  is  known,  then,  if  we  draw  a  line  so 
that  in  every  part  of  its  course  it  coincides  in  direction  with  the  force  at  that 

point,  this  hne  may  be  called  a  line  of  force,  since  it  indicates  the  direction 
of  the  force  in  every  part  of  its  course. 

By  drawing  a  sufficient  number  of  lines  of  force,  we  may  indicate  the 
direction   of  the   force   in   every   part   of  the    space   in   which    it   acts. 

Thus  if  we  strew  iron  filings  on  paper  near  a  magnet,  each  filing  will  be 

magnetized  by  induction,  and  the  consecutive  filings  will  unite  by  their  opposite 

poles,  so  as  to  form  fibres,  and  these  fibres  will  indicate  the  direction  of  the  lines 
of  force.  The  beautiful  illustration  of  the  presence  of  magnetic  force  afforded 

by  this  experiment,  naturally  tends  to  make  us  think  of  the  lines  of  force  as 
something  real,  and  as  indicating  something  more  than  the  mere  resultant  of 
two  forces,  whose  seat  of  action  is  at  a  distance,  and  which  do  not  exist  there 

57—2 
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at  all  until  a  magnet  is  placed  in  that  part  of  the  field.  We  are  dissatisfied 

with  the  explanation  founded  on  the  hypothesis  of  attractive  and  repellent 

forces  directed  towards  the  magnetic  poles,  even  though  we  may  have  satisfied 

ourselves  that  the  phenomenon  is  in  strict  accordance  with  that  hypothesis,  and 

we  cannot  help  thinking  that  in  every  place  where  we  find  these  lines  of  force, 

some  physical  state  or  action  must  exist  in  sufficient  energy  to  produce  the 

actual  phenomena. 

My  object  in  this  paper  is  to  clear  the  way  for  speculation  in  this  direction, 

by  investigating  the  mechanical  results  of  certain  states  of  tension  and  motion 

in  a  medium,  and  comparing  these  with  the  observed  phenomena  of  magnetism 

and  electricity.  By  pointing  out  the  mechanical  consequences  of  such  hypotheses, 

I  hope  to  be  of  some  use  to  those  who  consider  the  phenomena  as  due  to  the 

action  of  a  medium,  but  are  in  doubt  as  to  the  relation  of  this  hypothesis  to 

the  experimental  laws  already  established,  which  have  generally  been  expressed 

in  the  language  of  other  hypotheses. 

I  have  in  a  former  paper*  endeavoured  to  lay  before  the  mind  of  the 

geometer  a  clear  conception  of  the  relation  of  the  lines  of  force  to  the  space 

in  which  they  are  traced.  By  making  use  of  the  conception  of  currents  in  a 

fluid,  I  shewed  how  to  draw  lines  of  force,  which  should  indicate  by  their 

number  the  amount  of  force,  so  that  each  line  may  be  called  a  unit-line  of 

force  (see  Faraday's  Reswear  dies,  3122);  and  I  have  investigated  the  path  of 
the  lines  where  they  pass  from  one  medium  to  another. 

In  the  same  paper  I  have  found  the  geometrical  significance  of  the  "Elec- 

trotonic  State,"  and  have  shewn  how  to  deduce  the  mathematical  relations 

between  the  electrotonic  state,  magnetism,  electric  currents,  and  the  electromotive 

force,  using  mechanical  illustrations  to  assist  the  imagination,  but  not  to  account 

for  the  phenomena. 

I  propose  now  to  examine  magnetic  phenomena  from  a  mechanical  point  of 
view,  and  to  determine  what  tensions  in,  or  motions  of,  a  medium  are  capable 

of  producing  the  mechanical  phenomena  observed.  If,  by  the  same  hypothesis, 

we  can  connect  the  phenomena  of  magnetic  attraction  with  electromagnetic  phe- 
nomena and  with  those  of  induced  currents,  we  shall  have  found  a  theory 

which,  if  not  true,  can  only  be  proved  to  be  erroneous  by  experiments  which 

will  greatly  enlarge  our  knowledge  of  this  part  of  physics. 

♦  See  a  paper  "  On  Faraday's  Lines  of  Force,"  Cambridge  Philosophical  Transactions,  Vol.  i.  Part  i. 
Page  155  of  this  volume. 
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The  mechanical  conditions  of  a  medium  under  magnetic  influence  have  been 

variously  conceived  of,  as  currents,  undulations,  or  states  of  displacement  or 

strain,  or  of  pressure  or  stress. 

Currents,  issuing  from  the  north  pole  and  entering  the  south  pole  of  a 

magnet,  or  circulating  round  an  electric  current,  have  the  advantage  of  repre- 
senting correctly  the  geometrical  arrangement  of  the  lines  of  force,  if  we  could 

account  on  mechanical  principles  for  the  phenomena  of  attraction,  or  for  the 

currents  themselves,  or  explain  their  continued  existence 

Undulations  issuing  from  a  centre  would,  according  to  the  calculations  of 

Professor  Challis,  produce  an  effect  similar  to  attraction  in  the  direction  of  the 

centre ;  but  admitting  this  to  be  true,  we  know  that  two  series  of  undulations 
traversing  the  same  space  do  not  combine  into  one  resultant  as  two  attractions 

do,  but  produce  an  effect  depending  on  relations  of  phase  as  well  as  intensity, 

and  if  allowed  to  proceed,  they  diverge  from  each  other  without  any  mutual 
action.  In  fact  the  mathematical  laws  of  attractions  are  not  analogous  in  any 

respect  to  those  of  undulations,  while  they  have  remarkable  analogies  with  those 
of  currents,  of  the  conduction  of  heat  and  electricity,  and  of  elastic  bodies. 

In  the  Cambridge  and  Dublin  Mathematical  Journal  for  January  1847, 

Professor  William  Thomson  has  given  a  "Mechanical  Representation  of  Electric, 

Magnetic,  and  Galvanic  Forces,"  by  means  of  the  displacements  of  the  particles  of 
an  elastic  solid  in  a  state  of  strain.  In  this  representation  we  must  make  the 

angular  displacement  at  every  point  of  the  solid  proportional  to  the  magnetic 

force  at  the  con-esponding  point  of  the  magnetic  field,  the  direction  of  the  axis 
of  rotation  of  the  displacement  corresponding  to  the  direction  of  the  magnetic 

force.  The  absolute  displacement  of  any  particle  will  then  correspond  in  magni- 
tude and  direction  to  that  which  I  have  identified  with  the  electrotonic  state  ; 

and  the  relative  displacement  of  any  particle,  considered  with  reference  to  the 

particle  in  its  immediate  neighbourhood,  will  correspond  in  magnitude  and  direc- 
tion to  the  quantity  of  electric  current  passing  through  the  corresponding  point 

of  the  magneto-electric  field.  The  author  of  this  method  of  representation  does 
not  attempt  to  explain  the  origin  of  the  observed  forces  by  the  effects  due  to 
these  strains  in  the  elastic  solid,  but  makes  use  of  the  mathematical  analogies 

of  the  two  problems  to  assist  the  imagination  in  the  study  of  both. 
We  come  now  to  consider  the  magnetic  influence  as  existing  in  the  form  of 

some  kind  of  pressure  or  tension,  or,  more  generally,  of  stress  in  the  medium. 
Stress   is  action  and  reaction  between  the  consecutive  parts  of  a  body,  and 
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consists  in  general  of  pressures  or  tensions  different  in  different  directions  at 

the  same  point  of  the  medium. 

The  necessary  relations  among  these  forces  have  been  investigated  by  mathe- 

maticians;  and  it  has  been  shewn  that  the  most  general  type  of  a  stress 

consists  of  a  eombmation  of  three  principal  pressures  or  tensions,  in  directions 

at  right  angles  to  each  other. 

When  two  of  the  principal  pressures  are  equal,  the  third  becomes  an  axis 

of  symmetry,  either  of  greatest  or  least  pressure,  the  pressures  at  right  angles 
to  this  axis  being  all  equal. 

When  the  three  principal  pressures  are  equal,  the  pressure  is  equal  in  every 

direction,  and  there  results  a  stress  having  no  determinate  axis  of  direction,  of 

which  we  have  an  example  in  simple  hydrostatic  pressure. 

The  general  type  of  a  stress  is  not  suitable  as  a  representation  of  a  mag^ 

netic  force,  because  a  line  of  magnetic  force  has  direction  and  intensity,  but 

has  no  third  quahty  indicating  any  difference  between  the  sides  of  the  line, 

which  would  be  analogous  to  that  observed  in  the  case  of  polarized  light*. 
We  must  therefore  represent  the  magnetic  force  at  a  point  by  a  stress 

having  a  single  axis  of  greatest  or  least  pressure,  and  all  the  pressures  at  right 

angles  to  this  axis  equal.  It  may  be  objected  that  it  is  inconsistent  to  represent 
a  line  of  force,  which  is  essentially  dipolar,  by  an  axis  of  stress,  which  is 

necessarily  isotropic;  but  we  know  that  every  phenomenon  of  action  and  reaction 

is  isotropic  in  its  results,  because  the  effects  of  the  force  on  the  bodies  between 

which  it  acts  are  equal  and  opposite,  while  the  nature  and  origin  of  the  force 

may  be  dipolar,  as  in  the  attraction  between  a  north  and  a  south  pole. 
Let  us  next  consider  the  mechanical  effect  of  a  state  of  stress  symmetrical 

about  an  axis.  We  may  resolve  it,  in  all  cases,  into  a  simple  hydrostatic 

pressure,  combined  with  a  simple  pressure  or  tension  along  the  axis.  When  the 

axis  is  that  of  greatest  pressure,  the  force  along  the  axis  will  be  a  pressure. 

When  the  axis  is  that  of  least  pressure,  the  force  along  the  axis  will  be  a 
tension. 

K  we  observe  the  lines  of  force  between  two  magnets,  as  indicated  by  iron 

filings,  we  shall  see  that  whenever  the  Hnes  of  force  pass  firom  one  pole  to 
another,  there  is  attraction  between  those  poles;  and  where  the  lines  of  force 

from  the   poles   avoid  each  other  and  are   dispersed  into   space,  the   poles  repel 

*  See  Faraday's  Researches,  3262. 
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each  other,  so  that  in  both  cases  they  are  drawn  in  the  direction  of  the 
resultant   of  the   lines   of  force. 

It  appears  therefore  that  the  stress  in  the  axis  of  a  line  of  magnetic  force 

is  a  tension,  like  that  of  a  rope. 
If  we  calculate  the  lines  of  force  in  the  neighbourhood  of  two  gravitating 

bodies,  we  shall  find  them  the  same  in  direction  as  those  near  two  magnetic 
poles  of  the  same  name ;  but  we  know  that  the  mechanical  effect  is  that  of 

attraction  instead  of  repulsion.  The  lines  of  force  in  this  case  do  not  run 

between  the  bodies,  but  avoid  each  other,  and  are  dispersed  over  space.  In 

order  to  produce  the  effect  of  attraction,  the  stress  along  the  lines  of  gravi- 
tating force  must  be  a  pressure. 

Let  us  now  suppose  that  the  phenomena  of  magnetism  depend  on  the 
existence  of  a  tension  in  the  direction  of  the  lines  of  force,  combined  with  a 

hydrostatic  pressure;  or  in  other  words,  a  pressure  greater  in  the  equatorial 
than  in  the  axial  direction  :  the  next  question  is,  what  mechanical  explanation 

can  we  give  of  this  inequality  of  pressures  in  a  fluid  or  mobUe  medium  ?  The 

explanation  which  most  readily  occurs  to  the  mind  is  that  the  excess  of  pres- 
sure in  the  equatorial  direction  arises  from  the  centrifugal  force  of  vortices  or 

eddies  in  the  medium  having  their  axes  in  directions  parallel  to  the  lines  of  force. 

This  explanation  of  the  cause  of  the  inequality  of  pressures  at  once  suggests 

the  means  of  representing  the  dipolar  character  of  the  line  of  force.  Every 

vortex  is  essentially  dipolar,  the  two  extremities  of  its  axis  being  distinguished 
by  the  direction  of  its  revolution  as  observed  from  those  points. 

We  also  know  that  when  electricity  circulates  in  a  conductor,  it  produces 

lines  of  magnetic  force  passing  through  the  circuit,  the  direction  of  the  lines 
depending  on  the  direction  of  the  circulation.  Let  us  suppose  that  the  direction 

of  revolution  of  our  vortices  is  that  in  which  vitreous  electricity  must  revolve 

in  order  to  produce  lines  of  force  whose  direction  within  the  circuit  is  the 

same  as  that  of  the  given  lines  of  force. 

We  shall  suppose  at  present  that  all  the  vortices  in  any  one  part  of  the 

field  are  revolving  in  the  same  direction  about  axes  nearly  parallel,  but 

that  in  passing  from  one  part  of  the  field  to  another,  the  direction  of  the 

axes,  the  velocity  of  rotation,  and  the  density  of  the  substance  of  the  vortices 

are  subject  to  change.  We  shall  investigate  the  resultant  mechanical  effect  upon 
an  element  of  the  medium,  and  from  the  mathematical  expression  of  this 

resultant  we  shall  deduce  the  physical  character  of  its  different  component  parts. 
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Prop.  I. — If  in  two  fluid  systems  geometrically  similar  the  velocities  and 

densities  at  corresponding  points  are  proportional,  then  the  differences  of  pres- 

sure at  corresponding  points  due  to  the  motion  will  vary  in  the  duplicate  ratio 

of  the  velocities  and  the  simple  ratio  of  the  densities. 

Let  I  be  the  ratio  of  the  linear  dimensions,  m  that  of  the  velocities, 

n  that  of  the  densities,  and  p  that  of  the  pressures  due  to  the  motion.  Then 

the  ratio  of  the  inasses  of  corresponding  portions  will  be  Vn,  and  the  ratio  of 

the  velocities  acquired  in  traversing  similar  parts  of  the  systems  will  be  m ; 

so  that  l^mn  is  the  ratio  of  the  momenta  acquired  by  similar  portions  in 
traversing  similar  parts  of  their  paths. 

The   ratio   of  the   surfaces   is   P,   that   of  the   forces   acting   on   them  is   I'^p, 

and  that  of  the  times  during  which  they  act  is  —  ;  so  that  the  ratio  of  the 

impulse  of  the  forces  is  — ,  and  we  have  now 

m 

or  m^n  =jp  ; 

that  is,  the  ratio  of  the  pressures  due  to  the  motion  (p)  is  compounded  of 

the  ratio  of  the  densities  (n)  and  the  duplicate  ratio  of  the  velocities  {ni"),  and 
does  not  depend  on  the  linear  dimensions  of  the  moving  systems. 

In  a  circular  vortex,  revolving  with  uniform  angular  velocity,  if  the 

pressure  at  the  axis  is  p^,  that  at  the  circumference  will  be  i>i=jPo  +  ip^j  where 

p  is  the  density  and  v  the  velocity  at  the  circumference.  The  mean  pressure 

parallel  to  the  axis  will  be 

If  a  number  of  such  vortices  were  placed  together  side  by  side  with  their 

axes  parallel,  they  would  form  a  medium  in  which  there  would  be  a  pressure 

Pz  parallel  to  the  axes,  and  a  pressure  p^  in  any  perpendicular  direction.  If  the 

vortices  are  circular,  and  have  uniform  angular  velocity  and  density  throughout, 
then 

Pi-P2  =  lp'^' 
If  the   vortices   are   not    circular,    and    if  the  angular  velocity   and   the   density 

are  not  uniform,  but  vary  according  to  the  same  law  for  all  the  vortices, 

Pi-p.^Cpif, 
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where  p   is   the   mean  density,  and   C  is   a  numerical  quantity  depending  on  the 

distribution   of  angular  velocity   and  density  in  the  vortex.     In   future   we   shall 

write  -7^  instead  of  Co,  so  that 
477- 

 '^ 

^'"^'^4^'''''   (^)' 

where   /n   is   a   quantity   bearing   a   constant  ratio   to   the   density,    and   v   is   the 

linear  velocity  at  the  circumference  of  each  vortex. 

A  medium  of  this  kind,  filled  with  molecular  vortices  having  their  axes 

parallel,  differs  from  an  ordinary  fluid  in  having  different  pressures  in  different 

directions.  If  not  prevented  by  properly  arranged  pressures,  it  would  tend  to 

expand  laterally.  In  so  doing,  it  would  allow  the  diameter  of  each  vortex  to 

expand  and  its  velocity  to  diminish  in  the  same  proportion.  In  order  that  a 

medium  having  these  inequalities  of  pressure  in  different  directions  should  be  in 

equihbrium,  certain  conditions  must  be  fulfilled,  which  we  must  investigate. 

Prop.  II. — If  the  direction-cosines  of  the  axes  of  the  vortices  with  respect 

to  the  axes  of  x,  y,  and  z  be  /,  m,  and  n,  to  find  the  normal  and  tangential 

stresses  on  the  co-ordinate  planes. 

The  actual  stress  may  be  resolved  into  a  simple  hydrostatic  pressure  p^  acting 

in  all  directions,  and  a  simple  tension  Pi—p^,  or  -7- fiif,  acting  along  the  axis 

of  stress. 

Hence  if  p^x,  pyy,  and  p^  be  the  normal  stresses  parallel  to  the  three  axes, 

considered  positive  when  they  tend  to  increase  those  axes ;  and  if  p^^,  p^,  and 

Pj^  be  the  tangential  stresses  in  the  three  co-ordinate  planes,  considered  positive 

when  they  tend  to  increase  simultaneously  the  symbols  subscribed,  then  by 

the  resolution  of  stresses*, 

Pxx  =  j^l^vn'-p„ 1       .   , 

*  Rankine's  Applied  Mechanics,  Art.  106. 

VOL.  I.  58 
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If  we  write 

then 

a  =  vl,   ̂   =  vm,  and  y  =  vn, 

Air 

1 

(2). 

Prop.  III. — To  find  the  resultant  force  on  an  element  of  the  medium, 

arising  from  the  variation  of  internal  stress. 

"We  have  in  general,  for  the  force  in  the  direction  of  x  per  unit  of  volume 

by  the  law  of  equilibrium  of  stresses*, 
V     d             d            d  ,„v 

^'TxP-'+TyP-'  +  dzP'   (^)- 

In  this  case  the  expression  may  be  written 

Remembering  that  a  ̂  + /8  ̂ + y  ̂  =  i  ̂  (a" + jff  +  y"),  this  becomes 

.  I   ld&     da.\  _         1    Ida.     dy\     dp,  ,  , 

-l'^i^[di-Ty)+l'->'Tn[di-di)-dS---^^'- 
The  expressions  for  the   forces  parallel  to   the   axes   of  y  and  z  may  be  written 
down  from  analogy. 

*  Baiikine's  Applied  MecJianics,  Art.  116. 
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We  have  now  to  interpret  the  meaning  of  each  term  of  this  expression. 

We    suppose    a,  /3,  y  to  be  the   components   of    the    force   which    would   act 

upon  that  end  of  a  unit  magnetic  bar  which  points  to  the  north. 

/x  represents  the  magnetic  inductive  capacity  of  the  medium  at  any  point 

referred  to  air  as  a  standard,  /la,  /i,/3,  /xy  represent  the  quantity  of  magnetic 

induction  through  unit  of  area  perpendicular  to  the  three  axes  of  x,  y  z 

respectively. 

The  total  amount  of  magnetic  induction  through  a  closed  surface  surrounding 

the  pole  of  a  magnet,  depends  entirely  on  the  strength  of  that  pole ;  so  that 

if  dxdydz  be  an  element,  then 

(-T-/xa  +  -i-/>t/3  +  -T-  /lyj  dxdydz  =  i'rrm dxdydz   (6), 

which  represents  the  total  amount  of  magnetic  induction  outwards  through  the 

surface  of  the  element  dxdydz,  represents  the  amount  of  "imaginary  magnetic 

matter"  within  the  element,  of  the  kind  which  points  north. 

The  first  term  of  the  value  of  X,  therefore, 

1    /d  d     n     d       \  /_. 

''ii[dx''^  +  d^l'^  +  dz''V   (^)' 
may  be  written 

am   (8), 

where  a  is  the  intensity  of  the  magnetic  force,  and  m  is  the  amount  of  mag- 
netic matter  poLnting  north  in  unit  of  volume. 

The  physical  interpretation  of  this  term  is,  that  the  force  urging  a  north  pole 

in  the  positive  direction  of  a;  is  the  product  of  the  intensity  of  the  magnetic 

force  resolved  in  that  direction,  and  the  strength  of  the  north  pole  of  the  magnet. 

Let  the  parallel  lines  from  left  to  right  in  fig.  1  represent  a  field  of  mag- 
netic force  such  as  that  of  the  earth,  sn  being  the  direction  from  south  to  north. 

The  vortices,  according  to  our  hypothesis,  will  be  in  the  direction  shewn  by  the 

arrows  in  fig.  3,  that  is,  in  a  plane  perpendicular  to  the  lines  of  force,  and 

revolving  in  the  direction  of  the  hands  of  a  watch  when  observed  from  5 

looking  towards  n.  The  parts  of  the  vortices  above  the  plane  of  the  paper 

will  be  moving  towards  e,  and  the  parts  below  that  plane  towards  w. 

58—2 
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Fig.   1. 
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We  shall  always  mark  by  an  arrow-head  the  direction  in  which  we  must 
look  in  order  to  see  the  vortices  rotating  in  the 
direction  of  the  hands  of  a  watch.  The  arrow-head 
will  then  indicate  the  northward  direction  in  the 

magnetic  field,  that  is,  the  direction  in  which  that 

end  of  a  magnet  which  points  to  the  north  would 
set  itself  in  the  field. 

Now  let  A  be  the  end  of  a  magnet  which 
points  north.  Since  it  repels  the  north  ends  of 

other  magnets,  the  Hues  of  force  wiU  be  directed 
from  A  outwards  in  all  directions.  On  the  north 
side  the  line  AD  wiU  be  in  the  sarae  direction  with 

the  lines  of  the  magnetic  field,  and  the  velocity  of 
the  vortices  will  be  increased.  On  the  south  side 

the  line  AC  will  be  in  the  opposite  direction,  and 
the  velocity  of  the  vortices  wUl  be  diminished,  so 

that  the  lines  of  force  are  more  powerful  on  the 
north  side  of  A  than  on  the  south  side. 

We  have  seen  that  the  mechanical  efiect  of  the 

vortices  is  to  produce  a  tension  along  their  axes, 

so   that  the   resultant   effect  on   A    will   be  to   pull 
it  more   powerfully  towards   D  than  towards    C\   that   is,  A   will  tend  to  move 
to  the  north. 

Let  B  in  fig.  2  represent  a  south  pole.  The  lines  of  force  belonging  to  B 
will  tend  towards  B,  and  we  shall  find  that  the  lines  of  force  are  rendered 

stronger  towards  E  than  towards  F,  so  that  the  effect  in  this  case  is  to  urge  B 
towards  the  south. 

It  appears  therefore  that,  on  the  hypothesis  of  molecular  vortices,  our  first 
term  gives  a  mechanical  explanation  of  the  force  acting  on  a  north  or  south 
pole  in  the  magnetic  field. 

We  now  proceed  to  examine  the  second  term, 

Here  a^'  +  ̂   +  y*  is  the  square  of  the  intensity  at  any  part  of  the  field,  and 
ft,   is   the   magnetic   inductive   capacity   at   the   same    place.      Any   body   therefore 
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placed  in  the  field  will  be  urged  towards  places  of  stronger  magnetic  intensity 
with  a  force  depending  partly  on  its  own  capacity  for  magnetic  induction,  and 

partly  on  the  rate  at  which  the  square  of  the  intensity  increases. 

If  the  body  be  placed  in  a  fluid  medium,  then  the  medium,  as  well  as  the 

body,  will  be  urged  towards  places  of  greater  intensity,  so  that  its  hydrostatic 

pressure  will  be  increased  in  that  direction.  The  resultant  effect  on  a  body 
placed  in  the  medium  will  be  the  difference  of  the  actions  on  the  body  and 
on  the  portion  of  the  medium  which  it  displaces,  so  that  the  body  will  tend 

to  or  from  places  of  greatest  magnetic  intensity,  according  as  it  has  a  greater 

or  less  capacity  for  magnetic  induction  than  the  surrounding  medium. 

In  fig.  4  the  lines  of  force  are  represented  as  converging  and  becoming 
more  powerful  towards  the  right,  so  that  the  magnetic  tension  at  B  is  stronger 
than  at  A,  and  the  body  AB  will  be  urged  to  the  right.  If  the  capacity  for 

magnetic  induction  is  greater  in  the  body  than  in  the  surrounding  medium,  it 
will  move  to  the  right,  but  if  less  it  will  move  to  the  left. 

Fig.  4.  Fig.  5. 

We  may  suppose  in  this  case  that  the  lines  of  force  are  converging  to  a 

magnetic  pole,  either  north  or  south,  on  the  right  hand. 

In  fig.  5  the  Hues  of  force  are  represented  as  vertical,  and  becoming  more 

numerous  towards  the  right.  It  may  be  shewn  that  if  the  force  increases 

towards  the  right,  the  lines  of  force  will  be  curved  towards  the  right.  The 

effect  of  the  magnetic  tensions  wiU  then  be  to  draw  any  body  towards  the  right 

with  a  force  depending  on  the  excess  of  its  inductive  capacity  over  that  of  the 

surrounding  medium. 

We  may  suppose  that  in  this  figure  the  lines  of  force  are  those  surroundin
g 

an  electric  current  perpendicular  to  the  plane  of  the  paper  and  on  the  right 
hand  of  the  figure. 

These  two  iUustrations  will  shew  the  mechanical  effect  on  a  paramagnetic 

or  diamagnetic  body  placed  in  a  field  of  varying  magnetic  force,  whether
  the 

increase   of  force   takes   place   along   the  lines  or   transverse  to  them.     The  form 
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of  the  second  term  of  our  equation  indicates  the  general  law,  which  is  quite 

independent  of  the  direction  of  the  lines  of  force,  and  depends  solely  on  the 

manner  in  which  the  force  varies  from  one  part  of  the  field  to  another. 

"We  come  now  to  the  third  term  of  the  value  of  X, 

1    fd/B     da.\ ^^  47r  \dx      dy, 

Here  y^^  is,  as  before,  the  quantity  of  magnetic  induction  through  unit  of  area 

perpendicular  to  the  axis  of  y,  and  -J-  —  -j-  ̂^  ̂   quantity  which  would  disap- 

pear if  adx  +  ̂dy  +  ydz  were  a  complete  differential,  that  is,  if  the  force  acting 

on  a  unit  north  pole  were  subject  to  the  condition  that  no  work  can  be  done 

upon  the  pole  in  passing  round  any  closed  curve.  The  quantity  represents  the 

work  done  on  a  north  pole  in  travelHng  round  unit  of  area  in  the  direction 

from  +x  to  +y  parallel  to  the  plane  of  xy.  Now  if  an  electric  current  whose 

strength  is  r  is  traversing  the  axis  of  z,  which,  we  may  suppose,  points 

vertically  upwards,  then,  if  the  axis  of  x  is  east  and  that  of  y  north,  a  unit 

north   pole   will   be   urged  round  the   axis   of  z  in  the  direction  from  x  to  y,  so 

that  in  one  revolution  the  work  done  will  be  =  47rr.     Hence  t-  (  -t^  — 7- )   repre- 

477  \dy 

Att  \dx      dy/ 

sents   the  strength  of  an  electric  current  parallel  to  z  through  unit  of  area ;  and 
if  we  write 

dz]    P'   4,w\dz      dx)~^-   4n\dx      dyj~^   ^^'' 

then  p,  q,  r   will  be  the   quantity   of  electric  current   per  unit   of  area  perpen- 

dicular to  the  axes  of  x,  y,  and  z  respectively. 

The  physical  interpretation  of  the  third  term  of  X,  —fi^r,  is  that  if  /xyS  is 

the  quantity  of  magnetic  induction  parallel  to  y,  and  r  the  quantity  of  electricity 

flowing  in  the  direction  of  z,  the  element  will  be  urged  in  the  direction  of  —x, 
transversely  to  the  direction  of  the  current  and  of  the  lines  of  force;  that  is, 

an  ascending  current  in  a  field  of  force  magnetized  towards  the  north  would 
tend  to  move  west. 

To  illustrate  the  action  of  the  molecular  vortices,  let  sn  be  the  direction 

of  magnetic  force  in  the  field,  and  let  C  be  the  section  of  an  ascending  mag- 

netic  current  perpendicular  to  the  paper.     The  lines  of  force  due  to  this  current 
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will   be   circles   drawn  in   the   opposite  direction     from    that    of   the    hands   of  a 
watch ;    that  is,    in   the   direction    nwse.      At   c   the   lines   of  force 
will   be   the   sum   of    those   of    the   field   and   of  the   current,    and 

at  w   they   will    be    the   difference    of   the    two    sets   of    lines ;    so 
that    the   vortices   on   the   east   side   of  the  current    will    be   more 

powerful  than  those   on  the  west  side.     Both  sets  of  vortices  have 

their    equatorial    parts    turned    towards    C,   so    that    they    tend    to 

expand   towards  C,    but   those   on  the  east  side   have   the  greatest 
effect,  so  that  the  resultant  effect  on  the  current  is  to  urge  it  towards  the  west 

The  fourth  term, ^da     dy 

Fig.  6. 

1      da 
or  ̂ -iiyq 

(10), 

may  be  interpreted  in  the  same  way,  and  indicates  that  a  current  q  in  the 

direction  of  y,  that  is,  to  the  north,  placed  in  a  magnetic  field  in  which  the 

lines  are  vertically  upwards  in  the  direction  of  z,  will  be  urged  towards  the  ecLnt. 

The  fifth  term, 

dx   
 

(n), 
merely  implies   that  the  element    wiQ   be   urged  in   the   direction   in   which   the 

hydrostatic  pressure  p^  diminishes. 

We  may  now  write  down  the  expressions  for  the  components  of  the  resultant 
force  on  an  element  of  the  medium  per  unit  of  volume,  thus : 

^"^"^^^  ̂('^)"''^''  +  ''>'^"^   (^^)' 

fiyp  +  n-tar  — 

dp, 

dy 

(13), 

The   first   term   of  each   expression   refers   to   the   force   acting   on   magnetic 

poles. 

The  second  term  to  the  action  on  bodies  capable  of  magnetism  by  induction. 

The  third  and  fourth  terms  to  the  force  acting  on  electric  currents. 

And  the  fifth  to  the  effect  of  simple  pressure. 
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Before  going  further  in  the  general  investigation,  we  shall  consider  equations 

(12,  13,  14),  in  particular  cases,  corresponding  to  those  simplified  cases  of  the 

actual  phenomena  which  we  seek  to  obtain  in  order  to  determine  their  laws  by 

experiment. 

We  have  found  that  the  quantities  p,  q,  and  r  represent  the  resolved  parts 

of  an  electric  current  in  the  three  co-ordinate  directions.  Let  us  suppose  in  the 
first  instance  that  there  is  no  electric  current,  or  that  p,  q,  and  r  vanish.  We 

have  then  by  (9), 

^_^  =  0      ̂ -^  =  0       ̂ -^  =  0   (15) 

dy      dz       '      dz      dx       '      dx      dy         ^     '' 
whence  we  learn  that  adx  + /3dy  +  ydz  =  d<l)   (16), 

is  an  exact  differential  of  <^,  so  that 

-t     ̂  =  f  •     r  =  f   (m: 
fi  is  proportional  to  the  density  of  the  vortices,  and  represents  the  "  capacity 

for  magnetic  induction"  in  the  medium.  It  is  equal  to  1  in  air,  or  in  whatever 
medium  the  experiments  were  made  which  determined  the  powers  of  the  magnets, 

the  strengths  of  the  electric  currents,  &c. 

Let  us  suppose  fi  constant,  then 

m 

=h{T>'^^4^^^^4M--rA?^^9^'^)   (-) 
represents  the  amount  of  imaginary  magnetic  matter  in  unit  of  volume.  That 
there  may  be  no  resultant  force  on  that  unit  of  volume  arising  from  the  action 

represented  by  the  first  term  of  equations  (12,  13,  14),  we  must  have  m  =  0,  or 

'J-g^-S  =  o   (-)• 
Now  it  may  be  shewn  that  equation  (19),  if  true  within  a  given  space, 

implies  that  the  forces  acting  within  that  space  are  such  as  would  result  from 
a  distribution  of  centres  of  force  beyond  that  space,  attracting  or  repelling 

inversely  as  the  square  of  the  distance. 

Hence  the  lines  of  force  in  a  part  of  space  where  fi  is  uniform,  and  where 

there  are  no  electric  currents,  must  be  such  as  would  result  from  the  theory 

of  "imaginary  matter"  acting  at  a  distance.  The  assumptions  of  that  theory 
are  unlike  those  of  ours,  but  the  results  are  identical 
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Let  us  first  take  the  case  of  a  single  magnetic  pole,  that  is,  one  end  of 

a  long  magnet,  so  long  that  its  other  end  is  too  far  off  to  have  a  perceptible 

influence  on  the  part  of  the  field  we  are  considering.  The  conditions  then  are, 

that  equation  (18)  must  be  fulfilled  at  the  magnetic  pole,  and  (19)  everywhere 
else.     The  only  solution  under  these  conditions  is 

't'=--,l   (^«). 
where  r  is  the  distance  from  the  pole,  and  m  the  strength  of  the  pole. 

The  repulsion  at  any  point  on  a  unit  pole  of  the  same  kind  is 

d(f>  _'in  1 

In   the   standard  medium   /i  =  1 ;   so   that   the  repulsion  is  simply  —    in   that 

medium,  as  has  been  shewn  by  Coulomb. 

In  a  medium  having  a  greater  value  of  fi  (such  as  oxygen,  solutions  of 
salts  of  iron,  &c.)  the  attraction,  on  our  theory,  ought  to  be  less  than  in  air, 

and  in  diamagnetic  media  (such  as  water,  melted  bismuth,  &c.)  the  attraction 
between  the  same  magnetic  poles  ought  to  be  greater  than  in  air. 

The  experiments  necessary  to  demonstrate  the  difference  of  attraction  of  two 

magnets  according  to  the  magnetic  or  diamagnetic  character  of  the  medium  in 

which  they  are  placed,  would  require  great  precision,  on  account  of  the  limited 

range  of  magnetic  capacity  in  the  fluid  media  known  to  us,  and  the  small 
amount  of  the  difference  sought  for  as  compared  with  the  whole  attraction. 

Let  us  next  take  the  case  of  an  electric  current  whose  quantity  is  C, 

flowing  through  a  cylindrical  conductor  whose  radius  is  R,  and  whose  length  is 
infinite  as  compared  with  the  size  of  the  field  of  force  considered. 

Let  the  axis  of  the  cylinder  be  that  of  z,  and  the  direction  of  the  current 

positive,  then  within  the  conductor  the  quantity  of  current  per  unit  of  area  is 

C         1     /d^      da\ 

)   (22): 
ir-R*      Air  \dx      dy^ 

80  that  within  the  conductor 

o-=-2^,y,    /3  =  2-^a:,    y  =  0   (23). 
VOL.  L  59 
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Beyond  the  conductor,  in  the  space  round  it, 

«^  =  2Ctan-'  ̂     (24), 

«  =  i=-^^^.-    ̂   =  g  =  ̂^^-^.'    r  =  f  =  0   (25). 
If  p  —  sjdi^-^y^  is   the   perpendicular  distance   of  any   point   from  the   axis  of 

the  conductor,    a  unit  north  pole  will  experience   a  force  =  — ,   tending  to  move 

it  round  the  conductor  in  the  direction  of  the  hands  of  a  watch,  if  the  observer 
view  it  in  the  direction  of  the  current. 

Let   us    now    consider  a   current   running  parallel   to   the  axis  of  z  in  the 

plane   of  xz   at   a  distance   p.     Let   the  quantity   of  the  current   be   c',   and   let 

the   length   of   the   part    considered  be    I,   and    its    section  5,    so    that    -    is    its 

strength  per   unit  of  section.     Putting  this  quantity  for  p  in  equations  (12,  13, 
14),  we  find 

^=  -M^ "- 
per  unit   of  volume;   and  multiplying  by  Is,  the   volume   of  the   conductor  con- 

sidered, we  find 

X=  -p.^c'1 

=  -2.f   (26), 
shewing  that   the  second   conductor    will   be   attracted   towards  the  first  with   a 
force  inversely  as  the  distance. 

We  find  in  this  case   also   that   the  amount   of  attraction  depends   on  the 
value   of  /A,   but  that  it  varies  directly  instead  of  inversely  as  /i ;   so   that  the 
attraction  between  two  conducting  wires  will  be  greater  in  oxygen  than  in  air, 
and  greater  in  air  than  in  water. 

We    shall  next  consider  the   nature   of    electric    currents   and   electromotive 
forces  in  connexion  with  the  theory  of  molecular  vortices. 
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PART  11. 

The  Theory  of  Molecular  Vortices  applied  to  Electric  Currents. 

We  have  already  shewn  that  all  the  forces  acting  between  magnets,  sub- 
stances capable  of  magnetic  induction,  and  electric  currents,  may  be  mechanically 

accounted  for  on  the  supposition  that  the  surrounding  medium  is  put  into  such 

a  state  that  at  every  point  the  pressures  are  different  in  different  directions, 

the  direction  of  least  pressure  being  that  of  the  observed  lines  of  force,  and 

the  difference  of  greatest  and  least  pressures  being  proportional  to  the  square 
of  the  intensity  of  the  force  at  that  point. 

Such  a  state  of  stress,  if  assumed  to  exist  in  the  medium,  and  to  be 

arranged  according  to  the  known  laws  regulating  lines  of  force,  will  act  upon 
the  magnets,  currents,  &c.  in  the  field  with  precisely  the  same  resultant  forces 
as  those  calculated  on  the  ordinary  hypothesis  of  direct  action  at  a  distance. 

This  is  true  independently  of  any  particular  theory  as  to  the  cause  of  this 
state  of  stress,  or  the  mode  in  which  it  can  be  sustained  in  the  medium.  We 

have  therefore  a  satisfactory  answer  to  the  question,  "Is  there  any  mechanical 
hypothesis  as  to  the  condition  of  the  medium  indicated  by  lines  of  force,  by 

which  the  observed  resultant  forces  may  be  accounted  for?"  The  answer  is, 
the  hues  of  force  indicate  the  direction  of  minimum  pressure  at  every  point  of 
the  medium. 

The  second  question  must  be,  "What  is  the  mechanical  cause  of  this 

difference  of  pressure  in  different  directions?"  We  have  supposed,  in  the  first 
part  of  this  paper,  that  this  difference  of  pressures  is  caused  by  molecular 
vortices,    having   their   axes   parallel   to   the   lines   of  force. 

We  also  assumed,  perfectly  arbitrarily,  that  the  direction  of  these  vortices 
is  such  that,  on  looking  along  a  line  of  force  from  south  to  north,  we  should 

see  the  vortices  revolving  in  the  direction  of  the  hands  of  a  watch. 
We  found  that  the  velocity  of  the  circumference  of  each  vortex  must  be 

proportional  to  the  intensity  of  the  magnetic  force,  and  that  the  density  of 
the  substance  of  the  vortex  must  be  proportional  to  the  capacity  of  the  medium 

for  magnetic  induction. 

We  have  as  yet  given  no  answers  to  the  questions,  "  How  are  these  vortices 
set   in   rotation?"  and  "Why   are   they  arranged   according   to   the   known  laws 

59—2 
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of  lines  of  force  about  magnets  and  currents?"  These  questions  are  certainly 
of  a  higher  order  of  difficulty  than  either  of  the  former ;  and  I  wish  to  separate 
the  suggestions  I  may  offer  by  way  of  provisional  answer  to  them,  from  the 

mechanical  deductions  which  resolved  the  first  question,  and  the  hypothesis  of 
vortices  which  gave  a  probable  answer  to  the  second. 

We  have,  in  fact,  now  come  to  inquire  into  the  physical  connexion  of  these 
vortices  with  electric  currents,  while  we  are  still  in  doubt  as  to  the  nature  of 

electricity,  whether  it  is  one  substance,  two  substances,  or  not  a  substance  at 

all,  or  in  what  way  it  differs  from  matter,  and  how  it  is  connected  with  it. 

We  know  that  the  lines  of  force  are  affected  by  electric  currents,  and  we 
know  the  distribution  of  those  lines  about  a  current ;  so  that  from  the  force 

we  can  determine  the  amount  of  the  current.  Assuming  that  our  explanation 
of  the  lines  of  force  by  molecular  vortices  is  correct,  why  does  a  particular 
distribution  of  vortices  indicate  an  electric  current?  A  satisfactory  answer  to 

this  question  would  lead  us  a  long  way  towards  that  of  a  very  important  one, 
"What  is  an  electric  current?" 

I  have  found  great  difficulty  in  conceiving  of  the  existence  of  vortices  in  a 

medium,  side  by  side,  revolving  in  the  same  direction  about  parallel  axes.  The 

contiguous  portions  of  consecutive  vortices  must  be  moving  in  opposite  directions ; 
and  it  is  difficult  to  understand  how  the  motion  of  one  part  of  the  medium 

can  coexist  with,  and  even  produce,  an  opposite  motion  of  a  part  in  contact 
with  it. 

The  only  ibnception  which  has  at  all  aided  me  in  conceiving  of  this  kind  of 

motion  is  that  of  the  vortices  being  separated  by  a  layer  of  particles,  revolving 
each  on  its  own  axis  in  the  opposite  direction  to  that  of  the  vortices,  so  that 

the  contiguous  surfaces  of  the  particles  and  of  the  vortices  have  the  same 
motion. 

In  mechanism,  when  two  wheels  are  intended  to  revolve  in  the  same  direc- 

tion, a  wheel  is  placed  between  them  so  as  to  be  in  gear  with  both,  and  this 

wheel  is  called  an  "idle  wheel."  The  hypothesis  about  the  vortices  which  I 
have  to  suggest  is  that  a  layer  of  particles,  acting  as  idle  wheels,  is  interposed 
between  each  vortex  and  the  next,  so  that  each  vortex  has  a  tendency  to  make 
the  neighbouring  vortices  revolve  in  the  same  direction  with  itself 

In  mechanism,  the  idle  wheel  is  generally  made  to  rotate  about  a  fixed 

axle;   but  in  epicyclic  trains  and  other  contrivances,  as,  for  instance,  in  Siemens's 
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governor  for  steam-engines*,  we  find  idle  wheels  whose  centres  are  capable  of 
motion.  In  all  these  cases  the  motion  of  the  centre  is  the  half  sum  of  the 

motions  of  the  circumferences  of  the  wheels  between  which  it  is  placed.  Let 

us  examine  the  relations  which  must  subsist  between  the  motions  of  our  vortices 

and  those  of  the  layer  of  particles  interposed  as  idle  wheels  between  them. 

Prop.  IV. — To  determine  the  motion  of  a  layer  of  particles  separating  two 
vortices. 

Let  the  circumferential  velocity  of  a  vortex,  multiplied  by  the  three  direc- 
tion-cosines of  its  axis  respectively,  be  a,  ;8,  y,  as  in  Prop.  II.  Let  I,  m,  n  be 

the  direction- cosines  of  the  normal  to  any  part  of  the  surface  of  this  vortex, 

the  outside  of  the  surface  being  regarded  positive.  Then  the  components  of  the 

velocity  of  the  particles  of  the  vortex  at  this  part  of  its  surface  will  be 

nfi  —  my  parallel  to  x, 

hf  —  na   parallel  to  y, 

ma  —  l^    parallel  to  z. 

If  this  portion  of  the  surface  be  in  contact  with  another  vortex  whose  velocities 

are  a,  ̂ ,  y,  then  a  layer  of  very  small  particles  placed  between  them  will 

have  a  velocity  which  wiU  be  the  mean  of  the  superficial  velocities  of  the 

vortices  which  they  separate,  so  that  if  u  ia  the  velocity  of  the  particles  in 
the  direction  of  x, 

u  =  ̂ m(y-y)^in{^-fi)    (27), 

since  the  normal  to  the  second  vortex  is  in  the  opposite  direction  to  that  of 
the  first. 

Prop.  V. — To  determine  the  whole  amount  of  particles  transferred  across 
unit  of  area  in  the  direction  of  x  in  unit  of  time. 

Let  Xi,  2/1,  Zi  be  the  co-ordinates  of  the  centre  of  the  first  vortex,  x.,,  y„,  z., 
those  of  the  second,  and  so  on.  Let  F,,  Fj,  &c.  be  the  volumes  of  the  first, 

second,  &c.  vortices,  and  F  the  sum  of  their  volumes.  Let  dS  be  an  element 

of  the  surface  separating  the  first  and  second  vortices,  and  x,  y,  z  its  co-ordinates. 
Let  p  be  the  quantity  of  particles  on  every  unit  of  surface.  Then  if  p  be  the 

whole   quantity  of  particles   transferred   across   irnit   of  area  in   unit   of   time   in 

♦  See  Goodeve's  ElemenU  of  Mechanism,  p.  118. 
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the  direction  of  rr,  the   whole   momentum  parallel  to   x  of  the   particles   within 

the  space  whose  volume  is  V  will  be  Fp,  and  we  shall  have 

Vp==tupdS    (28), 

the    summation    being    extended    to    every   surface    separating    any  two   vortices 
within   the  volume    V. 

Let  us  consider  the  surface  separating  the  first  and  second  vortices.  Let  an 

element  of  this  surface  be  dS,  and  let  its  direction-cosines  be  Zj,  m^,  n^^  with 
respect  to  the  first  vortex,  and  l^,  m^,  n,  with  respect  to  the  second;  then  we 
know  that 

^1  +  4  =  0,     mi  +  ma  =  0,     ni  +  n,  =  0   (29). 

The  values  of  a,  ̂ ,  y  vary  with  the  position  of  the  centre  of  the  vortex ; 
so  that  we  may  write 

with  similar  equations  for  )8  and  y. 

The  value  of  u  may  be  written  >— 

w  =  i  ̂  H  {x-x,)  +  m^  (x-x,)] 

+i^H(2/-2/i)+w2(2/-y.)}+i^H  (2-^0+^.(2-2;.)} 

-l-J^{^i{^-^^)  +  '^h{x-x,)]-:^-£j{n,{y-y,)  +  n,{y-y,)] 

-if  K(2-2.)  +  n,  (.-.,)}   (31). 

In  effecting  the  summation  of  %updS,  we  must  remember  that  round  any 
closed  surface  XldS  and  all  similar  terms  vanish ;  also  that  terms  of  the  form 

XlydS,  where  I  and  y  are  measured  in  different  directions,  also  vanish;  but  that 

terms  of  the  form  tlxdS,  where  I  and  x  refer  to  the  same  axis  of  co-ordinates, 

do  not  vanish,  but  are  equal  to  the  volume  enclosed  by  the  surface.  The 
result  is 

^^=4''(|-S<'''+''"+*")   ^''^' 
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or  dividing  by   F=  F,+  F,4-&c., 

i^l-f)   '^^)- 
If  we  make  P  =  7r   (3^). 

then  equation  (33)  will  be  identical  with  the  first  of  equations  (9),  which  give 
the  relation  between  the  quantity  of  an  electric  current  and  the  intensity  of 

the  lines  of  force  surrounding  it. 

It  appears  therefore  that,  according  to  our  hypothesis,  an  electric  current 
is  represented  by  the  transference  of  the  moveable  particles  interposed  between 

the  neighbouring  vortices.  We  may  conceive  that  these  particles  are  very  small 

compared  with  the  size  of  a  vortex,  and  that  the  mass  of  all  the  particles 

together  is  inappreciable  compared  with  that  of  the  vortices,  and  that  a  great 
many  vortices,  with  their  surrounding  particles,  are  contained  in  a  single  complete 
molecule  of  the  medium.  The  particles  must  be  conceived  to  roll  without  sliding 

between  the  vortices  which  they  separate,  and  not  to  touch  each  other,  so  that, 

as  long  as  they  remain  within  the  same  complete  molecule,  there  is  no  loss  of 

energy  by  resistance.  When,  however,  there  is  a  general  transference  of  par- 
ticles in  one  direction,  they  must  pass  from  one  molecule  to  another,  and  in 

doing  so,  may  experience  resistance,  so  as  to  waste  electrical  energy  and  generate 
heat. 

Now   let  us   suppose   the   vortices    arranged   in   a   medium   in   any  arbitraiy 

manner.     The  quantities   j^  —  ~r  >  &c.   will  then  in  general  have  values,  so  that 

there  will  at  first  be  electrical  currents  in  the  medium.  These  will  be  opposed 

by  the  electrical  resistance  of  the  medium ;  so  that,  unless  they  are  kept  up 

by  a  continuous  supply  of  force,  they  will  quickly  disappear,  and  we  shall   then 

have    j^ "~  ;j~  =  ̂>    ̂^•'>    ̂ ^^^   is,    adx  +  fidy  +  ydz  will   be   a   complete   difierential 

(see  equations  (15)  and  (16));  so  that  our  hypothesis  accounts  for  the  distri- 
bution of  the  lines  of  force. 

In  Plate  VIII.  p.  488,  fig.  1,  let  the  vertical  circle  EE  represent  an 

electric  current  flowing  from  copper  C  to  zinc  Z  through  the  conductor  EE', 
as  shewn  by  the  arrows. 
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Let  the  homontal  circle  MM'  represent  a  line  of  magnetic  force  embracing 
the  electric  circuit,  the  north  and  south  directions  being  indicated  by  the  lines 
SN  and  NS. 

Let  the  vertical  circles  V  and  V  represent  the  molecular  vortices  of  which 

the  line  of  magnetic  force  is  the  axis.  V  revolves  as  the  hands  of  a  watch, 

and   F'  the  opposite  way. 
It  will  appear  from  this  diagram,  that  if  V  and  V  were  contiguous  vortices, 

particles  placed  between  them  would  move  downwards ;  and  that  if  the  particles 

were  forced  downwards  by  any  cause,  they  would  make  the  vortices  revolve  as 

in  the  figure.  We  have  thus  obtained  a  point  of  view  from  which  we  may 

regard  the  relation  of  an  electric  current  to  its  lines  of  force  as  analogous  to 
the  relation  of  a  toothed  wheel  or  rack  to  wheels  which  it  drives. 

In  the  first  part  of  the  paper  we  investigated  the  relations  of  the  statical 
forces  of  the  system.  We  have  now  considered  the  connexion  of  the  motions 

of  the  parts  considered  as  a  system  of  mechanism.  It  remains  that  we  should 

investigate  the  dynamics  of  the  system,  and  determine  the  forces  necessary  to 
produce  given  changes  in  the  motions  of  the  different  parts. 

Prop.  VI. — To  determine  the  actual  energy  of  a  portion  of  a  medium  due 
to  the  motion  of  the  vortices  within  it. 

Let  a,  /8,  y  be  the  components  of  the  circumferential  velocity,  as  in  Prop.  II., 

then  the  actual  energy  of  the  vortices  in  unit  of  volume  will  be  proportional 
to  the  density  and  to  the  square  of  the  velocity.  As  we  do  not  know  the 

distribution  of  density  and  velocity  in  each  vortex,  we  cannot  determine  the 

numerical  value  of  the  energy  directly;  but  since  /x  also  bears  a  constant 
though  unknown  ratio  to  the  mean  density,  let  us  assume  that  the  energy 
in  unit  of  volume  is 

where  (7  is  a  constant  to  be  determined. 

Let  us  take  the  case  in  which 

«=g.  ̂ =f-  y=t   (^^)- 
Let  <l>  =  <f>i  +  <f>   (36), 
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then  <^i  is  the  potential  at  any  point  due  to  the  magnetic  system  m„  and  <^„ 

that  due  to  the  distribution  of  magnetism  represented  by  m^.  The  actual 

energy  of  all  the  vortices  is 

/;  =  2C/x(a'  +  /8'  +  y)dF   (38), 

the  integration  being  performed  over  all  space. 

This  may  be  shewn  by  integration  by  parts  (see  Green's  *  Essay  on  Elec- 

tricity,' p.  10)  to  be  equal  to 
E=  -4:iTCt{cf>,m,-h(f>,'m,  +  <f>,m,  +  (j>,m,)dV   (39). 

Or  since  it  has  been  proved  (Green's  'Essay/  p.   10)  that 
t<l>,m,dV=t<f>^m,dV, 

E=^-4:7rC{(fy{m,  +  <j),vi,  +  2<f),m,)dV   (40). 

Now  let  the  magnetic  system  m^  remain  at  rest,  and  let  w,  be  moved 

parallel  to  itself  in  the  direction  of  x  through  a  space  Sx;  then,  since  ̂ i 
depends  on  m^  only,  it  will  remain  as  before,  so  that  ̂ iTti^  will  be  constant ; 
and  since  <f>j  depends  on  m,  only,  the  distribution  of  (j),  about  m^  will  remain 
the  same,  so  that  ̂ ^rrij  will  be  the  same  as  before  the  change.  The  only  part 

of  E   that    will   be    altered   is    that    depending    on    2^,171^,    because    <^i    becomes 

<^j  4-  -p^  Zx  on  account   of  the  displacement.     The  variation   of  actual  energy  due ux 

to  the  displacement  is  therefore 

hE=-inCt  (2'^w,)  dnx   (41). 
But  by  equation  (12)  the  work  done  by  the  mechanical  forces  on  m^  during 
the  motion  is 

hW=t  ("^^^dv)  Bx   (42); 
and    since    our    hypothesis   is   a   purely    mechanical    one,   we    must   have    by   the 
conservation  of  force, 

hE+8W=0   (43); 

that   is,    the  loss  of  energy   of  the   vortices  must   be   made  up  by  work   done  iu 

moving  magnets,  so  that 

AnCt  (2  ̂  m,dv\  Bx  +  X  ("^  m,d  v)  Sx  =  0, 

<^=l   (^^)^ 
VOL.    L  60 
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SO  that  the  energy  of  the  vortices  in  unit  of  volume  is 

^/.(a'  +  ̂   +  y)   (45); 
and  that  of  a  vortex  whose  volume  is   F  is 

^^(a^  +  /3^  +  /)F.   (46). 

In  order  to  produce  or  destroy  this  energy,  work  must  be  expended  on, 

or  received  from,  the  vortex,  either  by  the  tangential  action  of  the  layer  of 
particles  in  contact  with  it,  or  by  change  of  form  in  the  vortex.  We  shall  first 

investigate  the  tangential  action  between  the  vortices  and  the  layer  of  particles 
in  contact  with  them. 

Prop.  VII. — To  find  the  energy  spent  upon  a  vortex  in  unit  of  time  by 
the  layer  of  particles  which  surrounds  it. 

Let  P,  Q,  R  be  the  forces  acting  on  unity  of  the  particles  in  the  three 

co-ordinate  directions,  these  quantities  being  functions  of  a;,  y,  and  z.  Since 
each  particle  touches  two  vortices  at  the  extremities  of  a  diameter,  the  reaction 

of  the  particle  on  the  vortices  will  be  equally  divided,  and  will  be 

-iP,    -IQ,    -iR 

on  each  vortex  for  unity  of  the  particles;  but  since  the  superficial  density  of 

the  particles  is  —  (see  equation  (34)),  the  forces  on  unit  of  surface  of  a  vortex 
will  be 

"■4^^'     "4^^'    "4^^- 
Now  let  dS  be  an  element  of  the  surface  of  a  vortex.     Let  the  direction-cosines 

of  the  normal  be  I,  m,  n.    Let  the  co-ordinates  of  the  element  be  x,  y,  z.     Let 

the  component  velocities  of  the  surface  be  u,  v,  w.     Then  the  work  expended  on 
that  element  of  surface  will  be 

'^=-±(Fu  +  Qv  +  Rw)dS   (47). 
Let  us  begin  with  the  first  term,  PudS.     P  may  be  written 

^dP        dP ^^^d^'^^d^y 

and  u^n^'-my. 

J,  ̂ dP    ̂ dP       dP  .... 
^"  +  ̂ ^  +  ̂ 2/  +  ̂ ^   (48), 
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Remembering  that  the  surface  of  the  vortex  is  a  closed  one,  so  that 

XnxdS  =  XmxdS  =  %mydS  =  tmzdS  =  0, 

and  XmydS  =  tnzdS=  F, 

we  find  2P^S=(f^-^r)F   
and  the  whole  work  done  on  the  vortex  in  unit  of  time  will  be 

dE  1 

(49). 

^=-iz^(Pu  +  Qv  +  Rw)dS 0.1 An 

1    f    /dQ     dRX^^fdR     dP\^    (dP     dQ\\y 

:^Hd^-Wy)^^[dx-^z)^y[d^-dx)j^ 47r  l*Uz 
(50). 

Prop.  VIII. — To  find  the  relations  between  the  alterations  of  motion  of  the 

vortices,  and  the  forces  P,  Q,  R  which  they  exert  on  the  layer  of  particles 
between  them. 

Let   V  be  the  volume  of  a  vortex,  then  by  (46)  its  energy  is 
1 

OTT 

and dE    1    Tr/  ̂ *  .  /o^/3_L  ̂ y 

(51), 

.(52). 

(53). 

dt  '  ̂  dt      ̂   dtj 

Comparing  this  value  with  that  given  in  equation  (50),  we  find 

/dQ      dR        da\  ,  ̂  /dR     dP        d^\  ̂      fdP      dQ        dy\      . 

This   equation   being  true   for   all   values  of   a,   ̂,    and  y,    first  let  yS  and  y 
vanish,  and  divide  by  a.     We  find 

dQ_dR_     da^ dz       dy~^  dt ^.    .,    ,  dR     dP       d^ 

and  dP_dQ^    dry 

dy       dx     ̂   dt 
From  these  equations  we  may  determine  the   relation  between  the  alterations 

of   motion    -j- ,    &c.    and   the  forces   exerted   on   the   layers   of  particles   between 

60—2 

(54). 
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the  vortices,  or,  in  the  language  of  our  hypothesis,  the  relation  between  changes 

in  the  state  of  the  magnetic  field  and  the  electromotive  forces  thereby  brought 
into  play. 

In  a  memoir  "On  the  Djoiamical  Theory  of  Diffraction"  (Cambridge  Philo- 
sophical Transactions,  Vol.  ix.  Part  1,  section  6),  Professor  Stokes  has  given  a 

method  by  which  we  may  solve  equations  (54),  and  find  P,  Qy  and  R  in  tenns 

of  the  quantities  on  the  right  hand  of  those  equations.  I  have  pointed  out* 
the  application  of  this  method  to  questions  in  electricity  and  magnetism. 

Let  us  then  find  three  quantities  F,  G,  H  from  the  equations 
dG 

dz 
 ~ 

dH         "1 

■  dy  =^'' 
dH 

dx 

dF       ̂  

dF 

dy- 

dG 

(55), 

with  the  conditions  '^\Ai^°'^'dy^^^dz^'^)^'^^^   ^^^^' 
dF     dG     dH    ̂   ,^^. 

dx      dy       dz 

Differentiating  (55)  with  respect  to  t,  and  comparing  with  (54),  we  find 

-f .  ̂ =f .  -f   (-)• 
We  have  thus  determined  three  quantities,  F,  G,  H,  from  which  we  can 

find  P,  Q,  and  R  by  considering  these  latter  quantities  as  the  rates  at  which 

the  former  ones  vary.  In  the  paper  already  referred  to,  I  have  given  reasons 

for  considering  the  quantities  F,  G,  H  as  the  resolved  parts  of  that  which 

Faraday  has  conjectured  to  exist,  and  has  called  the  electrotonic  state.  In  that 

paper  I  have  stated  the  mathematical  relations  between  this  electrotonic  state 
and  the  lines  of  magnetic  force  as  expressed  in  equations  (55),  and  also  between 
the  electrotonic  state  and  electromotive  force  as  expressed  in  equations  (58).  We 

must  now  endeavour  to  interpret  them  from  a  mechanical  point  of  view  in 
connexion  with  our  hypothesis. 

*  Camhridge  Philosophical  Transactions,  Vol.  X.  Part  i.  Art.  3.  "On  Faraday's  Lines  of  Force,' 
pp.  205—209  of  this  vol. 
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We  shall  in  the  first  place  examine  the  process  by  which  the  lines  of  force 

are  produced  by  an  electric  current. 

Let  AB,  Plate  VIII. ,  p.  488,  fig.  2,  represent  a  current  of  electricity  in  the 

direction  from  A  to  B.  Let  the  large  spaces  above  and  below  AB  represent  the 

vortices,  and  let  the  small  circles  separating  the  vortices  represent  the  layers  of 

particles  placed  between  them,  which  in  our  hypothesis  represent  electricity. 

Now  let  an  electric  current  from  left  to  right  commence  in  AB.  The 

row  of  vortices  gh  above  AB  will  be  set  in  motion  in  the  opposite  direction 

to  that  of  a  watch.  (We  shall  call  this  direction  +,  and  that  of  a  watch  -.) 
We  shall  suppose  the  row  of  vortices  kl  still  at  rest,  then  the  layer  of  particles 
between  these  rows  will  be  acted  on  by  the  row  gh  on  their  lower  sides,  and 

will  be  at  rest  above.  If  they  are  free  to  move,  they  will  rotate  in  the 

negative  direction,  and  will  at  the  same  time  move  from  right  to  left,  or  in 

the  opposite  direction  from  the  current,  and  do  form  an  induced  electric  current. 

If  this  current  is  checked  by  the  electrical  resistance  of  the  medium,  the 

rotating  particles  will  act  upon  the  row  of  vortices  Jcl,  and  make  them  revolve 

in  the  positive  direction  till  they  arrive  at  such  a  velocity  that  the  motion  of 

the  particles  is  reduced  to  that  of  rotation,  and  the  induce4  current  disappears. 

If,  now,  the  primary  current  AB  be  stopped,  the  vortices  in  the  row  gh  will 
be  checked,  while  those  of  the  row  kl  still  continue  in  rapid  motion.  The 

momentum  of  the  vortices  beyond  the  layer  of  particles  pq  will  tend  to  move 
them  from  left  to  right,  that  is,  in  the  direction  of  the  primary  current;  but 

if  this  motion  is  resisted  by  the  medium,  the  motion  of  the  vortices  beyond  pq 

will  be  gradually  destroyed. 

It  appears  therefore  that  the  phenomena  of  induced  currents  are  part  of  the 

process  of  communicating  the  rotatory  velocity  of  the  vortices  from  one  part  of 
the  field  to  another. 

As  an  example  of  the  action  of  the  vortices  in  producing  induced  currents, 

let  us  take  the  following  case :— Let  B,  Plate  VIIL,  p.  488,  fig.  3,  be  a  circular 

ring,  of  uniform  section,  lapped  uniformly  with  covered  wire.  It  may  be  shewn 

that  if  an  electric  current  is  passed  through  this  wire,  a  magnet  placed  within 

the  coil  of  wire  wiU  be  strongly  affected,  but  no  magnetic  effect  wUl  be  produced 

on  any  external  point.  The  effect  will  be  that  of  a  magnet  bent  round  till 

its  two  poles  are  in  contact. 

If  the  coil   is   properly   made,    no    effect   on   a   magnet  placed  outside  it  can 
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be  discovered,  whether  the  current  is  kept  constant  or  made  to  vary  in  strength ; 

but  if  a  conducting  wire  C  be  made  to  embrace  the  ring  any  number  of  times, 
an  electromotive  force  will  act  on  that  wire  whenever  the  current  in  the  coil  is 

made  to  vary ;  and  if  the  circuit  be  closed^  there  will  be  an  actual  current  in 
the  wire  C. 

This  experiment  shews  that,  in  order  to  produce  the  electromotive  force,  it 

is  not  necessary  that  the  conducting  wire  should  be  placed  in  a  field  of  magnetic 
force,  or  that  lines  of  magnetic  force  should  pass  through  the  substance  of  the 

wu'e  or  near  it.  All  that  is  required  is  that  lines  of  force  should  pass  through 
the  circuit  of  the  conductor,  and  that  these  lines  of  force  should  vary  in  quantity 

during  the  experiment. 

In  this  case  the  vortices,  of  which  we  suppose  the  lines  of  magnetic  force 

to  consist,  are  all  within  the  hollow  of  the  ring,  and  outside  the  ring  all  is  at 

rest.  If  there  is  no  conducting  circuit  embracing  the  ring,  then,  when  the 

primary  current  is  made  or  broken,  there  is  no  action  outside  the  ring,  except 
an  instantaneous  pressure  between  the  particles  and  the  vortices  which  they 

separate.  If  there  is  a  continuous  conducting  circuit  embracing  the  ring,  then, 
when  the  primary  current  is  made,  there  will  be  a  current  in  the  opposite 

direction  through  C;  and  when  it  is  broken,  there  will  be  a  current  through  C 
in  the  same  direction  as  the  primary  current. 

We  may  now  perceive  that  induced  currents  are  produced  when  the  elec- 

tricity yields  to  the  electromotive  force, — this  force,  however,  still  existing 
when  the  formation  of  a  sensible  current  is  prevented  by  the  resistance  of  the 
circuit. 

The  electromotive  force,  of  which  the  components  are  P,  Q,  R,  arises  from 

the  action  between  the  vortices  and  the  interposed  particles,  when  the  velocity 

of  rotation  is  altered  in  any  part  of  the  field.  It  corresponds  to  the  pressure 
on  the  axle  of  a  wheel  in  a  machine  when  the  velocity  of  the  driving  wheel 
is  increased  or  diminished. 

The  electrotonic  state,  whose  components  are  F,  G,  H,  is  what  the  electromotive 

force  would  be  if  the  currents,  &c.  to  which  the  lines  of  force  are  due,  instead 

of  arriving  at  their  actual  state  by  degrees,  had  started  instantaneously  from 

rest  with  their  actual  values.  It  corresponds  to  the  impulse  which  would  act 

on  the  axle  of  a  wheel  in  a  machine  if  the  actual  velocity  were  suddenly  given 

to  the  driving  wheel,  the  machine  being  previously  at  rest. 
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If  the  machine  were  suddenly  stopped  by  stopping  the  driving  wheel,  each 

wheel  would  receive  an  impulse  equal  and  opposite  to  that  which  it  received 
when  the  machine  was  set  in  motion. 

This  impulse  may  be  calculated  for  any  part  of  a  system  of  mechanism, 

and  may  be  called  the  reduced  momentum  of  the  machine  for  that  point.  In 
the  varied  motion  of  the  machine,  the  actual  force  on  any  part  arising  from 

the  variation  of  motion  may  be  found  by  diiferentiating  the  reduced  momentum 

with  respect  to  the  time,  just  as  we  have  found  that  the  electromotive  force 

may  be  deduced  from  the  electrotonic  state  by  the  same  process. 

Having  found  the  relation  between  the  velocities  of  the  vortices  and  the 
electromotive  forces  when  the  centres  of  the  vortices  are  at  rest,  we  must 

extend  our  theory  to  the  case  of  a  fluid  medium  containing  vortices,  and 

subject  to  all  the  varieties  of  fluid  motion.  If  we  fix  our  attention  on  any 
one  elementary  portion  of  a  fluid,  we  shall  find  that  it  not  only  travels  from 

one  place  to  another,  but  also  changes  its  form  and  position,  so  as  to  be  elon- 
gated in  certain  directions  and  compressed  in  others,  and  at  the  same  time  (in 

the  most  general  case)  turned  round  by  a  displacement  of  rotation. 

These  changes  of  form  and  position  produce  changes  in  the  velocity  of  the 
molecular  vortices,  which  we  must  now  examine. 

The  alteration  of  form  and  position  may  always  be  reduced  to  three  simple 

extensions  or  compressions  in  the  direction  of  three  rectangular  axes,  together 

with  three  angular  rotations  about  any  set  of  three  axes.  We  shall  first  con- 
sider the  effect  of  three  simple  extensions  or  compressions. 

Prop.  IX. — To  find  the  variations  of  a,  yS,  y  in  the  parallelepiped  .r,  y,  z 

when  X  becomes  x-^-hx;  y,  y  +  Sy ;  and  z,  z  +  Bz;  the  volume  of  the  figure 
remaining  the  same. 

By  Prop.  II.  we  find  for  the  work  done  by  the  vortices  against  pressure, 

hW=p,B{xyz)-^(a'yzBx-i-p:'zxZy-\-'/x2jSz)   (59); 

and  by  Prop.  VI.  we  find  for  the  variation  of  energy, 

BE=-^(aBa  +  ̂h^-{-yBy)xyz   (60). 477 
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The   sum  SW+BE  must  be  zero   by  the  conservation  of  energy,  and  8  (xyz)  =  0, 
since  xyz  is  constant;  so  that 

(Sa-af)+^(s^-^|)+y(Sy-y|)  =  0   (61). 

In   order  that  this  should  be  true  independently  of  any  relations  between  a,  /8, 
and  y,  we  must  have 

Sa  =  a«|,    S^=;8j,     Sy  =  y|   (62). 

Prop.  X. — To  find  the  variations  of  a,  /8,  y  due  to  a  rotation  0^  about  the 
axis  of  X  from  y  to  2;,  a  rotation  O^  about  the  axis  of  y  from  z  to  x,  and  a 
rotation  ̂ 3  about  the  axis  of  z  from  ic  to  y. 

The  axis  of  y8  will  move  away  from  the  axis  of  x  by  an  angle  $3 ;  so 

that  /8  resolved  in  the  direction  of  x  changes  from  0  to  —JSO^. 

The  axis  of  y  approaches  that  of  x  by  an  angle  6^ ;  so  that  the  resolved 

part  of  y  in  direction  x  changes  from  0  to  yd^. 

The  resolved  part  of  a  in  the  direction  of  x  changes  by  a  quantity  depending 
on  the  second  power  of  the  rotations,  which  may  be  neglected.  The  variations  of 
a,  )8,  y  from  this  cause  are  therefore 

8a  =  yl9,-M,     S^  =  a^3-y(9„     hy^^d.-aO,   (63). 

The  most  general  expressions  for  the  distortion  of  an  element  produced  by 

the  displacement  of  its  different  parts  depend  on  the  nine  quantities 

d  ̂        d  ̂        d  ̂        d  ̂        d  ̂        d  ̂        d  ̂        d  ̂        d  ̂ 

tJ""'   3^^^'   Tz^"'  Tx^J-  Ty^y-    di^'  Tx^'    Ty^-    Tz^-' 
and  these   may  always  be  expressed  in   terms   of  nine   other  quantities,   namely, 

three  simple  extensions  or  compressions, 

Zx      Zy      hz' 

^'    Y'   ~^ along  three   axes  properly   chosen,   x\  y\  z',   the   nine   direction-cosines   of  these 
axes    with   their    six   connecting   equations,   which  are   equivalent  to   three  inde- 

pendent quantities,  and  the  three  rotations  6^,  0,,  0^  about  the  axes  of  x,  y,  z. 

Let  the  direction-cosines  of  x'  with  respect  to  cc,  y,  z  be  /„  mj,  n^^  those  of 
y\  \y  7?ij,  Tiy  and  those  of  z\  Zj,  ma,  n, ;  then  we  find 
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dx  X  y  z 

-J-  Bx  =  I,m,  —  +  km,  4-  +  ̂wi,—  - d. 
dy  '    '  X       '   '  y 

(C4), 

witli  similar  equations  for  quantities  involving  Sy  and  8z. 

Let   a,  13',  y    be  the  values  of  a,  ̂ ,  y   referred  to   the   axes  x,  y,  z;    then 
a=l,a  +  mJ3  +  n,y^ 

^'  =  l,a  +  mS-^n,y  I   (65). 
y  =  l,a  +  m^fi  +  n{y  J 

We  shaU  then  have    ha  =  kha +a^ ^-l,^' +  ye,-^e,   {^(:>), 

=i^a'^+ij3'K+W^f+ye.-^d.   (67). 

By   substituting   the   values   of  a,  /3',  y,   and  comparing  with  equations  (64),  we find 

^-  =  4^--^4'"^^^'^    ^''^ 
as   the   variation   of  a   due   to   the  change   of  form   and  position  of  the  element. 

The  variations  of  ̂   and  y  have  similar  expressions. 

Prop.  XI.— To  find  the  electromotive  forces  in  a  moving  body. 

The  variation  of  the  velocity  of  the  vortices  in  a  moving  element  is  due  to 

two  causes— the  action  of  the  electromotive  forces,  and  the  change  of  form  and 

position  of  the  element.     The  whole  variation  of  a  is  therefore 

«"=KS-f)^'^"^^^^^4^^^^^^^   ^''\ 
But  since  a  is  a  function  of  x,  y.  z  and  t,  the  variation  of  a  may  be  aiso  written 

^'^=Pj^-py-^TJ'^'i^   (^»'- 
Equating  the  two  values  of  Sa  and  dividing  by  ht,  and  remembering  that  in  the 

motion  of  an  incompressible  medium 

d  dx      ddy      d  dz_  /^,x 

didt^dy  dt^  dzdt~^   ^     ̂' 
vol.  l  ^1 
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id  that  in  the  absence  of  free  magnetism 

dx     dy      dz 

•(72). 

we  find 
\/dQ 

fi\dz 

Putting 

dy) d  dx '^'^dz'dt d  dz        d  dy  ̂ n  d  dx 

'^dzdt~°'dydi  '  '^'dyTt 

dy  dx      da  dz      da  dy     d^  dx  _^da  _ 
dz  dt      dz  dt      dy  dt      dy  dt      di 

and 

l/dG 
^'ATz- 

_\(d'G 

~  fi  \dz  dt 

dH\ 

da 

di- 

dy)
" 

d'H\ 

dydt) 

,.(r.3). 

•  (74), 

..(75). 

where  F,   G,  and   H  are    the  vahies  of  the   electrotonic   components  for  a  fixed 

point  of  space,  our  equation  becomes 

dx dz     dG 

Q  +  l^y:J7-H-^7u- 
d  fry  dy        r^dx 

f)  =  o   (-)• 
dy  V^"  '  '^^  dt     '^'^  dt 

The  expressions  for  the  variations  of  ̂   and  y  give  us  two  other  equations 
which  may  be  written  down  from  symmetry.  The  complete  solution  of  the  three 

equations  is 

Q 

dz dt 

dx 

dF  _d^ 

dt       dx 

^.      dG  _d^ 

di     ̂ '^  dt  "^  dt       dy 
dll_d^ 

dz 
„       ̂ dx  dy 

(77). 

The  first  and  second  terms  of  each  equation  indicate  the  effect  of  the  motion 

of  any  body  in  the  magnetic  field,  the  third  term  refera  to  changes  in  the 
electrotonic  state  produced  by  alterations  of  position  or  intensity  of  magnets 

or  currents  in  the  field,  and  ̂   is  a  function  of  x,  y,  z,  and  t,  which  is  inde- 
terminate as  far  as  regards  the  solution  of  the  original  equations,  but  which 

may  always  be  determined  in  any  given  case  from  the  circumstances  of  the 
problem.  The  physical  interpretation  of  ̂   is,  that  it  is  the  clectiic  tension  at 
each  point  of  space. 
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The  physical  meaning  of  the  terms  in  the  expression  for  the  electromotive 

force  depending  on  the  motion  of  the  body,  may  be  made  simpler  by  supposing 
the  field  of  magnetic  force  uniformly  magnetized  with  intensity  a  in  the  direction 

of  the  axis  of  x.  Then  if  /,  m,  n  be  the  direction-cosines  of  any  portion  of  a 

linear  conductor,  and  S  its  length,  the  electromotive  force  resolved  in  the  direction 
of  the  conductor  will  be 

e  =  S{Pl  +  Qm  +  Rn)    (78), 

'  =  ̂̂ ^{'''jt-''t)   (^^)' 
that  is,  the  product  of  /xa,  the   quantity  of  magnetic  induction  over  unit   of  area 

multiplied  by  Sim  y, -"  ;7r)»  the  area  swept  out  by  the  conductor  S  in  unit  of 

time,  resolved  perpendicular  to  the  direction  of  the  magnetic  force. 

The  electromotive  force  in  any  part  of  a  conductor  due  to  its  motion  is 

therefore  measured  by  the  number  of  lines  of  magnetic  force  which  it  crosses 
in  unit  of  time ;  and  the  total  electromotive  force  in  a  closed  conductor  is 

measured  by  the  change  of  the  number  of  lines  of  force  which  pass  through  it ; 

and  this  is  true  whether  the  change  be  produced  by  the  motion  of  the  con- 
ductor or  by  any  external  cause. 

In  order  to  understand  the  mechanism  by  which  the  motion  of  a  conductor 

across  lines  of  magnetic  force  generates  an  electromotive  force  in  that  conductor, 

we  must  remember  that  in  Prop.  X.  we  have  proved  that  the  change  of  form 

of  a  portion  of  the  medium  containing  vortices  produces  a  change  of  the  velocity 

of  those  vortices ;  and  in  particular  that  an  extension  of  the  medium  in  the 

direction  of  the  axes  of  the  vortices,  combined  with  a  contraction  in  all  direc- 

tions perpendicular  to  this,  produces  an  increase  of  velocity  of  the  vortices ; 

while  a  shortening  of  the  axis  and  bulging  of  the  sides  produces  a  diminution 

of  the  velocity  of  the  vortices. 

This  change  of  the  velocity  of  the  vortices  arises  from  the  internal  effects 

of  change  of  form,  and  is  independent  of  that  produced  by  external  electro- 

motive forces.  If,  therefore,  the  change  of  velocity  be  prevented  or  checked, 

electromotive  forces  will  arise,  because  each  vortex  will  press  on  the  surrounding 

particles  in  the  direction  in  which  it  tends  to  alter  its  motion. 

Let  A,  fig.  4,  p.  488,  represent  the  section  of  a  vertical  wire  moving  in  the 

direction  of  the  arrow  from  west  to  east,  across  a  system  of  lines  of  magnetic  force 

61—2 
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running  north  and  south.  The  curved  lines  in  fig.  4  represent  the  lines  of  fluid 

motion  about  the  wire,  the  wire  being  regarded  as  stationary,  and  the  fluid  as 

having  a  motion  relative  to  it.  It  is  evident  that,  from  this  figure,  we  can  trace 
the  variations  of  form  of  an  element  of  the  fluid,  as  the  form  of  the  element 

depends,  not  on  the  absolute  motion  of  the  whole  system,  but  on  the  relative 
motion  of  its  parts. 

In  front  of  the  wire,  that  is,  on  its  east  side,  it  will  be  seen  that  as  the 

wire  approaches  each  portion  of  the  medium,  that  portion  is  more  and  more 
compressed  in  the  direction  from  east  to  west,  and  extended  in  the  direction 
from  north  to  south ;  and  since  the  axes  of  the  vortices  lie  in  the  north  and 

south  direction,  their  velocity  will  continually  tend  to  increase  by  Prop.  X., 

unless  prevented  or  checked  by  electromotive  forces  acting  on  the  circumference 
of  each  vortex. 

We  shall  consider  an  electromotive  force  as  positive  when  the  vortices  tend 

to  move  the  interjacent  particles  upwards  perpendicularly  to  the  plane  of  the 

paper. 
The  vortices  appear  to  revolve  as  the  hands  of  a  watch  when  we  look  at 

them  from  south  to  north ;  so  that  each  vortex  moves  upwards  on  its  west  side, 
and  downwards  on  its  east  side.  In  front  of  the  wire,  therefore,  where  each 

vortex  is  striving  to  increase  its  velocity,  the  electromotive  force  upwards  must 

be  greater  on  its  west  than  on  Its  east  side.  There  will  therefore  be  a  con- 
tinual increase  of  upward  electromotive  force  from  the  remote  east,  where  it  is 

zero,  to  the  front  of  the  moving  wire,  where  the  upward  force  wiU  be  strongest. 

Behind  the  wire  a  difierent  action  takes  place.  As  the  wire  moves  away 
from  each  successive  portion  of  the  medium,  that  portion  is  extended  from  east 
to  west,  and  compressed  from  north  to  south,  so  as  to  tend  to  diminish  the 

velocity  of  the  vortices,  and  therefore  to  make  the  upward  electromotive  force 

greater  on  the  east  than  on  the  west  side  of  each  vortex.  The  upward  electro- 
motive force  wiU  therefore  increase  continually  from  the  remote  west,  where  it 

is  zero,  to  the  back  of  the  moving  wire,  where  it  will  be  strongest. 

It  appears,  therefore,  that  a  vertical  wire  moving  eastwards  will  experience 
an  electromotive  force  tending  to  produce  in  it  an  upward  current.  If  there 
is  no  conducting  circuit  in  connexion  with  the  ends  of  the  wire,  no  current  will 

be  formed,  and  the  magnetic  forces  wHl  not  be  altered ;  but  if  such  a  circuit 

exists,  there  will  be  a  current,  and  the  lines  of  magnetic   force  and  the  velocity 
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of  the  vortices  will  be  altered  from  their  state  previous  to  the  motion  of  the 

wire.  The  change  in  the  lines  of  force  is  shewn  in  fig.  5.  The  vortices  in 

front  of  the  wire,  instead  of  merely  producing  pressures,  actually  increase  in 
velocity,  while  those  behind  have  their  velocity  diminished,  and  those  at  the 
sides  of  the  wire  have  the  direction  of  their  axes  altered;  so  that  the  final 

effect  is  to  produce  a  force  acting  on  the  wire  as  a  resistance  to  its  motion. 

We  may  now  recapitulate  the  assumptions  we  have  made,  and  the  results  we 
have  obtained. 

(1)  Magneto-electric  phenomena  are  due  to  the  existence  of  matter  under 

certain  conditions  of  motion  or  of  pressure  in  every  part  of  the  magnetic  field, 
and  not  to  direct  action  at  a  distance  between  the  magnets  or  currents.  The 

substance  producing  these  effects  may  be  a  certain  part  of  ordinary  matter,  or 

it  may  be  an  aether  associated  with  matter.  Its  density  is  greatest  in  iron, 

and  least  in  diaraagnetic  substances ;  but  it  must  be  in  all  cases,  except  that  of 

iron,  very  rare,  since  no  other  substance  has  a  large  ratio  of  magnetic  capacity 
to  what  we  call  a  vacuum. 

(2)  The  condition  of  any  part  of  the  field,  through  which  lines  of  magnetic 
force  pass,  is  one  of  unequal  pressure  in  different  directions,  the  direction  of 

the  lines  of  force  being  that  of  least  pressure,  so  that  the  lines  of  force  may 
be  considered  lines  of  tension. 

(3)  This  inequality  of  pressure  is  produced  by  the  existence  in  the  medium 

of  vortices  or  eddies,  having  their  axes  in  the  direction  of  the  lines  of  force, 

and  having  their  direction  of  rotation  determined  by  that  of  the  lines  of  force. 

We  have  supposed  that  the  direction  was  that  of  a  watch  to  a  spectator 

looking  from  south  to  north.  We  might  with  equal  propriety  have  chosen  the 

reverse  direction,  as  far  as  known  facts  are  concerned,  by  supposing  resinous  elec- 

tricity instead  of  vitreous  to  be  positive.  The  effect  of  these  vortices  depends 

on  their  density,  and  on  their  velocity  at  the  circumference,  and  is  independent 

of  their  diameter.  The  density  must  be  proportional  to  the  capacity  of  the 

substance  for  magnetic  induction,  that  of  the  vortices  in  air  being  1.  The 

velocity  must  be  very  great,  in  order  to  produce  so  powerful  effects  in  so  rare 
a  medium. 

The  size  of  the  vortices  is  indeterminate,  but  is  probably  very  small  as 

compared  with  that  of  a  complete  molecule  of  ordinary  matter^''. 

*  The  angular  momentum  of  the  system  of  vortices  depends  on  their  average  diameter  ;    so  tkat  if  the 

diameter  were  sensible,  we  might  expect  that  a  magnet  would  behave  as  if  it  contained  a  revoh-ing  bodv 
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(4)  The  vortices  are  separated  from  each  other  by  a  single  layer  of  round 

particles,  so  that  a  system  of  cells  is  formed,  the  partitions  being  these  layers 

of  particles,  and  the  substance  of  each  cell  being  capable  of  rotating  as  a  vortex. 

(5)  The  particles  forming  the  layer  are  in  rolling  contact  with  both  the 

vortices  which  they  separate,  but  do  not  rub  against  each  other.  They  are 

perfectly  free  to  roll  between  the  vortices  and  so  to  change  their  place,  provided 

they  teep  within  one  complete  molecule  of  the  substance;  but  in  passing  from 

one  molecule  to  another  they  experience  resistance,  and  generate  irregular 

motions,  which  constitute  heat.  These  particles,  in  our  theory,  play  the  part  of 

electricity.  Their  motion  of  translation  constitutes  an  electric  current,  their 

rotation  serves  to  transmit  the  motion  of  the  vortices  from  one  part  of  the 

field  to  another,  and  the  tangential  pressures  thus  called  into  play  constitute 

electromotive  force.  The  conception  of  a  particle  having  its  motion  connected 

with  that  of  a  vortex  by  perfect  rolling  contact  may  appear  somewhat  awkward. 

I  do  not  bring  it  forward  as  a  mode  of  connexion  existing  in  nature,  or  even 

as  that  which  I  would  willingly  assent  to  as  an  electrical  hypothesis.  It  is, 

however,  a  mode  of  connexion  which  is  mechanically  conceivable,  and  easily 

investigated,  and  it  serves  to  bring  out  the  actual  mechanical  connexions 

between  the  known  electro-magnetic  phenomena;  so  that  I  venture  to  say  that 

any  one  who  understands  the  provisional  and  temporary  character  of  this 

hypothesis,  will  find  himself  rather  helped  than  hindered  by  it  in  his  search 

after  the  true  interpretation  of  the  phenomena. 

The  action  between  the  vortices  and  the  layers  of  particles  is  in  part 

tangential;  so  that  if  there  were  any  slipping  or  difierential  motion  between 

the  parts  in  contact,  there  would  be  a  loss  of  the  energy  belonging  to  the 

lines  of  force,  and  a  gradual  transformation  of  that  energy  into  heat.  Now  we 

know  that  the  hues  of  force  about  a  magnet  are  maintained  for  an  indefinite 

time  without  any  expenditure  of  energy;  so  that  we  must  conclude  that 

wherever  there  is  tangential  action  between  difierent  parts  of  the  medium,  there 

is  no  motion  of  slipping  between  those  parts.  We  must  therefore  conceive  that 

the  vortices  and  particles  roll  together  without  shpping ;  and  that  the  interior 

strata  of  each  vortex  receive  their  proper  velocities  from  the  exterior  stratum 

without  slipping,  that  is,  the  angular  velocity  must  be  the  same  throughout  each 
vortex. 

within  it,  -and  that  the  existence  of  this  rotation  might  be  detected  by  experiments  on  the  free  rotation  of  a 

magnet.     I  have  made  experiments  to  investigate  this  question,  but  have  not  yet  fully  tried  the  apparatus. 
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The  only  process  in  which  electro- magnetic  energy  is  lost  and  transforaied 
into  heat,  is  in  the  passage  of  electricity  from  one  molecule  to  another.  In  all 

other  cases  the  energy  of  the  vortices  can  only  be  diminished  when  an  equivalent 

quantity  of  mechanical  work  is  done  by  magnetic  action. 

(6)  The  effect  of  an  electric  current  upon  the  surrounding  medium  is  to 

make  the  vortices  in  contact  with  the  current  revolve  so  that  the  parts  next 

to  the  current  move  in  the  same  direction  as  the  current.  The  parts  furthest 

from  the  current  will  move  in  the  opposite  direction ;  and  if  the  medium  is  a 

conductor  of  electricity,  so  that  the  particles  are  free  to  move  in  any  direction, 

thfe  particles  touching  the  outside  of  these  vortices  will  be  moved  in  a  direction 

contrary  to  that  of  the  current,  so  that  there  will  be  an  induced  current  in 

the  opposite  direction  to  the  primary  one. 

If  there  were  no  resistance  to  the  motion  of  the  particles,  the  induced 

current  would  be  equal  and  opposite  to  the  primary  one,  and  would  continue 

as  long  as  the  primary  current  lasted,  so  that  it  would  prevent  all  action  of 

the  primary  current  at  a  distance.  If  there  is  a  resistance  to  the  induced 

current,  its  particles  act  upon  the  vortices  beyond  them,  and  transmit  the  motion 
of  rotation  to  them,  till  at  last  all  the  vortices  in  the  medium  are  set  in 

motion  with  such  velocities  of  rotation  that  the  particles  between  them  have  no 

motion  except  that  of  rotation,  and  do  not  produce  currents. 

In  the  transmission  of  the  motion  from  one  vortex  to  another,  there  arises  u 

force  between  the  particles  and  the  vortices,  by  which  the  particles  are  pressed 

in  one  direction  and  the  vortices  in  the  opposite  direction.  We  call  the  force 

actino-  on  the  particles  the  electromotive  force.  The  reaction  on  the  vortices  is 

equal  and  opposite,  so  that  the  electromotive  force  cannot  move  any  part  of 

the  medium  as  a  whole,  it  can  only  produce  currents.  When  the  primary 

current  is  stopped,  the  electromotive  forces  all  act  in  the  opposite  direction. 

(7)  When  an  electric  current  or  a  magnet  is  moved  in  presence  of  a 

conductor,  the  velocity  of  rotation  of  the  vortices  in  any  part  of  the  field  is 

altered  by  that  motion.  The  force  by  which  the  proper  amount  of  rotation  is 
transmitted  to  each  vortex,  constitutes  in  this  case  also  an  electromotive  force, 

and,  if  permitted,  will  produce  currents. 

(8)  When  a  conductor  is  moved  in  a  field  of  magnetic  force,  the  vortices 

in  it  and  in  its  neighbourhood  are  moved  out  of  their  places,  and  are  changed 

in    form.      The    force    arising    from    these    changes    constitutes    the    electromotive 
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force  on  a  moving  conductor,  and  is  found  by  calculation  to  correspond  with 

that  determined  by  experiment. 

"We  have  now  shewn  in  w-hat  way  electro -magnetic  phenomena  may  be 
imitated  by  an  imaginary  system  of  molecular  vortices.  Those  who  have  been 

already  inclined  to  adopt  an  hypothesis  of  this  kind,  will  find  here  the  con- 
ditions which  must  be  fulfilled  in  order  to  give  it  mathematical  coherence,  and 

a  comparison,  so  far  satisfactory,  between  its  necessary  results  and  known  facts. 

Those  who  look  in  a  different  direction  for  the  explanation  of  the  facts,  may 

be  able  to  compare  this  theory  with  that  of  the  existence  of  currents  flowing 

freely  through  bodies,  and  with  that  which  supposes  electricity  to  act  at  a 

distance  with  a  force  depending  on  its  velocity,  and  therefore  not  subject  to 

the  law  of  conservation  of  energy. 

The  facts  of  electro-magnetism  are  so  complicated  and  various,  that  the 

explanation  of  any  number  of  them  by  several  different  hypotheses  must  be 

interesting,  not  only  to  physicists,  but  to  all  who  desire  to  understand  how 

much  evidence  the  explanation  of  phenomena  lends  to  the  credibility  of  a  theory, 

or  how  far  we  ought  to  regard  a  coincidence  in  the  mathematical  expression  of 

two  sets  of  phenomena  as  an  indication  that  these  phenomena  are  of  the  same 

kind.  We  know  that  partial  coincidences  of  this  kind  have  been  discovered ; 

and  the  fact  that  they  are  only  partial  is  proved  by  the  divergence  of  the 

laws  of  the  two  sets  of  phenomena  in  other  respects.  We  may  chance  to  find, 

in  the  higher  parts  of  physics,  instances  of  more  complete  coincidence,  which 

may  require  much  investigation  to  detect  their  ultimate  divergence. 

NOTE. 

Since  the  first  part  of  this  paper  was  written,  I  have  seen  in  Crelle's  Journal  for  1859, 
a  paper  by  Prof.  Helmholtz  on  Fluid  Motion,  in  which  he  has  pointed  out  that  the  lines 
of  fluid  motion  are  arranged  according  to  the  game  laws  as  the  Hnes  of  magnetic  force,  the 
path  of  an  electric  current  corresponding  to  a  line  of  axes  of  those  particles  of  the  fluid 
which  are  in  a  state  of  rotation.  This  is  an  additional  instance  of  a  physical  analogy,  the 

investigation  of  which  may  illustrate  both  electro-magnetism  and  hydrodynamics. 
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[From  the  Philosophical  Magazine  for  January  and  February,  1802.] 

PART  III. 

THE    THEORY    OF    MOLECULAR    VORTICES    APPLIED    TO    STATICAL    ELECTRICITY. 

In  the  first  part  of  this  paper ^^  I  have  shewn  how  the  forces  acting  between 
ma^ets,  electric  currents,  and  matter  capable  of  magnetic  induction  may  be 

accounted  for  on  the  hypothesis  of  the  magnetic  field  being  occupied  with 

innumerable  vortices  of  revolving  matter,  their  axes  coinciding  with  the  direction 
of  the  magnetic  force  at  every  point  of  the  field. 

The  centrifugal  force  of  these  vortices  produces  pressures  distributed  in  such 

a  way  that  the  final  efiect  is  a  force  identical  in  direction  and  magnitude 

with  that  li^ich  we  observe. 

In  the  second  partf  I  described  the  mechanism  by  which  these  rotations 

may  be  made  to  coexist,  and  to  be  distributed  according  to  the  known  laws 
of  magnetic  lines  of  force. 

I  conceived  the  rotating  matter  to  be  the  substance  of  certain  cells,  divided 

from  each  other  by  cell-walls  composed  of  particles  which  are  very  small  com- 

pared with  the  cells,  and  that  it  is  by  the  motions  of  these  particles,  and  their 

tangential  action  on  the  substance  in  the  cells,  that  the  rotation  is  communi- 
cated from  one  cell  to  another. 

I  have   not  attempted  to   explain   this  tangential  action,  but  it  is  necessary 

to   suppose,  in  order  to  account  for  the  transmission  of  rotation  from  the  exterior 

to    the    interior    parts    of    each    cell,   that   the   substance   in   the   cells   possesses 

elasticity   of  figure,  similar  in  kind,  though  different  in  degree,  to  that  observed 

in   BoUd   bodies.     The    undulatory   theory   of  light   requires  us  to  admit  this  kind 

of    elasticity    in   the   luminiferous   medium,    in    order    to    account    for    transverse 

vibrations.      We    need    not    then    be    surprised    if   the   magneto-electric    medium 
possesses  the  same  property. 

♦  PhiL  Mag.  March,  1861  [pp.  4.51— 466  of  this  vol.]. 
t  Phil.  Mag.  April  and  May,  1861   [pp.  467—488  of  this  vol.]. 
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According  to  our  theory,  the  particles  which  forta  the  pai-titions  between 
the  cells  constitute  the  matter  of  electricity.  The  motion  of  these  particles 

constitutes  an  electric  current;  the  tangential  force  with  which  the  particles 

are  pressed  by  the  matter  of  the  cells  is  electromotive  force,  and  the  pressure 

of  the  particles  on  each  other  corresponds  to  the  tension  or  potential  of  the 
electricity. 

If  we  can  now  explain  the  condition  of  a  body  with  respect  to  the 

surrounding  medium  when  it  is  said  to  be  "charged"  with  electricity,  and 
account  for  the  forces  acting  between  electrified  bodies,  we  shall  have  established 
a  connexion  between  all  the  principal  phenomena  of  electrical  science. 

We  know  by  experiment  that  electric  tension  is  the  same  thing,  whether 

observed  in  statical  or  in  current  electricity;  so  that  an  electromotive  force 

produced  by  magnetism  may  be  made  to  charge  a  Leyden  jar,  as  Ls  done  by 
the  coil  machine. 

When  a  difference  of  tension  exists  in  different  parts  of  any  body,  the 

electricity  passes,  or  tends  to  pass,  from  places  of  greater  to  places  of  smaller 
tension.  If  the  body  is  a  conductor,  an  actual  passage  of  electricity  takes 

place;  and  if  the  difference  of  tensions  is  kept  up,  the  current  continues  to 

flow  with  a  velocity  proportional  inversely  to  the  resistance,  or  directly  to  the 
conductivity  of  the  body. 

The  electric  resistance  has  a  very  wide  range  of  values,  that  of  the  metals 

being  the  smallest,  and  that  of  glass  being  so  great  that  a  charge  of  electricity 

has  been  preserved'"*  in  a  glass  vessel  for  years  without  penetrating  the  thick- 
ness of  the  glass. 

Bodies  which  do  not  permit  a  current  of  electricity  to  flow  through  them 

are  called  insulators.  But  though  electricity  does  not  flow  through  them, 

the  electrical  effects  are  propagated  through  them,  and  the  amount  of  these 

effects  differs  according  to  the  nature  of  the  body;  so  that  equally  good  insu- 
lators may  act  differently  as  dielectrics  t. 

Here  then  we  have  two  independent  qualities  of  bodies,  one  by  which  they 

allow  of  the  passage  of  electricity  through  them,  and  the  other  by  which  they 

allow  of  electrical  action  being  transmitted  through  them  without  any  electri- 
city being  allowed  to  pass.  A  conducting  body  may  be  compared  to  a  porous 

membrane     which    opposes    more    or    less    resistance   to   the   passage   of    a  fluid, 

*  By  Professor  W.  Thomson.  t  Faraday,  Experimental  Researc/tes,  Series  xi. 
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while  a  dielectric  is  like  an  elastic  membrane  which  may  be  impervious  to  the 

fluid,    but    transmits  the  pressure  of  the  fluid  on  one  side  to  that  on  the  other. 

As  long  as  electromotive  force  acts  on  a  conductor,  it  produces  a  current 

which,  as  it  meets  with  resistance,  occasions  a  continual  transformation  of 

electrical  energy  into  heat,  which  is  incapable  of  being  restored  again  as  electri- 

cal energy  by  any  reversion  of  the  process. 

Electromotive  force  acting  on  a  dielectric  produces  a  state  of  polarization 

of  its  parts  similar  in  distribution  to  the  polarity  of  the  particles  of  iron  under 

the  influence  of  a  magnet*,  and,  like  the  magnetic  polarization,  capable  of 
being  described  as  a  state  in  which  every  particle  has  its  poles  in  opposite 
conditions. 

In  a  dielectric  under  induction,  we  may  conceive  that  the  electricity  iri 

each  molecule  is  so  displaced  that  one  side  is  rendered  positively,  and  the 

other  negatively  electrical,  but  that  the  electricity  remains  entirely  connected 

with  the  molecule,  and  does  not  pass  from  one  molecule  to  another. 

The  eSect  of  this  action  on  the  whole  dielectric  mass  is  to  produce  a 

general  displacement  of  the  electricity  in  a  certain  direction.  This  displace- 
ment does  not  amount  to  a  current,  because  when  it  has  attained  a  certain 

value  it  remains  constant,  but  it  is  the  commencement  of  a  current,  and  its 

variations  constitute  currents  in  the  positive  or  negative  direction,  according  as 

the  displacement  is  increasing  or  diminishing.  The  amount  of  the  displacement 

depends  on  the  nature  of  the  body,  and  on  the  electromotive  force ;  so  that 

if  h  is  the  displacement,  R  the  electromotive  force,  and  E  a  coefficient 

depending  on  the  nature  of  the  dielectric, 

R=-iTrE'h', 

and  if  r  is  the  value  of  the  electric  current  due  to  displacement, 

_dh 

'''  dt' 

These  relations  are  Independent  of  any  theory  about  the  internal  mechanism 

of  dielectrics  ;  but  when  we  find  electromotive  force  producing  electric  displace- 
ment in  a  dielectric,  and  when  we  find  the  dielectric  recovering  from  its  state 

of    electric    displacement    with    an    equal    electromotive     force,    we    cannot   hel{) 

*  See  Prof.   Mossotti,    "  Discussione  Analitica,"  Memorie  della  Soc.   Itaiiaiui  (Modena),  Vol.  xxiv. 
Part  2,  p.  49. 
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regarding  the  phenomena  as  those  of  an  elastic  body,  yielding  to  a  pressure, 

and  recovering  its  form  when  the  pressure  is  removed. 

According  to  our  hypothesis,  the  magnetic  medium  is  divided  into  cells, 

separated  by  partitions  formed  of  a  stratum  of  particles  which  play  the  part 

of  electricity.  When  the  electric  particles  are  urged  in  any  direction,  they  will, 

by  their  tangential  action  on  the  elastic  substance  of  the  cells,  distort  each 

cell,  and  call  into  play  an  equal  and  opposite  force  arising  from  the  elasticity 
of  the  cells.  When  the  force  is  removed,  the  cells  will  recover  their  form, 

and   the   electricity   will   return   to   its  former  position. 

In  the  following  investigation  I  have  considered  the  relation  between  the 

displacement  and  the  force  producmg  it,  on  the  supposition  that  the  cells  are 

spherical.  The  actual  form  of  the  cells  probably  does  not  differ  from  that  of 

a   sphere   sufficiently   to   make  much   difference  in   the   numerical  result. 

I  have  deduced  from  this  result  the  relation  between  the  statical  and 

dynamical  measures  of  electricity,  and  have  shewn,  by  a  comparison  of  the 

electro- magnetic  experiments  of  MM.  Kohlrausch  and  Weber  with  the  velocity 

of  light  as  found  by  M.  Fizeau,  that  the  elasticity  of  the  magnetic  medium 

in  air  is  the  same  as  that  of  the  luminiferous  medium,  if  these  two  coex- 

istent,   coextensive,    and   equally   elastic   media   are   not   rather   one   medium. 

It  appears  also  from  Prop.  XV.  that  the  attraction  between  two  electrified 

bodies  depends  on  the  value  of  E\  and  that  therefore  it  would  be  less  in 

turpentine  than  in  air,  if  the  quantity  of  electricity  in  each  body  remains  the 

same.  If,  however,  the  j^otentials  of  the  two  bodies  were  given,  the  attraction 

between  them  would  vary  inversely  as  E\  and  would  be  greater  in  turpentine 
than  in  air. 

Prop.  XII.  To  find  the  conditions  of  equilibrium  of  an  elastic  sphere 

whose  surface  is  exposed  to  normal  and  tangential  forces,  the  tangential  forces 

being  proportional  to  the  sine  of  the  distance  from  a  given  point  on  the  sphere. 

Let  the  axis  of  z  be  the  axis  of  spherical  co-ordinates. 

Let  ̂ ,  -q,  C  be  the  displacements  of  any  particle  of  the  sphere  in  the  direc- 

tions of  X,  y,  and  z. 

Let  p^,  p,jy,  2^zz  be  the  stresses  normal  to  planes  perpendicular  to  the  three 

axes,  and  let  Py^,  2^zx>  X>xy  be  the  stresses  of  distortion  in  the  planes  yz,  zx, 

and  xy. 
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Let  fJL  be  the  coefficient  of  cubic  elasticity,  so  that  if 

(80). 

P-^d^Ty^S   
Let  in  be  the  coefficient  of  rigidity,  so  that 

^-^»=-(i-|)-^«   («^)- 
Then  we  have  the  following  equations  of  elasticity  in  an  isotropic  medium, 

  (82); 

with  similar  equations  in  y  and  z,  and  also 
m  /dr]      dC 

P-=2[d-z+dy)'^   
In  the  case  of  the  sphere,  let  us  assume  the  radius  =  a,  and 

i=exz,    y)  =  ezy,     i=f{x'  +  y')+gz'  +  d   

Then  p„  =  2(ix-^m){e-irg)z-{-mez=Pyy' 
p,,  =  2  (/x - ^m)  {e-\-g)z  +  2mgz 

i'»  =  2(«  +  2/)2 

(83). 

(84). 

(85). 

(86), 

The  equation  of  internal  equilibrium  with  respect  to  z  is 

d  d  d  ^ 

dxP-  +  d^P-  +  dzP''  =  '>   which  is  satisfied  in  this  case  if 

m(e  +  2/+2^)  +  2(^-im)(e+^)  =  0    (87). 

The   tangential   stress   on   the   surface   of   the   sphere,   whose   radius   is   a  at 
an  angular  distance  0  from  the  axis  in  plane  xz, 

T={Pxx  -Pzz)  sin  0  cos  6  +jp„  (cos'  6  -  sin'  6)   (88) 
ma 

2m  {e+f-g)  a  sin  ̂ cos'^-  ̂   (e  +  2/)  sin  ̂ . 
.(89). 
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In  order  that  T  may  be  proportional  to  sin  6,  the  first  term  must  vanish,  and 
therefore 

9  =  ̂ +f   (90). 

r=_!^(e  +  2/)sin^   (91). 

The  normal  stress  on  the  surface  at  any  point  is 

N =2^xx  sin'^  ̂ -^Vyy  ̂'^^'^  ̂   +  '^Pxz  sin  6  cos  d 

=  2  (/x  -  \m)  (e+g)a  cos  6  +  2ma  cos  0  {{e  +/)  sin"-  O  +  g  cos'  6}   (92) ; 

or  by  (87)  and  (90),  iV^= -77ia  (e  +  2/)  cos  ̂     (93). 
The  tangential  displacement  of  any  point  is 

t  =  ico9e-Csm0=  -  {arf+d)sme   (94). 

The  normal  displacement  is 

n  =  ̂ sm0  +  CGOse  =  {a'{e+f)  +  d}cos0   (95). 

If  we  make  a'{e+f)  +  d  =  0   (96), 

there  will  be  no  normal  displacement,  and  the  displacement  will  be  entirely 

tangential,  and  we  shall  have 

t  =  a-esm0   (97). 

The  whole  work  done  by  the  superficial  forces  is 

U=^X{Tt)dS, 

the  summation  being  extended  over  the  surface  of  the  sphere. 

The  energy  of  elasticity  in  the  substance  of  the  sphere  is 

the  summation  being  extended  to  the  whole  contents  of  the  sphere. 

We  find,  as  we  ought,  that  these  quantities  have  the  same  value,  namely 

U=-^Tra'me{e  +  2f)   (98). 

We  may  now  suppose  that  the  tangential  action  on  the  surface  arises  from  a 

layer  of  particles  in  contact  with  it,  the  particles  being  acted  on  by  their  own 

mutual  pressure,  and  acting  on  the  surfaces  of  the  two  cells  with  which  they 
are  in  contact. 
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We  assume  the  axis  of  z  to  be  in  the  direction  of  maximum  variation  of 

the  pressure  among  the  particles,  and  we  have  to  determine  the  relation 

between  an  electromotive  force  R  acting  on  the  particles  in  that  direction,  and 

the  electric  displacement  h  which  accompanies  it. 

Prop.  XIII. — To  find  the  relation  betNveen  electromotive  force  and  electric 

displacement  when  a  uniform  electromotive  force  R  acts  parallel  to  the  axis  of  z. 

Take  any  element  IS  of  the  surface,  covered  with  a  stratum  whose  density 

is  /3,    and  having    its    normal    inclined  6   to    the   axis  of  2;   then   the   tangential 

force  upon  it  will  be 
pRhS  sin  0  =  2  TBS   (99), 

T  being,   as  before,   the   tangential   force   on   each  side   of  the   surface.     Putting 

p  =  - —  as  in  equation  (34)*,  we  find 

R=-27rma(e  +  2f)   (100). 

The  displacement  of  electricity  due  to  the  distortion  of  the  sphere  is 

tSS^ptsmd  taken  over  the  whole  surface   (101)5 

and  if  h  is  the  electric  displacement  per  unit  of  volume,  we  shall  have 

iTTa%  =  ̂ i*e   (102), 

h  =  ̂ae   (103); 2tt 

so  that  R  =  in-m^^-fh   (104), e 

or  we  may  write  R=  —  inE-h   (105), e  +  2f 

provided  we  assume  E'=—7nn~    "     (lOG). 

or 

Finding  e  and  /  from  (87)  and  (90),  we  get 

E^  =  Trm   1—   (107). 
3  /x 

The  ratio  of  m  to  /x  varies  in  different  substances;  but  in  a  medium  whose 

elasticity  depends  entirely  upon  forces  acting  between  pairs  of  particles,  this 
ratio  is  that  of  G  to  5,  and  in  this  case 

E'  =  Trm   (108). 

♦  Phil.   Mag.  April,   ISGl   [p.  471  of  this  vol.]. 
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When  the  resistance  to  compression  is  infinitely  greater  than  the  resistance  to 

distortion,  as  in  a  liquid  rendered  slightly  elastic  by  gum  or  jelly, 

E'^^TTin   (109). 

The  value  of  Er  must  lie  between  these  limits.  It  is  probable  that  the  substance 
of  our  cells  is  of  the  former  kind,  and  that  we  must  use  the  first  value  of  E\ 

which  is  that  belonging  to  a  hypothetically  "perfect"  solid■'^  in  which 
5m  =  6/i   (110), 

so  that  we  must  use  equation  (108). 

Prop.  XIV. — To  correct  the  equations  (9)t  of  electric  currents  for  the  efiect 
due  to  the  elasticity  of  the  medium. 

We  have  seen  that  electromotive  force  and  electric  displacement  are 

connected  by  equation  (105).  Differentiating  this  equation  with  respect  to  t,  we 
find 

f=--^§   (-)■ 

shewing  that  when  the  electromotive  force  varies,  the  electric  displacement  also 
varies.  But  a  variation  of  displacement  is  equivalent  to  a  current,  and  this 
current  must  be  taken  into  account  in  equations  (9)  and  added  to  r.  The  three 

equations  then  become 

_  J_  /^  _  ̂  _  i  ̂ ^ 
-^~  47r  \dv      dz      E'  dt 

^"477  \dy     dx      £>  dt) 
1   /cZy8      da       ]^dR\ 

E^  dt) 
(112), 

4Tr\dx      dy      E" 
where  p,  q,  r  are  the  electric  currents  in  the  directions  of  x,  y,  and  z;  a,  ̂ ,  y 

are  the  components  of  magnetic  intensity;  and  P,  Q,  R  are  the  electromotive 
forces.  Now  if  e  be  the  quantity  of  fi:ee  electricity  in  unit  of  volume,  then  the 
equation  of  continuity  will  be 

I4M+S-   (^^«)- 
♦  See  Rankine  "On  Elasticity,"  Camb.  and  Dub.  Math.  Joum.  1851. 
t  Phil  Mag.  March,  1861  [p.  462  of  this  vol.]. 
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Differentiating   (112)   with    respect  to  x,  y,   and  z   respectively,   and   substituting, 
we  find 

de_J^d  (JP     clQ     dR\ 
dt~  inE'dtydx      dy       dz  j   ^       " 

1      (dP  .  dQ  .  dR\  ..... 

the  constant  being  omitted,  because  e  =  0  when  there  are  no  electromotive  forces. 

Prop.  XV. — To  find  the  force  acting  between  two  electrified  bodies. 

The  energy  in  the  medium  arising  from  the  electric  displacements  is 

U=-t^{Pf+Qg  +  Rh)hV   (116), 

where   P,   Q,  R  are   the  forces,  and/,  g,  h  the  displacements.     Now  when  there 

is  no  motion  of  the  bodies  or  alteration  of  forces,  it  appears  from  equations  (77)* 
that 

j^        d^      ̂         d^      j._     d^  ,       . 

and  we  know  by  (105)  that 

P=  ̂ AirElf,     Q=  -iirE'g,     R=-i7rPPh   (119); 

dy\ 

^.       1     ̂   fd^ 
whence  ^=8^^  U -^4-g)^^   (-). 
Integi-ating  by  parts   throughout  all  space,  and  remembering  that  ̂   vanishes  at 
an  infinite  distance, 

^-sk'H^.-w-^y   (-)^ 
or  by  (115),  U=it{^e)hV   (122). 

Now    let    there    be    two    electrified    bodies,    and    let    e,   be   the   distribution   of 

electricity  in  the  first,  and  ̂ i  the  electric  tension  due  to  it,  and  let 

1     fd^      d^      d^,\  ,       . 

Let  Cj  be  the  distribution  of  electricity  in  the  second  body,  and  ̂ ,  the 

tension  due  to  it;  then  the  whole  tension  at  any  point  will  be  "^i +  "*!'„  and 
the  expansion  for  U  will  become 

ir=it(%e,-\-%e,  +  %e,  +  %e,)BV   (124). 

♦  PhU.  Mag.  May,  1861   [p.  482  of  this  vol.]. 
VOL.  I.  63 
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Let  the  body  whose  electricity  is  e^  be  moved  in  any  way,  the  electricity 

moving  along  with  the  body,  then  since  the  distribution  of  tension  ̂ j  moves 

with  the  body,  the  value  of  %e^  remains  the  same. 

%ei  also  remains  the  same;  and  Green  has  shewn  (Essay  on  Electricity, 

p.  10)  that  %e^  =  %ei,  so  that  the  work  done  by  moving  the  body  against 
electric  forces 

W=BU=S%(%e,)BV   (125). 

And  if  ei  is  confined  to  a  small  body, W=e,B%, 

or  Fdr  =  e,'^dr   (126), 
where  F  is  the  resistance  and  dr  the  motion. 

If  the  body  e^  be  small,  then  if  ?'  is  the  distance  from  e^,  equation  (123) 

gives 

r 

whence  F=-JS^%'   (127); 

or  the  force  is  a  repulsion  varying  inversely  as  the  square  of  the  distance. 

Now  let  7)i  and  172  be  the  same  quantities  of  electricity  measured  stati- 
cally, then  we  know  by  definition  of  electrical  quantity 

F=-'^   (128); 

and  this  will  be  satisfied  provided 

ri,  =  Fe,  and  r),  =  Ee,   (129); 

so  that  the  quantity  F  previously  determined  in  Prop.  XIII.  is  the  number  by 
which  the  electrodynamic  measure  of  any  quantity  of  electricity  must  be 

multipUed  to  obtain  its  electrostatic  measure. 

That  electric  current  which,  circulating  round  a  ring  whose  area  is  unity, 

produces  the  same  efiect  on  a  distant  magnet  as  a  magnet  would  produce 
whose  strength  is  unity  and  length  unity  placed  perpendicularly  to  the  plane 
of  the   ring,   is   a   unit   current;   and  F  units,  of  electricity,  measured  statically, 
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traverse  the  section  of  this  current  in  one  second, — these  units  being  such  that 
any  two  of  them,  placed  at  unit  of  distance,  repel  each  other  with  unit  of  force. 

We  may  suppose  either  that  E  units  of  positive  electricity  move  in  the 

positive  direction  through  the  wire,  or  that  E  units  of  negative  electricity  move 
in  the  negative  direction,  or,  tliirdly,  that  \E  units  of  positive  electricity  move 
in  the  positive  direction,  while  ̂ E  units  of  negative  electricity  move  in  the 

negative  direction  at  the  same  time. 

The  last  is  the  supposition  on  which  MM.  Weber  and  Kohlrausch*  proceed, 
who  have  found 

^^=155,370,000,000   (130), 

the  unit  of  length  being  the  millimetre,  and  that  of  time  being  one  second, 
whence 

j5'  =  310,740,000,000     (131). 

Prop.  XVI. — To  find  the  rate  of  propagation  of  transverse  vibrations 

through  the  elastic  medium  of  which  the  cells  are  composed,  on  the  suppo- 
sition that  its  elasticity  is  due  entirely  to  forces  acting  between  pairs  of  particles. 

By  the  ordinary  method  of  investigation  we  know  that 

y=J^,   (132), 
where  m  is  the  coefiScient  of  transverse  elasticity,  and  p  is  the  density.  By 

referring  to  the  equations  of  Part  I.,  it  will  be  seen  that  if  /)  is  the  density 

of  the  matter  of  the  vortices,  and  /x  is  the  "  coefficient  of  magnetic  induction," 

l^  =  TTp   (133); 

whence  7rm=  F'/i   (134); 

and  by  (108),  E=  V\fjx    (135). 

In  air  or  vacuum  /x  =  1,  and  therefore 

V=E  1 
=  310,740,000,000  millimetres  per  second  |   (136). 

=  193,088  miles  per  second  J 

*  Abhandlungen  der  K&nig.  Sdchnachen  Geaellschaftf  Vol.  iii.  (1857),  p.  260. 

63—2 
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The  velocity  of  light  in  air,  as  determined  by  M.  Fizeau*,  ia  70,843  leagues 
per  second  (25  leagues  to  a  degree)  which  gives 

7=314,858,000,000  millimetres 

=  195,647  miles  per  second   (137). 

The  velocity  of  transverse  undulations  in  our  hypothetical  medium,  calculated 

from  the  electro-magnetic  experiments  of  MM.  Kohlrausch  and  Weber,  agrees  so 

exactly  with  the  velocity  of  light  calculated  from  the  optical  experiments  of 
M.  Fizeau,  that  we  can  scarcely  avoid  the  inference  that  light  consists  in  the 

transverse  undulations  of  the  same  medium  which  is  the  cause  of  electric  and 

nmgnetic  phenomena. 

Prop.  XVII. — To  find  the  electric  capacity  of  a  Leyden  jar  composed  of 

any  given  dielectric  placed  between  two  conducting  surfaces. 

Let  the  electric  tensions  or  potentials  of  the  two  surfaces  be  "^^  and  Sl'.j. 
Let  S  be  the  area  of  each  surface,  and  6  the  distance  between  them,  and  let 

e  and  -  e  be  the  quantities  of  electricity  on  each  surface ;  then  the  capacity 

^=^   <i'^«)- 

Within  the  dielectric  we  have  the  variation  of  "^  perpendicular  to  the  surface 

Beyond  either  surface  this  variation  is  zero. 

Hence  by  (115)  applied  at  the  surface,  the  electricity  on  unit  of  area  is 

OT   
('''^■' 

and  we  deduce  the  whole  capacity  of  the  apparatus, 

^-l&e   (^^°)' 
so    that    the    quantity     of    electricity    required    to    bring    the   one   surface   to   a 

*  Comptes  Rmdus,  Vol.  xxix.  (1849),  p.  90.  In  Galbraitu  and  Haughton's  Manual  of  Astronomy, 
M.  Fizeau's  result  is  stated  at  169,944  geographical  miles  of  1000  fathoms,  which  gives  193,118 

statute  miles;   the  value  deduced  from  aberration  is  192,000  miles. 
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given   tension    varies    directly    as    the    surface,    inversely    as    the    thickness,    and 
inversely  as  the  square  of  E. 

Now  the  coefl&cient  of  induction  of  dielectrics  is  deduced  from  the  capacity 

of  induction-apparatus  formed  of  them  ;  so  that  if  D  is  that  coefficient,  D  varies 

inversely  as  E",  and  is  unity  for  air.     Hence 

^=Yr^   <"•)• 
where    V  and    V^   are   the   velocities   of  light   in   air   and   in   the   medium.     Now 

V 
if  i  is  the.  index  of  refraction,  -jir  =  i,  and 

Z>  =  -   (142); 

so  that  the  inductive  power  of  a  dielectric  varies  directly  as  the  square  of  the 
index  of  refraction,  and  inversely  as  the  magnetic  inductive  power. 

In  dense  media,  however,  the  optical,  electric,  and  magnetic  phenomena 

may  be  modified  in  different  degrees  by  the  particles  of  gross  matter ;  and  their 

mode  of  arrangement  may  influence  these  phenomena  differently  in  different 

directions.  The  axes  of  optical,  electric,  and  magnetic  properties  will  probably 

coincide ;  but  on  account  of  the  unknown  and  probably  complicated  nature  of 

the  reactions  of  the  heavy  particles  on  the  setherial  medium,  it  may  be  im- 

possible to  discover  any  general  numerical  relations  between  the  optical,  electric, 
and  magnetic  ratios  of  these  axes. 

It  seems  probable,  however,  that  the  value  of  E,  for  any  given  axis, 

depends  upon  the  velocity  of  light  whose  vibrations  are  parallel  to  that  axis, 

or  whose  plane  of  polarization  is  perpendicular  to  that  axis. 

In  a  uniaxal  crystal,  the  axial  value  of  E  will  depend  on  the  velocity  of 

the  extraordinary  ray,  and  the  equatorial  value  will  depend  on  that  of  the 
ordinary  ray. 

In  "positive"  crystals,  the  axial  value  of  E  will  be  the  least  and  in 
negative  the  greatest. 

The  value  of  D„  which  varies  inversely  as  E\  will,  cwteris  panbus,  be  greatest 

for  the  axial  direction  in  positive  crystals,  and  for  the  equatorial  direction  in 

negative  crystals,  such  as  Iceland  spar.  If  a  spherical  portion  of  a  crystal, 

radius  =a,  be  suspended  in  a  field  of  electric  force  which  would  act  on  unit  of 
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electricity  with  force  =1,  and  if  A  and  D,  be  the  coefficients  of  dielectric 

induction  along  the  two  axes  in  the  plane  of  rotation,  then  if  6  be  the  incli- 
nation of  the  axis  to  the  electric  force,  the  moment  tending  to  turn  the  sphere 

will  be 

3  ̂ J^L;L?^_^^^7Vsin2^   (143), 
^  (2A+1)(2A  +  1) 

and  the  axis  of  greatest  dielectric  induction  (D^  will  tend  to  become  parallel  to 
the  lines  of  electric  force. 

PART    IV. 

THE    THEORY    OF    MOLECULAR    VORTICES    APPLIED    TO    THE    ACTION    OF    MAGNETISM 

ON    POLARIZED    LIGHT. 

The  connexion  between  the  distribution  of  lines  of  magnetic  force  and  that 

of  electric  currents  may  be  completely  expressed  by  saying  that  the  work  done 

on  a  unit  of  imaginary  magnetic  matter,  when  carried  round  any  closed  curve, 

is  proportional  to  the  quantity  of  electricity  which  passes  through  the  closed 

curve.  The  mathematical  form  of  this  law  may  be  expressed  as  in  equations  (9)*, 

wliich  I  here  repeat,  where  a,  /8,  y  are  the  rectangular  components  of  magnetic 

intensity,  and  p,  q,  r  are  the  rectangular  components  of  steady  electric  cuiTents, 

^     47r  \dy      dz 

1    /da 

^  =  ii[d-z- 

-1) 

(9). The  same  mathematical  connexion  is  found  between  other  sets  of  phenomena 

in  physical  science. 

(1)  If  a,  /S,  y  represent  displacements,  velocities,  or  forces,  then  p,  q,  r 

will  be  rotatory  displacements,  velocities  of  rotation,  or  moments  of  couples  pro- 
ducing rotation,  in  the  elementary  portions  of  the  mass. 

*  Phil  Mag.  March,  1861  [p.  462  of  this  vol]. 
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(2)  If  a,  /8,  y  represent  rotatory  displacements  in  a  uniform  and  contin
uous 

substance,  then  p,  q,  r  represent  the  relative  linear  displacement  of  a  particle 

with  respect  to  those  in  its  immediate  neighbourhood.  See  a  paper  by  Prof.  W. 

Thomson  "On  a  Mechanical  Representation  of  Electric,  Magnetic,  and  Galvanic 

Forces,"  Camh.  and  Dublin  Math.  Journal,  Jan.   1847. 

(3)  If  a,  j8,  y  represent  the  rotatory  velocities  of  vortices  whose  ce
ntres 

are  fixed,  then  p,  q,  r  represent  the  velocities  with  which  loose  particles  placed 

between  them  would  be  carried  along.  See  the  second  part  of  this  paper  (Phil. 

Mag.  April,   1861)  [p.  469]. 

It  appears  from  all  these  instances  that  the  connexion  between  magnetism 

and  electricity  has  the  same  mathematical  form  as  that  between  certain 

pairs  of  phenomena,  of  which  one  has  a  linear  and  the  other  a  rotato
ry 

character.  Professor  Challis*  conceives  magnetism  to  consist  in  currents  of  a 

fluid  whose  direction  corresponds  with  that  of  the  lines  of  magnetic  force  ;  and 

electric  currents,  on  this  theory,  are  accompanied  by,  if  not  dependent  on,  a 

rotatory  motion  of  the  fluid  about  the  axis  of  the  current.  Professor  Helmholt
zf 

has  investigated  the  motion  of  an  incompressible  fluid,  and  has  conceived  
lines 

drawn  so  as  to  correspond  at  every  point  with  the  instantaneous  a
xis  of 

rotation  of  the  fluid  there.  He  has  pointed  out  that  the  lines  of  fluid  motio
n 

are  arranged  according  to  the  same  laws  with  respect  to  the  lines  of  rotatio
n, 

as  those  by  which  the  lines  of  magnetic  force  are  arranged  with  respect  to
 

electric  currents.  On  the  other  hand,  in  this  paper  I  have  regarded  magnetism 

as  a  phenomenon  of  rotation,  and  electric  currents  as  consisting  of  the  a
ctual 

translation  of  particles,  thus  assuming  the  inverse  of  the  relation  betwee
n  the 

two  sets  of  phenomena. 

Now  it  seems  natural  to  suppose  that  all  the  direct  efiects  of  any  cause 

which  is  itself  of  a  longitudinal  character,  must  be  themselves  longitudinal,
  and 

that  the  dii^ect  eflects  of  a  rotatory  cause  must  be  themselves  rotatory\  A
 

motion  of  translation  along  an  axis  cannot  produce  a  rotation  about  that
  axis 

unless  it  meets  with  some  special  mechanism,  like  that  of  a  screw,  
which 

connects  a  motion  in  a  given  direction  along  the  axis  with  a  rotation  in  a 
 given 

direction  round  it;  and  a  motion  of  rotation,  though  it  may  produce  tensi
on 

along  the  axis,  cannot  of  itself  produce  a  current  in  one  direction  alo
ng  the  axis 

rather  than  the  other. 

*  Phil.  Mag.  December,  1860,  January  and  February,   18G1. 

t  Crelle,  Journal,  Vol.  LV.  (1858),  p.  25. 
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Electric  currents  are  known  to  produce  effects  of  transference  in  tlie  direc- 
tion of  the  current.  They  transfer  the  electrical  state  from  one  body  to  another, 

and  they  transfer  the  elements  of  electrolytes  in  opposite  directions,  but  they 

do  not*  cause  the  plane  of  polarization  of  light  to  rotate  when  the  light  tra- 
verses the  axis  of  the  current. 

On  the  other  hand,  the  magnetic  state  is  not  characterized  by  any  strictly 

longitudinal  phenomenon.  The  north  and  south  poles  differ  only  in  their  names, 
and  these  names  might  be  exchanged  without  altering  the  statement  of  any 

magnetic  phenomenon ;  whereas  the  positive  and  negative  poles  of  a  battery  are 

completely  distinguished  by  the  different  elements  of  water  which  are  evolved 

there.  The  magnetic  state,  however,  is  characterized  by  a  well-marked  rotatory 
phenomenon  discovered  by  Faraday  f — the  rotation  of  the  plane  of  polarized  light 
when  transmitted  along  the  lines  of  magnetic  force. 

When  a  transparent  diamagnetic  substance  has  a  ray  of  plane-polarized  light 
passed  through  it,  and  if  lines  of  magnetic  force  are  then  produced  in  the 
substance  by  the  action  of  a  magnet  or  of  an  electric  current,  the  plane  of 

polarization  of  the  transmitted  light  is  found  to  be  changed,  and  to  be  turned 

through  an  angle  depending  on  the  intensity  of  the  magnetizing  force  within 
the  substance. 

The  direction  of  this  rotation  in  diamagnetic  substances  is  the  same  as  that 

in  which  positive  electricity  must  circulate  round  the  substance  in  order  to 

produce  the  actual  magnetizing  force  within  it;  or  if  we  suppose  the  horizontal 

part  of  terrestrial  magnetism  to  be  the  magnetizing  force  acting  on  the  sub- 

stance, the  plane  of  polarization  would  be  turned  in  the  direction  of  the  earth's 
true  rotation,  that  is,  from  west  upwards  to  east. 

In  paramagnetic  substances,  M.  VerdetJ  has  found  that  the  plane  of  polari- 
zation is  turned  in  the  opposite  direction,  that  is,  in  the  direction  in  which 

negative  electricity  would  flow  if  the  magnetization  were  effected  by  a  helix 
surrounding  the  substance. 

In  both  cases  the  absolute  direction  of  the  rotation  is  the  same,  whether 

the  light  passes  from  north  to  south  or  from  south  to  north, — a  fact  which  dis- 
tinguishes this  phenomenon  from  the  rotation  produced  by  quartz,  turpentine,  &c., 

♦  Faraday,  Experimental  Eesearclies,  951—954,  and  2216—2220. 
t  Ibid.,  Series  xix. 

X  Comptes  Rendus,  Vol.  XLiii.  p.  529;  Vol.  XLiv,  p.   1209. 
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in  which  the  absolute  direction  of  rotation  is  reversed  when  that  of  the  light 
is  reversed.  The  rotation  in  the  latter  case,  whether  related  to  an  axLs,  as  in 

quartz,  or  not  so  related,  as  in  fluids,  indicates  a  relation  between  the  direction 

of  the  ray  and  the  direction  of  rotation,  which  is  similar  in  its  formal  expression 

to  that  between  the  longitudinal  and  rotatory  motions  of  a  right-handed  or  a 

left-handed  screw;  and  it  indicates  some  property  of  the  substance  the  mathe- 
matical form  of  which  exhibits  right-handed  or  left-handed  relations,  such  as  are 

known  to  appear  in  the  external  forms  of  crystals  having  these  properties.  In 
the  magnetic  rotation  no  such  relation  appears,  but  the  direction  of  rotation  is 

directly  connected  with  that  of  the  magnetic  lines,  in  a  way  which  seems  to 
indicate  that  magnetism  is  really  a  phenomenon  of  rotation. 

The  transference  of  electrolytes  in  fixed  directions  by  the  electric  current, 

and  the  rotation  of  polarized  light  in  fixed  directions  by  magnetic  force,  are 
the  facts  the  consideration  of  which  has  induced  me  to  regard  magnetism  as  a 
phenomenon  of  rotation,  and  electric  currents  as  phenomena  of  translation,  instead 

of  following  out  the  analogy  pointed  out  by  Helmholtz,  or  adopting  the  theory 
propounded  by  Professor  Challis. 

The  theory  that  electric  currents  are  linear,  and  magnetic  forces  rotator}' 
phenomena,  agrees  so  far  with  that  of  Ampere  and  Weber ;  and  the  hypothesis 

that  the  magnetic  rotations  exist  wherever  magnetic  force  extends,  that  the 

centrifugal  force  of  these  rotations  accounts  for  magnetic  attractions,  and  that 

the  inertia  of  the  vortices  accounts  for  induced  currents,  is  supported  by  the 

opinion  of  Professor  W.  Thomson*.  In  fact  the  whole  theory  of  molecular  vor- 
tices developed  in  this  paper  has  been  suggested  to  me  by  observing  the 

direction  in  which  those  investigators  who  study  the  action  of  media  are  looking 

for  the  explanation  of  electro-magnetic  phenomena. 
Professor  Thomson  has  pointed  out  that  the  cause  of  the  magnetic  action 

on  light  must  be  a  real  rotation  going  on  in  the  magnetic  field.  A  right-handed 

circularly  polarized  ray  of  light  is  found  to  travel  with  a  different  velocity 

according  as  it  passes  from  north  to  south,  or  from  south  to  north,  along  a 
line  of  magnetic  force.  Now,  whatever  theory  we  adopt  about  the  direction  of 

vibrations  in  plane-polarized  light,  the  geometrical  arrangement  of  the  parts  of 
the  medium  during  the  passage  of  a  right-handed  circularly  polarized  ray  is 
exactly  the  same  whether  the  ray  is  moving  north  or  south.     The  only  difference 

*  See  Nichol's  Cyclopcedia,  art  "Magnetism,  Dynamical  Relations  of,"  edition  1860;  Proceedings 
of  Royal  Society,  June  1856  and  June  1861  ;   and  Phil.  Mag.  1857. 

VOL.  I.  64 
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is,  that  the  particles  describe  their  circles  in  opposite  directions.  Since,  therefore, 

the  configuration  is  the  same  in  the  two  cases,  the  forces  acting  between  par- 
ticles must  be  the  same  in  both,  and  the  motions  due  to  these  forces  must  be 

equal  in  velocity  if  the  medium  was  originally  at  rest;  but  if  the  medium  be 
in  a  state  of  rotation,  either  as  a  whole  or  in  molecular  vortices,  the  circular 

vibrations  of  light  may  differ  in  velocity  according  as  their  direction  is  similar 

or  contrary  to  that  of  the  vortices. 
We  have  now  to  investigate  whether  the  hjrpothesis  developed  in  this 

paper — that  magnetic  force  is  due  to  the  centrifugal  force  of  small  vortices,  and 
that  these  vortices  consist  of  the  same  matter  the  vibrations  of  which  constitute 

liglit — leads  to  any  conclusions  as  to  the  effect  of  magnetism  on  polarized  light. 
We  suppose  transverse  vibrations  to  be  transmitted  through  a  magnetized 
medium.  How  will  the  propagation  of  these  vibrations  be  affected  by  the 

circumstance  that  portions  of  that  medium  are  in  a  state  of  rotation  ? 
In  the  following  investigation,  I  have  found  that  the  only  effect  which  the 

rotation  of  the  vortices  will  have  on  the  light  will  be  to  make  the  plane  of 

polarization  rotate  in  the  same  direction  as  the  vortices,  through  an  angle 

proportional — 

{A)  to  the  thickness  of  the  substance, 

(B)  to  the  resolved  part  of  the  magnetic  force  parallel  to  the  ray, 

(C)  to  the  index  of  refraction  of  the  ray, 

{D)  inversely  to  the  square  of  the  wave-length  in  air, 
[E)  to  the  mean  radius  of  the  vortices, 
{F)  to  the  capacity  for  magnetic  induction. 

A  and  B  have  been  fully  investigated  by  M.  Verdet'"*,  who  has  shewn  that 
the  rotation  is  strictly  proportional  to  the  thickness  and  to  the  magnetizing 

force,  and  that,  when  the  ray  is  inclined  to  the  magnetizmg  force,  the  rotation 
is  as  the  cosine  of  that  inclination.  D  has  been  supposed  to  give  the  true 

relation  between  the  rotation  of  different  rays;  but  it  is  probable  that  C  must 

be  taken  into  account  in  an  accurate  statement  of  the  phenomena.  The  rotation 

varies,  not  exactly  inversely  as  the  square  of  the  wave  length,  but  a  little  faster; 

so  that  for  the  highly  refrangible  rays  the  rotation  is  greater  than  that  given 

by  this  law,  but  more  nearly  as  the  index  of  refraction  divided  by  the  square 

of  the  wave-lfength. 

♦  Annates  de  Chimie  et  de  Physique,  s6r.  3,  Vol.  XLi.  p.  370;   Vol.  xliii.  p.  37. 
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The  relation  (E)  between  the  amount  of  rotation  and  the  size  of  the 

vortices  shews  that  different  substances  may  differ  in  rotating  power  inde- 

pendently of  any  observable  difference  in  other  respects.  We  know  nothing 

of  the  absolute  size  of  the  vortices  ;  and  on  our  hypothesis  the  optical  phenomena 

are  probably  the  only  data  for  determining  their  relative  size  in  different  sub- 
stances. 

On  our  theory,  the  direction  of  the  rotation  of  the  plane  of  polarization 

depends  on  that  of  the  mean  moment  of  momenta,  or  angular  momentum,  of  the 

molecular  vortices  ;  and  since  M.  Verdet  has  discovered  that  magnetic  substances 

have  an  effect  on  light  opposite  to  that  of  diamagnetic  substances,  it  follows  that 

the  molecular  rotation  must  be  opposite  in  the  two  classes  of  substances. 

We  can  no  longer,  therefore,  consider  diamagnetic  bodies  as  being  those 

whose  coeflBcient  of  magnetic  indu-ction  is  less  than  that  of  space  empty  of 

gross  matter.  We  must  admit  the  diamagnetic  state  to  be  the  opposite  of  the 

paramagnetic ;  and  that  the  vortices,  or  at  least  the  influential  majority  of  them, 

in  diamagnetic  substances,  revolve  in  the  direction  in  which  positive  electricity 

revolves  in  the  magnetizing  bobbin,  while  in  paramagnetic  substances  they 

revolve  in  the  opposite  direction. 

This  result  agrees  so  far  with  that  part  of  the  theory  of  M.  Weber* 

which  refers  to  the  paramagnetic  and  diamagnetic  conditions.  M.  Weber  sup- 

poses the  electricity  in  paramagnetic  bodies  to  revolve  the  same  way  as  the 

surrounding  helix,  while  in  diamagnetic  bodies  it  revolves  the  opposite  way. 

Now  if  we  regard  negative  or  resinous  electricity  as  a  substance  the  absence 

of  which  constitutes  positive  or  vitreous  electricity,  the  results  will  be  those 

actually  observed.  This  will  be  true  independently  of  any  other  hypothesis 

than  that  of  M.  Weber  about  magnetism  and  diamagnetism,  and  does  not 

require  us  to  admit  either  M.  Weber's  theory  of  the  mutual  action  of  electric 

particles  in  motion,  or  our  theory  of  cells  and  cell-walls. 
I  am  inclined  to  believe  that  iron  differs  from  other  substances  in  the 

manner  of  its  action  as  well  as  in  the  intensity  of  its  magnetism;  and  I  think 

its  behaviour  may  be  explained  on  our  hypothesis  of  molecular  vortices,  by 

supposing  that  the  particles  of  the  iron  itself  are  set  in  rotation  by  the  tan- 

gential action  of  the  vortices,  in  an  opposite  direction  to  their  own.  These 

large   heavy   particles    would  thus  be  revolving  exactly  as  we  have  supposed  the 

*  Taylor's  Scientific  Memoirs,  Vol.  v.  p.   477. 

64—2 
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infinitely   small    particles    constituting   electricity   to    revolve,    but   without   being 

free  like  them  to  change  their  place  and  form  currents. 

The  whole  energy  of  rotation  of  the  magnetized  field  would  thus  be  greatly 

increased,  as  we  know  it  to  be ;  but  the  angular  momentum  of  the  iron 

particles  would  be  opposite  to  that  of  the  aethereal  cells  and  immensely  greater, 

so  that  the  total  angular  momentum  of  the  substance  will  be  in  the  direction 

of  rotation  of  the  iron,  or  the  reverse  of  that  of  the  vortices.  Since,  however, 

the  angular  momentum  depends  on  the  absolute  size  of  the  revolving  portions 

of  the  substance,  it  may  depend  on  the  state  of  aggregation  or  chemical 

arrangement  of  the  elements,  as  well  as  on  the  ultimate  nature  of  the  com- 

ponents of  the  substance.  Other  phenomena  in  nature  seem  to  lead  to  the 

conclusion  that  all  substances  are  made  up  of  a  number  of  parts,  finite  in  size, 

the  particles  composing  these  parts  being  themselves  capable  of  internal  motion. 

Prop.  XVIII. — To  find  the  angular  momentum  of  a  vortex. 

The  angular  momentum  of  any  material  system  about  an  axis  is  the  sum 

of  the  products  of  the  mass,  dm,  of  each  particle  multipHed  by  twice  the  area 

it  describes  about  that  axis  in  unit  of  time ;  or  if  ̂   is  the  angular  momentum 

about  the  axis  of  x, 

As  we  do  not  know  the  distribution  of  density  within  the  vortex,  we  shall 

determine  the  relation  between  the  angular  momentum  and  the  energy  of  the 

vortex  which  was  found  in  Prop.  VI. 

Since    the   time   of  revolution   is   the   same  throughout  the  vortex,  the  mean 

angular    velocity   o>    will   be    uniform    and  =-,    where   a   is   the   velocity   at   the 

circumference,  and  )•  the  radius.     Then 
A  =  ̂ dmroi, 

and  the  energy  E  =  \^dmr^(a^  =  ̂ Ao>, 

=  -!^/xa-Fby  Prop.  VI.* 

OTT 

whence  A  =  -—[xraV    (144) 

*  Phil.  Mag.  April  1861  [p.   472  of  this  vol.]. 
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for    the    axis   of    x,    with   similar   expressions   for   the   other   axes,    V  bein^r   tlie 

volume,  and  r  the  radius  of  the  vortex. 

Prop.  XIX. — To  determine  the  conditions  of  undulatory  motion  in  a  medium 

containing  vortices,  the  vibrations  being  perpendicular  to  the  direction  of  pro- 

pagation. 

Let  the  waves  be  plane-waves  propagated  in  the  direction  of  2,  and  let 

the  axis  of  x  and  y  be  taken  in  the  directions  of  greatest  and  least  elasticity 

in  the  plane  xy.  Let  x  and  y  represent  the  displacement  parallel  to  these  axes, 

which  will  be  the  same  throughout  the  same  wave-surface,  and  therefore  we 

shall  have  x  and  y  functions  of  z  and  t  only. 

Let  X  be  the  tangential  stress  on  unit  of  area  parallel  to  xy,  tending  to 

move  the  part  next  the  origin  in  the  direction  of  x. 

Let  Y  be  the  corresponding  tangential  stress  in  the 

direction  of  y. 

Let  ̂ 1  and  k^  be  the  coefficients  of  elasticity  with  respect 

to  these  two  kinds  of  tangential  stress ;  then,  if  the  medium 

is  at  rest, 

Now  let  us  suppose  vortices  in  the  medium  whose  velocities  are  represented 

as  usual   by   the   symbols    a,   ̂ ,  y,   and   let    us    suppose    that   the   value   of  a    is 

increasing   at  the    rate  -j- ,    on   account   of  the   action   of  the   tangential    stresses 

alone,    there  being   no   electromotive   force   in   the   field.     The  angular  momentum 

in    the    stratum    whose   area   is   unity,    and    thickness   dz,    is   therefore    increasing 

at  the  rate  —  fir  -j-  dz;  and  if  the  part  of  the  force   Y  which  produces  this  effect 

is   Y',  then  the  moment  of  Y'  is    -  Y'dz,  so  that   Y'  =  --—  fir  ̂ -  . '  Air'^    at 

The  complete  value  of  Y  when  the  vortices  are  in  a  state  of  varied  motion 

   (145). 

dy       1        da 

■dz~4n'^'^  dt 
o-     1    1  ^    J  dx      1       d^ 

Similarly.  Z=*,^  +  j^M*"^  , 
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The  whole  force  acting  upon  a  stratum  whose  thickness  is  dz  and  area 

unity,  is  ,—  dz  in  the  direction  of  x,  and  -p  dz  in  direction  of  y.  The  mass 

of  the  stratum  is  pdz,  so  that  we  have  as  the  equations  of  motion, 

d'x     dX     J  d'x  ,    d    I        d^ 

'di 

P  df-~~d^~^'dz^'^dzi^'^'^ 

d'y  _dY  _i  d-y      d   1 
df      dz 

dz' 

da. 

dz  Att'^    di 

(146). 

Now   the   changes   of   velocity  -j-    and   -^   are   produced    by   the   motion   of 

the  medium  contaiimig  the  vortices,  which  distorts  and  twists  every  element 

of  its  mass;  so  that  we  must  refer  to  Prop.  X.*  to  determine  these  quantities 
in  terms  of  the  motion.     We  find  there  at  equation  (68), 

da  =  a-T-  Sx-\-fi  -J-  Bx  +  y  —  Bx 

(68). 

dx  dy  ''  dz 

Since  Bx  and  By  are  functions  of  z  and  t  only,  we  may  write  this  equation 

and  in  like  manner, 

so    that   if    we   now    put 

equations  of  motion 

da  _     d"x dt  ~^  dzdt 

d^_     d?y_ 
dt     ̂   dzdt 

.(147), 

I    /xr 

a'/),    h^  =  Tfp,    and   —  —  y  =  c',    we   may   write   the 

d'x      .d'x         d^y ^"^  dz'^""  dz^dt 
df 

df~     dz:'        dz'dtl 

These  equations  may  be  satisfied  by  the  values 

(148). 

provided 

and 

X  =  A  cos  (nt  —  mz  +  a)\  h49) 

y  =  BsiD.(nt-mz  +  a)  J   

(n'-m'a')A=m^nc'Bl 

(n'-m'b')B  =  7n'nc'Aj   ^       ̂' 

Phil.  Mag.  May  1861  [p.  481  of  this  vol.]. 
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Multiplying  the  last  two  equations  together,  we  find 

{)f-m-'cr)(n'-m'h')  =  m*n'c*   (151) 

an  equation  quadratic  with  respect  to  771*,  the  solution  of  which  is 

2n' 

a'  +  h'TJia'-hJ  +  An'c* (152). 

These  values  of  m"  being  put  in  the  equations  (150)  will  each   give   a   ratio 
of  A  and  B, 

A  ̂ d'-h'T J{(r - b'Y  +  4nrc* 
B  ~  2nc' 

which  being  substituted  in  equations  (149),  will  satisfy  the  original  equations 

(148).  The  most  general  undulation  of  such  a  medium  is  therefore  compounded 
of  two  elliptic  undulations  of  different  eccentricities  travelling  with  different 

velocities  and  rotating  in  opposite  directions.  The  results  may  be  more  easily 

explained  in  the  case  in  which  a  =  & ;  then 

m'  =  — ip — :  and  A  =  TB   (153). 

Let  us  suppose  that   the   value  of  A    is   unity  for  both  vibrations,    then  we 
shall  have 

X  =  cos    nt 

y- 

nz      \  I  nz      \     ' — ,  +  cos    nt  — . 
sfcf^cV  \         Ja'  +  n&l 

[nt—  ,  \+sm.(nt-  ,  -^ ] 
\        sIce-ncV  \        -Ja'  +  iic-JJ 

(154). 

The  first  terms  of  x  and  y  represent  a  circular  vibration  in  the  negative 
direction,  and  the  second  term  a  circular  vibration  in  the  positive  direction, 

the  positive  having  the  greatest  velocity  of  propagation.  Combining  the  terms, 
we  may  write 

x  =  2  cos  {nt—jyz)  cos qz']  d") 

'J 

where 

and 

y  =  2  cos  (nt  —pz)  sin  qzj 
n  n 

2  Ja^  —  nc- 
n 

+ 

2Ja'-\-nc' n "i-^Ja^ 

nc- 

2^a'  + 

.(156). 
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These  are  the  equations  of  an  undulation  consisting  of  a  plane  vibration 

whose  periodic   time  is   — ,   and   wave-length  —  =  X,   propagated  in  the  direction 

of  %  with  a  velocity   ~  =  v,    while   the  plane   of  the   vibration  revolves  about  the 

axis  of  z  in  the  positive  direction  so  as  to  complete  a  revolution  when  z  =  —  . 

Now  let  us  suppose  c^  small,  then  we  may  write 

^=5^<i5=S   ('")' 
1     T 

and  remembering  that  c'  =  t —  v-y,  we  find 

«=i;-^.   <-«)• 
Here  r  is  the  radius  of  the  vortices,  an  unknown  quantity,  p  is  the  density 

of  the  luminiferous  medium  in  the  body,  which  is  also  unknown ;  but  if  we 

adopt   the   theory  of  Fresnel,  and  make  s  the  density  in   space   devoid  of  gross 
matter,  then 

p  =  si^   (159), 
where  i  is  the  index  of  refraction. 

On  the  theory  of  MacCullagh  and  Neumann, 

p  =  s    (160) 
ill  all  bodies. 

/x  is  the  coefficient  of  magnetic  induction,  which  is  unity  in  empty  space 
or  in  air. 

y  is  the  velocity  of  the  vortices  at  their  circumference  estimated  in  the 

ordinary  units.  Its  value  is  unknown,  but  it  is  proportional  to  the  intensity  of 

the  magnetic  force. 

Let  Z  be  the  magnetic  intensity  of  the  field,  measured  as  in  the  case  of 

terrestrial  magnetism,  then  the  intrinsic  energy  in  air  per  unit  of  volume  is 

1    ̂ „      1 

where  5   is  the  density  of  the    magnetic  medium  in  air,   which   we  have   reason 

to  believe  the  same  as  that  of  the  luminiferous  medium.     We  therefore  put 

y=^^   (161), 
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X  is  the  wave-length  of  the  undulation  in  the  substance.  Now  if  A  be  the 

wave-length  for  the  same  ray  in  air,  and  i  the  index  of  refraction  of  that  ray  in 
the  body, 

>^  =  |    (162). 

Also  V,  the  velocity  of  light  in  the  substance,  is  related  to  F,  the  velocity  of 
light  in  air,  by  the  equation 

V 

^  =  J    (163). 

Hence  if  z  be  the  thickness  of  the  substance  through  which  the  ray  passes,  the 

angle  through  which  the  plane  of  polarization  will  be  turned  will  be  in  degrees, 

^  =  ̂q^   (164); 
or,  by  what  we  have  now  calculated, 

'='^7-^-y^   i^'^y 
In  this  expression  all  the  quantities  are  known  by  experiment  except  r,  the 

radius  of  the  vortices  in  the  body,  and  s,  the  density  of  the  luminiferous 
medium  in  air. 

The  experiments  of  M.  Verdet*  supply  all  that  is  wanted  except  the  deter- 
mination of  Z  in  absolute  measure  ;  and  this  would  also  be  known  for  all  his 

experiments,  if  the  value  of  the  galvanometer  deflection  for  a  semi-rotation  of 
the  testing  bobbin  in  a  known  magnetic  field,  such  as  that  due  to  terrestrial 

magnetism  at  Paris,  were  once  for  all  determined. 

*  Annates  de  Chimie  et  de  Physique,  ser.  3,  Vol.  xli.  p.  370. 

VOL.  I.  65 
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XXIV.     On  Reciprocal  Figures  and  Diagrams  of  Forces. 

Reciprocal  figures  are  such  that  the  properties  of  the  first  relative  to  the 
second  are  the  same  as  those  of  the  second  relative  to  the  first.  Thus  inverse 

figures   and  polar   reciprocals  are   instances   of  two   difierent  kinds  of  reciprocity. 

The  kind  of  reciprocity  which  we  have  here  to  do  with  has  reference  to 

figures  consisting  of  straight  lines  joining  a  system  of  points,  and  forming 
closed  rectilinear  figures;  and  it  consists  in  the  directions  of  all  lines  in  the 

one  figure  having  a  constant  relation  to  those  of  the  lines  in  the  other  figure 
which  correspond  to  them. 

In  plane  figures,  corresponding  lines  may  be  either  parallel,  perpendicular, 
or  at  any  constant  angle.  Lines  meeting  in  a  point  in  one  figure  form  a 

closed  polygon  in  the  other. 

In  figures  in  space,  the  lines  in  one  figure  are  perpendicular  to  planes  in 
the  other,  and  the  planes  corresponding  to  lines  which  meet  in  a  point  form 

a  closed  polyhedron. 

The  conditions  of  reciprocity  may  be  considered  from  a  purely  geometrical 

point  of  view;  but  their  chief  importance  arises  from  the  fact  that  either  of 

the  figures  being  considered  as  a  system  of  points  acted  on  by  forces  along 
the  lines  of  connexion,  the  other  figure  is  a  diagram  of  forces,  in  which  these 

forces  are  represented  in  plane  figures  by  lines,  and  in  solid  figures  by  the 
areas  of  planes. 

The  properties  of  the  "triangle"  and  "polygon"  of  forces  have  been  long 
known,  and  the  "diagram"  of  forces  has  been  used  in  the  case  of  the  funicular 
polygon;    but   I   am   not   aware   of  any   more   general  statement   of    the  method 
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of  drawing  diagrams  of  forces  before  Professor  Rankine  applied  it  to  frames, 

roofs,  &c.  in  his  Applied  Mechanics,  p.  137,  &c.  The  "polyhedron  of  forces," 
or  the  equilibrium  of  forces  perpendicular  and  proportional  to  the  areas  of  the 

faces  of  a  polyhedron,  has,  I  believe,  been  enunciated  independently  at  various 

times;  but  the  application  to  a  "frame"  is  given  by  Professor  Rankine  in  the 
Philosophical  Magazine,  February,  1864. 

I    propose    to    treat    the    question    geometrically,    as    reciprocal    figures    are 

subject   to  certain  conditions  besides  those   belonging  to  diagrams  of  forces. 

On  Reciprocal  Plane  Figures. 

Definition.— Tyfo  plane  figures  are  reciprocal  when  they  consist  of  an  equal 

number  of  lines,  so  that  corresponding  lines  in  the  two  figures  are  parallel, 

and  corresponding  lines  which  converge  to  a  point  in  one  figure  form  a  closed 

polygon  in  the  other. 

Note. — If  corresponding  lines  in  the  two  figures,  instead  of  being  parallel 

are  at  right  angles  or  any  other  angle,  they  may  be  made  parallel  by  turning 

one  of  the  figures  round  in  its  own  plane. 

Since  every  polygon  in  one  figure  has  three  or  more  sides,  every  point  in 

the  other  figure  must  have  three  or  more  lines  converging  to  it;  and  since 

every  line  in  the  one  figure  has  two  and  only  two  extremities  to  which  lines 

converge,  every  line  in  the  other  figure  must  belong  to  two,  and  only  two 

closed  polygons.  The  simplest  plane  figure  fulfilling  these  conditions  is  that 

formed  by  the  six  lines  which  join  four  points  in  pairs.  The  reciprocal  figure 

consists  of  six  lines  parallel  respectively  to  these,  the  points  in  the  one  figure 

corresponding  to  triangles  in  the  other. 

General  Relation  between   the  Numbers  of  Points,   Lines,   and  Polygons  in 

Reciprocal  Figures. 

The  effect  of  drawing  a  line,  one  of  whose  extremities  is  a  point  connected 

with  the  system  of  lines  already  drawn,  is  either  to  introduce  one  new  point 

into  the  system,  or  to  complete  one  new  polygon,  or  to  divide  a  polygon  into 

two  parts,  according  as  it  is  drawn  to  an  isolated  point,  or  a  point  already 

connected    with    the    system.      Hence   the   sum   of   points   and   polygons   in   the 

65—2 
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system  is  increased  by  one  for  every  new  line.  But  the  simplest  figure  consists 

of  four  points,  four  polygons,  and  six  lines.  Hence  the  sum  of  the  points  and 

polygons  must  always  exceed  the  number  of  lines  by  two. 
JSfote. — This  is  the  same  relation  which  connects  the  numbers  of  summits, 

faces,  and  edges  of  polyhedra. 

Conditions  of  indeterminateness  and  impossibility  in  drawing  reciprocal  Diagrams. 

Taking  any  line  parallel  to  one  of  the  lines  of  the  figure  for  a  base, 

every  new  point  is  to  be  determined  by  the  intersection  of  two  new  lines. 

Calling  s  the  number  of  points  or  summits,  e  the  number  of  lines  or  edges, 

and  /  the  number  of  polygons  or  faces,  the  assumption  of  the  first  line  deter- 

mines   two    points,   and    the   remaining  s  —  2   points  are   determined  by   2  (s  —  2) 
lines.     Hence  if 

e  =  2s-3, 

every  point  may  be  determined.  If  e  be  less,  the  form  of  the  figure  will  be 

in  some  respects  indeterminate;  and  if  e  be  greater,  the  construction  of  the 

figure  will  be  impossible,  unless  certain  conditions  among  the  directions  of  the 
lines  are  fulfilled. 

These  are  the  conditions  of  drawing  any  diagram  in  which  the  directions 

of  the  lines  are  arbitrarily  given;  but  when  one  diagram  is  already  drawn  in 

which  e  is  greater  than  2s  — S,  the  directions  of  the  lines  will  not  be  altogether 

arbitrary,  but  will  be  subject  to  e-(2s-3)  conditions. 

Now  if  e,   s',  f  be  the   values  of  e,   s,   and  /  in  the   reciprocal  diagram 

e  =  s+/-2,       e'  =  s'+/'-2. 
Hence    if    s  =/,    e  =  2z  -  2 ;    and    there    will    be    one    condition    connecting    the 
directions   of  the  lines   of   the  original   diagram,   and   this  condition   will   ensure 

the  possibility  of  constructing  the  reciprocal  diagram.     If 

s  >/,    e  >  2s  -  2,   and   e'  <  2s'  -  2  ; 
so   that   the   construction    of    the   reciprocal   diagram   will  be   possible,    but  inde- 

terminate to  the  extent  of  s  —f  variables. 

If  s<f,  the  construction  of  the  reciprocal  diagram  will  be  impossible  unless 

(s-f)  conditions  be  fulfilled  in  the  original  diagram. 
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Fig.  1. 

If  any  number  of  the  points  of  the  figure  are  so  connected  among  them- 

selves aa  to  form  an  equal  number  of  closed  polygons,  the  conditions  of 

constructing  the  reciprocal  figure  must  be  found  by  considering  these  points 

separately,  and  then  examining  their  connexion  with  the  rest. 

Let  us  now  consider  a  few  cases  of  reciprocal  figures  in  detail.  The 

simplest  case  is  that  of  the  figure  formed  by  the  six  lines  connecting  four 

points  in  a  plane.  If  we  now  draw  the  six  lines  con- 
necting the  centres  of  the  four  circles  which  pass  through 

three  out  of  the  four  points,  we  shall  have  a  reciprocal 

figure,  the  corresponding  lines  in  the  two  figures  being 
at   right   angles. 

The  reciprocal  figure  formed  in  this  way  is  definite 
in  size  and  position ;  but  any  figure  similar  to  it  and 

placed  in  any  position  is  still  reciprocal  to  the  original 

figure.  If  the  reciprocal  figures  are  lettered  as  in  fig.  1, 
we  shall  have  the  relation 

AP^BQ^CR 
ap        bq        cr 

In  figures  2  and  IL  we  have  a  pair  of  reciprocal  figures  in  which  the 
lines  are  more  numerous,  but  the  construction  very  easy.  There  are  seven 

points  in  each  figure  corresponding  to  seven  polygons  in  the  other. 

Fig.  2.  Fig.  II. 

The  four  points  of  triple  concourse  of  lines  ABC,  BDE,  II I L,  LJK 
correspond   to   four   triangles,    ahc,    bde,   Ml,    Ijk. 

The  three  points  of  quadruple  concourse  ADFH,  CEGK,  IFGJ  correspond 

to   three  quadrilaterals,    adfh,    cegk,   ifgj. 

The  five  triangles  ADB,  BBC,  GJK,  IJL,  HIF  correspond  to  five  point.s 

of  triple  concourse,  adb,  ebc,  gjk,  ijl,  hif. 
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The  quadrilateral  DEGF  corresponds  to  the  point  of  quadruple  concourse 

degf. 

The   pentagon   ACKLH  corresponds  to   the   meeting  of  the  five  lines  cvcklh. 

In  drawing  the  reciprocal  of  fig.  2,  it  is  best  to  begin  with  a  point  of  triple 

concourse.  The  reciprocal  triangle  of  this  point  being  drawn,  determines  three 

lines  of  the  new  figure.  If  the  other  extremities  of  any  of  the  lines  meeting 

in  this  point  are  points  of  triple  concourse,  we  may  in  the  same  way  deter- 
mine more  lines,  two  at  a  time.  In  drawing  these  lines,  we  have  only  to 

remember  that  those  lines  which  in  the  first  figure  form  a  polygon,  start  from 

one  point  in  the  reciprocal  figure.  In  this  way  we  may  proceed  as  long  as 

we  can  always  determine  all  the  lines  except  two  of  each  successive  polygon. 

The  case  represented  in  figs.  3  and  III.  is  an  instance  of  a  pair  of  reci- 
procal figures    fulfilling    the    conditions    of    possibility    and    determinateness,   but 

Fig.  III. 

Fig.  3. 

presenting  a  slight  difficulty  in  drawing  by  the  foregoing  rule.  Each  figure  has 

here  eight  points  and  eight  polygons;  but  after  we  have  drawn  the  lines  s, 

n,  0,  k  r,  we  cannot  proceed  with  the  figure  simply  by  drawing  the  last  two 

lines  of  polygons,  because  the  next  polygons  to  be  drawn  are  quadrilaterals,  and 

we  have  only  one  side  of  each  given.  The  easiest  way  to  proceed  is  to  produce 

ahcd  till  they  form  a  quadrilateral,  then  to  draw  a  subsidiary  figure  similar  to 

tlmpq,  with  abed  similarly  situated,  and  then  to  reduce  the  latter  figure  to 

such   a   scale   and  position  that  a,  h,  c,  d  coincide  in  both  figures. 
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In   figures    4    and   IV.    the   condition   that   the   number  of  polygons  is  equal 

to   the   number   of  points   is   not  fulfilled.     In   fig.  4    there   are    five    points    and 

Fig.  IV. 

six  triangles;  in  fig.  IV.  there  are  six  points,  two  triangles,  and  three  quadri- 
laterals. Hence  if  fig.  4  is  given,  fig.  IV.  is  indeterminate  to  the  extent  of  one 

variable,  besides  the  elements  of  scale  and  position.  In  fact  when  we  have  drawn 

ABC  and  indicated  the  directions  of  P,  Q,  R,  we  may  fix  on  any  point  of  P 

as  one  of  the  angles  of  XYZ  and  complete  the  triangle  XYZ.  The  size  of 

XYZ  is  therefore  indeterminate.  Conversely,  if  fig.  IV.  is  given,  fig.  4  cannot 
be  constructed  unless  one  condition  be  fulfilled.  That  condition  is  that  P,  Q, 

and  R  meet  in  a  point.  When  this  is  fulfilled,  it  follows  by  geometry  that 

the  points  of  concourse  of  A  and  X,  B  and  Y,  and  C  and  Z  He  in  one  straight 
line  W,  which  is  parallel  to  w  in  fig.  4.  The  condition  may  also  be  expressed 

by  saying  that  fig.  IV.  must  be  a  perspective  projection  of  a  polyhedi'on  whose 
quadrilateral  faces  are  planes.  The  planes  of  these  faces  intersect  at  the  concourse 

of  P,  Q,  R,  and  those  of  the  triangular  faces  intersect  in  the  line   W. 

Figs.  5  and  V.  represent  another  case  of  the  same  kind.  In  fig.  5  we 

have  six  points  and  eight  triangles ;  fig.  V.  is  therefore  capable  of  two  degrees 
of  variability,  and  is  subject  to  two  conditions. 
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The   conditions   are   that    the    four    intersections    of    corresponding    sides    of 

opposite   quadrilaterals   in  fig.  V.    shall   lie   in   one   straight  line,   parallel   to   the 

Fig.  V.  Fig.  5. 

line  joining  the  opposite  points  of  fig.  5  which  correspond  to  these  quadrilaterals. 
There  are  three  such  lines  marked  a?,  y,  z,  and  four  points  of  intersection  lie  on 
each  line. 

"We  may  express  this  condition  also  by  saying  that  fig.  V.  must  be  a  per- 
spective projection  of  a  plane-sided  polyhedron,  the  intersections  of  opposite 

planes  being  the  lines  x,  y,  z. 

In  fig.  6,  let  ABODE  be  a  portion  of  a  polygon  bounded  by  other  polygons 
of  which  the  edges  are  PQRST,  one  or  more  of  these  edges  meeting  each  angle 
of  the  polygon. 

In  fig.  VI.,  let  ahcde  be  lines  parallel  to  ABODE  and  meeting  in  a  point, 

and  let  these  be  terminated  by  the  lines  pqrst  parallel  to  PQRST,  one  or 
more   of  these  lines  completing  each  sector  of  fig.  VI. 

In  fig.  6  draw  Y  through  the  intersections  of  ̂ C  and  PQ,  and  in  fig. 
VI,  draw  y  through  the  intersections  of  a,  p  and  c,  q.  Then  the  figures  of 
six  lines  ABOPQY  and  ahcpqy  will  be  reciprocal,  and  y  will  be  parallel  to  Y. 

Draw  X  parallel  to  x,  and  through  the  intersections  of  TX  and  OE  draw  Z, 
and  in   fig.  VI.  draw  z  through  the  intersections  of  ex  and  et ;  then  ODETXZ 
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and  cdetxz  will  be  reciprocal,  and  Z  will  be  parallel  to  z.  Then  through  the 

intersections  oi  AE  and  YZ  draw  W,  and  through  those  of  ay  and  ez  draw 

w;   and  since  ACEYZW  and  aceyzw  are  reciprocal,    W  will  be  parallel  to  w. 

Fig.  6. 

Fig.  VI. 

By  going  round  the  remaining  sides  of  the  polygon  ABODE  in  the  same 

way,  we  should  find  by  the  intersections  of  lines  another  point,  the  line  joining 

which  with  the  intersection  of  AE  would  be  parallel  to  w,  and  therefore  we 

should  have  three  points  in  one  line;  namely,  the  intersection  of  Y  and  Z, 

the  point  determined  by  a  similar  process  carried  on  on  the  other  part  of  the 

circumference  of  the  polygon,  and  the  intersection  of  A  and  E -,  and  we  should 
find  similar  conditions  for  every  pair  of  sides  of  every  polygon. 

Now  the  conditions  of  the  figure  6  being  a  perspective  projection  of  a 

plane-sided  polyhedron  are  exactly  the  same.  For  A  being  the  intersection  of 

the  faces  AP  and  AB,  and  C  that  of  BC  and  QC,  the  intersection  ylC  will 

be  a  point  in  the  intersection  of  the  faces  AP  and  CQ. 

Similarly  the  intersection  PQ  will  be  another  point  in  it,  so  that  Y  is  the 
line  of  intersection  of  the  faces  AP  and   CQ. 

In  the  same  way  Z  is  the  intersection  of  ET  and  CQ,  so  that  the  inter- 
section of   Y  and  Z  is  a  point  in  the  intersection  of  AP  and  ET. 

Another  such  point  can  be  determined  by  going  round  the  remaining  sides 

of  the  polygon;  and  these  two  points,  together  with  the  intersections  of  the 

lines  AE,  must  aU  be  in  one  straight  line,  namely,  the  intersection  of  the  faces 
AP  and  ET. 

Hence  the  conditions  of  the  possibility  of  reciprocity  in  plane  figures  are 

the  same  as  those  of  each  figure  being  the  perspective  projection  of  a  plane- 
sided  polyhedron.  When  the  number  of  points  is  in  every  part  of  the  figure 
equal  to  or  less  than  the  number  of  polygons,  this  condition  is  ftilfilled  of 

itself.     When  the   number  of  points  exceeds   the  number  of  polygons,  there  will 
VOL.  I.  66 



522  ON   RECIPROCAL   FIGURES   AND   DIAGRAMS    OF   FORCES. 

be   an  impossible   case,  unless  certain  conditions  are  fulfilled  so  that  certain  sets 

of  intersections  lie  in  straight  lines. 

Application  to  Statics. 

The  doctrine  of  reciprocal  figures  may  be  treated  in  a  purely  geometrical 

manner,  but  it  may  be  much  more  clearly  understood  by  considering  it  as  a 

method   of  calculating   the   forces  among  a  system  of  points  in  equilibrium ;    for, 

If  forces  represented  in  magnitude  by  the  lines  of  a  figure  be  made  to  act 

between  the  extremities  of  the  corresponding  lines  of  the  reciprocal  figure,  then 

the  points  of  the  reciprocal  figure  will  all  be  in  equilibrium  under  the  action 
of  these  forces. 

For  the  forces  which  meet  in  any  point  are  parallel  and  proportional  to 

the  sides  of  a  polygon  in  the   other  figure. 

If  the  points  between  which  the  forces  are  to  act  are  known,  the  problem 

of  determining  the  relations  among  the  magnitudes  of  the  forces  so  as  to  produce 

equilibrium  wiU  be  indeterminate,  determinate,  or  impossible,  according  as  the 

construction  of  the  reciprocal  figure  is  so. 

Reciprocal  figures  are  mechanically  reciprocal;  that  is,-  either  may  be  taken 
as  representing  a  system  of  points,  and  the  other  as  representing  the  magnitudes 

of  the  forces  acting  between  them. 

In  figures  like   1,   2  and  II.,   3   and  III.,  in  which  the  equation 

e  =  2s-2 

is   true,   the   forces   are   determinate    in  their   ratios;    so    that    one    being    given, 

the  rest  may  be  found. 

When  e>2.s-2,  as  in  figs.  4  and  5,  the  forces  are  indeterminate,  so  that 

more  than  one  must  be  known  to  determine  the  rest,  or  else  certain  relations 

among  them  must  be  given,  such  as  those  arising  firom  the  elasticity  of  the 

parts  of  a  frame. 

When  e<2s-2,  the  determination  of  the  forces  is  impossible  except  under 

certain  conditions.  Unless  these  be  fulfilled,  as  in  figs.  IV.  and  V.,  no  forces 

along  the  lines  of  the  figure  can  keep  its  points  in  equilibrium,  and  the  figure, 

considered  as  a  frame,   may  be  said  to  be  loose. 

When  the  conditions  are  fulfilled,  the  pieces  of  the  frame  can  support  forces, 

but   in    such   a   way    that    a   small    disfigurement   of  the    frame    may    produce    in- 
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finitely   great   forces  in  some  of  the  pieces,  or  may  throw  the  frame  into  a  loose 

condition  at  once. 

The  conditions,  however,  of  the  possibility  of  determining  the  ratios  of  the 

forces  in  a  frame  are  not  coextensive  with  those  of  finding  a  figure  perfectly 

reciprocal  to  the  frame.     The  condition  of  determinate  forces  is 

e  =  2s  -  2  ; 

the   condition  of  reciprocal   figures    is   that   every   line  belongs    to    two    polygons 

only,    and 

e  =  s+f-2. 

In  fig.  7  we  have  six  points  connected  by  ten  lines  in  such  a  way  that 
the  forces  are  all  determinate ;  but  since  the  line  Z  is  a  side  of  three  triangles, 

we  cannot  draw  a  reciprocal  figure,  for  we  should  have  to  draw  a  straight  line 
I  with  three  ends. 

If  we  attempt  to  draw  the  reciprocal  figure  as  in  fig.  VII.,  we  shall  find 

that,  in  order  to  represent  the  reciprocals  of  all  the  lines  of  fig.  7  and  fi-x 

their  relations,  we  must  repeat  two  of  them,  as  h  and  e  by  h'  and  e,  so  as 

to  form  a  parallelogram.  Fig.  VII.  is  then  a  complete  representation  of  the  rela- 

tions of  the  force  which  would  produce  equilibrium  in  fig.  7  ;  but  it  is  redundant 

by  the  repetition  of  h  and  e,   and  the  two  figures  are  not  reciprocal. 

Fig.  VII. 

On  Reciprocal  Figures  in  three  dimensions. 

Definition. — Figures  in  three  dimensions  are  reciprocal  when  they  can  be  so 

placed  that  every  line  in  the  one  figure  is  perpendicular  to  a  plane  face  of  the 

other,  and  every  point  of  concourse  of  lines  in  the  one  figure  is  represented  by 

a  closed  polyhedron  with  plane  faces. 

66—2 
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The  simplest  case  is  that  of  five  points  in  space  with  their  ten  connecting 

lines,  forming  ten  triangular  faces  enclosing  five  tetrahedrons.  By  joining  the  five 

points  which  are  the  centres  of  the  spheres  circumscribing  these  five  tetrahedrons, 

we  have  a  reciprocal  figure  of  the  kind  described  by  Professor  Rankine  in  the 

Philosophical  Magazine,  February  1864;  and  forces  proportional  to  the  areas  of 

the  triangles  of  one  figure,  if  applied  along  the  corresponding  lines  of  connexion 

of  the  other  figure,  will  keep  its  points  in  equilibrium. 

In  order  to  have  perfect  reciprocity  between  two  figures,  each  figure  must 

be  made  up  of  a  number  of  closed  polyhedra  having  plane  faces  of  separation, 

and  such  that  each  face  belongs  to  two  and  only  two  polyhedra,  corresponding 

to  the  extremities  of  the  reciprocal  line  in  the  other  figure.  Every  line  in  the 

figure  is  the  intersection  of  three  or  more  plane  faces,  because  the  plane  face  in 

the  reciprocal  figure  is  bounded  by  three  or  more  straight  lines. 

Let  s  be  the  number  of  points  or  summits,  e  the  number  of  lines  or  edges, 

/  the  number  of  faces,  and  c  the  number  of  polyhedra  or  cells.  Then  if  about 

one  of  the  summits  in  which  polyhedra  meet,  and  a  edges  and  -q  faces,  we 

describe   a  polyhedral   cell,    it   will   have   ̂    faces    and    cf  summits    and   -q   edges, 
and  we  shall  have 

i7  =  <^  +  o-^2 ; 

s,   the   number  of  summits,  will  be   decreased  by   one   and   increased  by  <t\ 

c,  the  number  of  cells,  wiU  be  increased  by  one ; 

/,  the  number  of  faces,  wiU  be  increased  by  <^ ; 

e,  the  number  of  edges,  will  be  increased  by  -q; 

so   that   c  +  c-(s4-/)   will   be  increased   by   77+ 1 -(cr  +  <^- 1),    which   is   zero,    or 

this   quantity   is   constant.     Now   in   the   figure   of  five   points   already  discussed, 

e  =  10,  c  =  5,  s  =  5,  /=  10  ;  so  that  generally 
e  +  c=^s+f, 

in  figures  made  up  of  ceils  in  the  way  described. 

The   condition  of  a  reciprocal  figure  being  indeterminate,  determinate,  or  im- 

possible except  in  particular  cases,  is 

e  =  3s -5. < 

This  condition  is  sufficient  to   determine    the    possibiHty   of  finding  a  system   of 

forces   along   the   edges   which  will   keep   the   summits   in   equilibrium ;   but  it  is 
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manifest  that  the  mechanical  problem  may  be  solved,  though  the  reciprocal  figure 

cannot  be  constructed  owing  to  the  condition  of  all  the  sides  of  a  face  lying 

in  a  plane  not  being  fulfilled,  or  owing  to  a  face  belonging  to  more  than  two 

cells.  Hence  the  mechanical  interest  of  reciprocal  figures  in  space  rapidly 

diminishes  with  their  complexity. 

Diagrams  of  forces  in  which  the  forces  are  represented  by  lines  may  be 

always  constructed  in  space  as  well  as  in  a  plane,  but  in  general  some  of  the 

lines  must  be  repeated. 

Thus  in  the  figure  of  five  points,  each  point  is  the  meeting  place  of  four 

lines.  The  forces  in  these  lines  may  be  represented  by  five  gauche  quadrilaterals 

(that  is,  quadrilaterals  not  in  one  plane) ;  and  one  of  these  being  chosen,  the 

other  four  may  be  applied  to  its  sides  and  to  each  other  so  as  to  form  five 

sides  of  a  gauche  hexahedron.  The  sixth  side,  that  opposite  the  original  quad- 

rilateral, will  be  a  parallelogram,  the  opposite  sides  of  which  are  repetitions  of 
the  same  line. 

We  have  thus  a  complete  but  redundant  diagram  of  forces  consisting  of 

eight  points  joined  by  twelve  lines,  two  pairs  of  the  lines  being  repetitions. 

This  is  a  more  convenient  though  less  elegant  construction  of  a  diagram  of 

forces,  and  it  never  becomes  geometrically  impossible  as  long  as  the  problem  is 

mechanically  possible,  however  complicated  the  original  figure  may  be. 
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XXV.     A   Dynamical    Theory  of  tJie  Electromagnetic   Field. 

(Received  October  27,— Read  December  8,  1864.) 

PAET  I. 

INTRODUCTORY. 

(1)  The  most  obvious  mechanical  phenomenon  in  electrical  and  magnetical 

experiments  is  the  mutual  action  by  which  bodies  in  certain  states  set  each 
other  in  motion  while  still  at  a  sensible  distance  from  each  other.  The  first 

step,  therefore,  in  reducing  these  phenomena  into  scientific  form,  is  to  ascertain 

the  magnitude  and  direction  of  the  force  acting  between  the  bodies,  and  when 

it  is  found  that  this  force  depends  in  a  certain  way  upon  the  relative  position 

of  the  bodies  and  on  their  electric  or  magnetic  condition,  it  seems  at  first  sight 

natural  to  explain  the  facts  by  assuming  the  existence  of  something  either  at 

rest  or  in  motion  in  each  body,  constituting  its  electric  or  magnetic  state,  and 

capable  of  acting  at  a  distance  according  to  mathematical  laws. 

In  this  way  mathematical  theories  of  statical  electricity,  of  magnetism,  of 

the  mechanical  action  between  conductors  carrying  currents,  and  of  the  induction 

of  currents  have  been  formed.  In  these  theories  the  force  acting  between  the 

two  bodies  is  treated  with  reference  only  to  the  condition  of  the  bodies  and 

their  relative  position,  and  without  any  express  consideration  of  the  surrounding 
medium. 

These  theories  assume,  more  or  less  explicitly,  the  existence  of  substances 

the  particles  of  which  have  the  property  of  acting  on  one  another  at  a  distance 

by  attraction  or  repulsion.     The   most   complete   development  of  a  theory  of  this 
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kind    is    tliat    of  M.  W.  Weber*,   who    has    made    the   same    theory   include  elec- 
trostatic and  electromagnetic  phenomena. 

In  doing  so,  however,  he  has  found  it  necessary  to  assume  that  the  force 

between  two  electric  particles  depends  on  their  relative  velocity,  as  well  as  on 
their   distance. 

This  theor}%  as  developed  by  MM.  W.  Weber  and  C.  Neumann t,  is  ex- 

ceedingly ingenious,  and  wonderfully  comprehensive  in  its  application  to  the 

phenomena  of  statical  electricity,  electromagnetic  attractions,  induction  of  currents 

and  diamagnetic  phenomena ;  and  it  comes  to  us  with  the  more  authority,  as 

it  has  serv-ed  to  guide  the  speculations  of  one  who  has  made  so  great  an 
advance  in  the  practical  part  of  electric  science,  both  by  introducing  a  consistent 

system  of  units  in  electrical  measurement,  and  by  actually  determining  electrical 
quantities  with  an  accuracy  hitherto  unknown. 

(2)  The  mechanical  difficulties,  however,  which  are  involved  in  the  assump- 

tion of  particles  acting  at  a  distance  with  forces  which  depend  on  their  velocities 

are  such  as  to  prevent  me  from  considering  this  theory  as  an  ultimate  one. 

though  it  may  have  been,  and  may  yet  be  useful  in  leading  to  the  coordina- 
tion of  phenomena, 

I  have  therefore  preferred  to  seek  an  explanation  of  the  fact  in  another 

direction,  by  supposing  them  to  be  produced  by  actions  which  go  on  in  the 

surrounding  medium  as  well  as  in  the  excited  bodies,  and  endeavourino-  to 

explain  the  action  between  distant  bodies  without  assuming  the  existence  of 

forces  capable  of  acting  directly  at  sensible  distances. 

(3)  The  theory  I  propose  may  therefore  be  called  a  theory  of  the  EJectro- 

mcignetic  Field,  because  it  has  to  do  with  the  space  in  the  neighbourhood  of 

the  electric  or  magnetic  bodies,  and  it  may  be  called  a  Dynamical  Theory, 

because  it  assumes  that  in  that  space  there  is  matter  in  motion,  by  which 

the  observed  electromagnetic  phenomena  are  produced. 

(4)  The  electromagnetic  field  is  that  part  of  space  which  contains  and 

surrounds  bodies  in  electric  or  magnetic  conditions. 

*  "  Electrodynamische  Maassbestimmungen."  Leipzic  Trans.  Vol.  i.  1849,  and  Taylor'.s  Scieudjir 
Memoirs,  Vol.   v.  art.   xiv. 

t  JUxplirnre  tentntur  quomodo  fiat  ut  lucis  planum  polarizationis  per  vires  electricas  vel  matfVJ'tints 
declinetur. — Halis  Saxonum,   1858. 
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It  may  be  filled  with  any  kind  of  matter,  or  we  may  endeavour  to  render 

it  empty  of  all  gross  matter,  as  in  the  case  of  Geissler's  tubes  and  other  po- called  vacua. 

There  is  always,  however,  enough  of  matter  left  to  receive  and  transmit 

the  undulations  of  light  and  heat,  and  it  is  because  the  transmission  of  these 

radiations  is  not  greatly  altered  when  transparent  bodies  of  measurable  density 

are  substituted  for  the  so-called  vacuum,  that  we  are  obliged  to  admit  that  the 

undulations  are  those  of  an  sethereal  substance,  and  not  of  the  gross  matter, 

the  presence  of  which  merely  modifies  in  some  way  the  motion  of  the  sether. 

"We  have  therefore  some  reason  to  beheve,  from  the  phenomena  of  light 
and  heat,  that  there  is  an  ̂ ethereal  medium  filling  space  and  permeating  bodies, 

capable  of  being  set  in  motion  and  of  transmitting  that  motion  from  one  part 

to  another,  and  of  communicating  that  motion  to  gross  matter  so  as  to  heat 

it  and  afiect  it  in  various  ways. 

(5)  Now  the  energy  communicated  to  the  body  in  heating  it  must  have 

formerly  existed  in  the  moving  medium,  for  the  undulations  had  left  the  source 

of  heat  some  time  before  they  reached  the  body,  and  during  that  time  the 

energy  must  have  been  half  in  the  form  of  motion  of  the  medium  and  half  in 
the  form  of  elastic  resilience.  From  these  considerations  Professor  W.  Thomson 

has  argued'",  that  the  medium  must  have  a  density  capable  of  comparison  with 
that  of  gross  matter,  and  has  even  assigned  an  inferior  limit  to  that  density. 

(6)  We  may  therefore  receive,  as  a  datum  derived  from  a  branch  of  science 

independent  of  that  with  which  we  have  to  deal,  the  existence  of  a  pervading 

medium,  of  small  but  real  density,  capable  of  being  set  in  motion,  and  of  trans- 

mitting motion  from  one  part  to  another  with  great,  but  not  infinite,  velocity. 

Hence  the  parts  of  this  medium  must  be  so  connected  that  the  motion  of 

one  pai-t  depends  in  some  way  on  the  motion  of  the  rest;  and  at  the  same 
time  these  connexions  must  be  capable  of  a  certain  kind  of  elastic  yielding, 

since  the  communication  of  motion  is  not  instantaneous,  but  occupies  time. 

The  medium  is  therefore  capable  of  receiving  and  storing  up  two  kinds  of 

energy,  namely,  the  "actual"  energy  depending  on  the  motions  of  its  parts,  and 

"potential"  energy,  consisting  of  the  work  which  the  medium  will  do  in  recover- 
ing from  displacement  in  virtue  of  its  elasticity. 

*  "On  the  Possible  Density  of  the  Lnminiferous  Medium,  and  on  the  Mechanical  Value  of  a 

Cubic  Mile  of  Sunlight,"  Trarisactwis  of  the  Royal  Society  of  Edinburgh  (1854),  p.  57. 
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The  propagation  of  undulations  consists  in  the  continual  transformation  of 

one  of  these  forms  of  energy  into  the  other  alternately,  and  at  any  instant 

the  amount  of  energy  in  the  wliole  medium  is  equally  divided,  so  that  half 

is  energy  of  motion,  and  half  is  elastic  resilience. 

(7)  A  medium  having  such  a  constitution  may  be  capable  of  other  kinds 

of  motion  and  displacement  than  those  which  produce  the  phenomena  of  light 

and  heat,  and  some  of  these  may  be  of  such  a  kind  that  they  may  be 

evidenced   to   our   senses   by   the   phenomena   they   produce. 

(8)  Now  we  know  that  the  luminiferous  medium  is  in  certain  cases  acted 

on  by  magnetism ;  for  Faraday*  discovered  that  when  a  plane  polarized  ray 

traverses  a  transparent  diamagnetic  medium  in  the  direction  of  the  lines  of 

magnetic  force  produced  by  magnets  or  currents  in  the  neighbourhood,  the  plane 

of  polarization  is  caused  to  rotate. 

This  rotation  is  always  in  the  direction  in  which  positive  electricity  must 

be  carried  round  the  diamagnetic  body  in  order  to  produce  the  actual  mag- 
netization of  the  field. 

M.  Verdetf  has  since  discovered  that  if  a  paramagnetic  body,  such  as 

solution  of  perchloride  of  iron  in  ether,  be  substituted  for  the  diamagnetic  body, 

the  rotation  is  in  the  opposite  direction. 

Now  Professor  W.  Thomson  J  has  pointed  out  that  no  distribution  of  forces 

actincr  between  the  parts  of  a  medium  whose  only  motion  is  that  of  the  lumi- 

nous vibrations,  is  sufficient  to  account  for  the  phenomena,  but  that  we  must 

admit  the  existence  of  a  motion  in  the  medium  depending  on  the  magnetization, 

in  addition  to  the  vibratory  motion  which  constitutes  light. 

It  is  true  that  the  rotation  by  magnetism  of  the  plane  of  polarization  has 

been  observ^ed  only  in  media  of  considerable  density;  but  the  properties  of  the 

magnetic  field  are  not  so  much  altered  by  the  substitution  of  one  medium  for 

another,  or  for  a  vacuum,  as  to  allow  us  to  suppose  that  the  dense  medium 

does  anything  more  than  merely  modify  the  motion  of  the  ether.  We  have 

therefore  warrantable  grounds  for  inquiring  whether  there  may  not  be  a  motion 

of   the   ethereal   medium   going   on   wherever   magnetic    effects   are   observed,    and 

*  ExperimenUil  Researches,  Series  xix. 

t  Cainptes  Reudus  (185G,  second  half  year,  p.  529,  ami  1857,  first  half  year,  p.    1209). 

%  Proceedings  of  the  Royal  ISociety,  June  185G  and  June  ISGl. 
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we   have   some   reason   to   suppose   that    this   motion   is   one    of    rotation,   having 

the  direction  of  the  magnetic  force  as  its  axis. 

(9)  We  may  now  consider  another  phenomenon  observed  in  the  electro- 

magnetic field.  When  a  body  is  moved  across  the  lines  of  magnetic  force  it 

experiences  what  is  called  an  electromotive  force ;  the  two  extremities  of  the 

body  tend  to  become  oppositely  electrified,  and  an  electric  current  tends  to  flow 

through  the  body.  When  the  electromotive  force  is  sufficiently  powerful,  and  is 

made  to  act  on  certain  compound  bodies,  it  decomposes  them,  and  causes  one 

of  their  components  to  pass  towards  one  extremity  of  the  body,  and  the  other 

in  the  opposite  direction. 

Here  we  have  evidence  of  a  force  causing  an  electric  current  in  spite  of 

resistance ;  electrifying  the  extremities  of  a  body  in  opposite  ways,  a  condition 

which  is  sustained  only  by  the  action  of  the  electromotive  force,  and  which,  as 

soon  as  that  force  is  removed,  tends,  with  an  equal  and  opposite  force,  to 

produce  a  counter  current  through  the  body  and  to  restore  the  original  electrical 

state  of  the  body ;  and  finally,  if  strong  enough,  tearing  to  pieces  chemical 

compounds  and  carrying  their  components  in  opposite  directions,  while  their 

natural  tendency  is  to  combine,  and  to  combine  with  a  force  which  can  generate 
an  electromotive  force  in  the  reverse  direction. 

This,  then,  is  a  force  acting  on  a  body  caused  by  its  motion  through  the 

electromagnetic  field,  or  by  changes  occurring  in  that  field  itself;  and  the  effect 

of  the  force  is  either  to  produce  a  current  and  heat  the  body,  or  to  decompose 

the  body,  or,  when  it  can  do  neither,  to  put  the  body  in  a  state  of  electric 

polarization, — a  state  of  constraint  in  which  opposite  extremities  are  oppositely 
electrified,  and  from  which  the  body  tends  to  relieve  itself  as  soon  as  the 

disturbing   force   is   removed. 

(10)  According  to  the  theory  which  I  propose  to  explain,  this  "electro- 

motive force "  is  the  force  called  into  play  during  the  communication  of  motion 
from  one  part  of  the  medium  to  another,  and  it  is  by  means  of  this  force 

that  the  motion  of  one  part  causes  motion  in  another  part.  When  electromotive 

force  acts  on  a  conducting  circuit,  it  produces  a  current,  which,  as  it  meets 

with  resistance,  occasions  a  continual  transformation  of  electrical  energy  into 

heat,  which  is  incapable  of  being  restored  again  to  the  form  of  electrical  energy 

by  any  reversal  of  the  process. 
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(11)  But  when  electromotive  force  acts  on  a  dielectric  it  produces  a  state 

of  polarization  of  its  parts  similar  in  distribution  to  the  polarity  of  the  parts 
of  a  mass  of  iron  under  the  influence  of  a  magnet,  and  like  the  magnetic 

polarization,  capable  of  being  described  as  a  state  in  which  every^  particle  has 

its  opposite  poles  in  opposite  conditions'". 
In  a  dielectric  under  the  action  of  electromotive  force,  we  may  conceive 

that  the  electricity  in  each  molecule  is  so  displaced  that  one  side  is  rendered 

positively  and  the  other  negatively  electrical,  but  that  the  electricity  remains 

entirely  connected  with  the  molecule,  and  does  not  pass  from  one  molecule  to 
another.  The  effect  of  this  action  on  the  whole  dielectric  mass  is  to  produce 

a  general  displacement  of  electiicity  in  a  certain  direction.  This  displacement 
does  not  amount  to  a  current,  because  when  it  has  attained  to  a  certain  value 

it  remains  constant,  but  it  is  the  commencement  of  a  current,  and  its  varia- 

tions constitute  currents  in  the  positive  or  the  negative  direction  according  as 

the  displacement  is  increasing  or  decreasing.  In  the  interior  of  the  dielectric 
there  is  no  indication  of  electrification,  because  the  electrification  of  the  surface 

of  any  molecule  is  neutralized  by  the  opposite  electrification  of  the  surface  of 

the  molecules  in  contact  with  it ;  but  at  the  bounding  surface  of  the  dielectric, 

where  the  electrification  is  not  neutralized,  we  find  the  phenomena  which  indicate 

positive  or  negative  electrification. 

The  relation  between  the  electromotive  force  and  the  amount  of  electric 

displacement  it  produces  depends  on  the  nature  of  the  dielectric,  the  same 

electromotive  force  producing  generally  a  greater  electric  displacement  in  solid 

dielectrics,  such  as  glass  or  sulphur,  than  in  air. 

(12)  Here,  then,  we  perceive  another  effect  of  electromotive  force,  namely, 

electric  displacement,  which  according  to  our  theory  is  a  kind  of  elastic  yielding 

to  the  action  of  the  force,  similar  to  that  which  takes  place  in  structures  and 

machines  owing  to  the  want  of  perfect  rigidity  of  the  connexions. 

(13)  The  practical  investigation  of  the  inductive  capacity  of  dielectrics  is 

rendered  difficult  on  account  of  two  disturbing  phenomena.  The  first  is  the 

conductivity  of  the  dielectric,  which,  though  in  many  cases  exceedingly  small, 

is  not  altogether  insensible.     The  second  is  the  phenomenon  called  electric  absorp- 

*  Faraday,  Experimental  Researches,  Series  xi. ;  Mossotti,  Mem.  delta  Soc.  Italiana  (Modena), 
Vol.  XXIV.  Part  2,  p.  49. 
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tion*,  in  virtue  of  which,  when  the  dielectric  is  exposed  to  electromotive  force, 
the  electric  displacement  gradually  increases,  and  when  the  electromotive  force 

is  removed,  the  dielectric  does  not  instantly  return  to  its  primitive  state,  but 

only  discharges  a  portion  of  its  electrification,  and  when  left  to  itself  gradually 

acquires  electrification  on  its  surface,  as  the  interior  gradually  becomes  depolarized. 

Almost  all  solid  dielectrics  exhibit  this  phenomenon,  which  gives  rise  to  the 

residual  charge  in  the  Leyden  jar,  and  to  several  phenomena  of  electric  cables 

described  by  Mr  F.   Jenkint. 

(14)  We  have  here  two  other  kinds  of  yielding  besides  the  yielding  of 

the  perfect  dielectric,  which  we  have  compared  to  a  perfectly  elastic  body.  The 

yielding  due  to  conductivity  may  be  compared  to  that  of  a  viscous  fluid  (that 

is  to  say,  a  fluid  having  great  internal  friction),  or  a  soft  solid  on  which  the 

smallest  force  produces  a  permanent  alteration  of  figure  increasing  with  the 

time  during  which  the  force  acts.  The  yielding  due  to  electric  absorption  may 

be  compared  to  that  of  a  cellular  elastic  body  containing  a  thick  fluid  in  its 

cavities.  Such  a  body,  when  subjected  to  pressure,  is  compressed  by  degrees 

on  account  of  the  gradual  yielding  of  the  thick  fluid ;  and  when  the  pressure 

is  removed  it  does  not  at  once  recover  its  figure,  because  the  elasticity  of  the 

substance  of  the  body  has  gradually  to  overcome  the  tenacity  of  the  fluid  before 

it  can  regain  complete  equilibrium. 

Several  solid  bodies  in  which  no  such  structure  as  we  have  supposed  can 

be  found,  seem  to  possess  a  mechanical  property  of  this  kind  J ;  and  it  seems 

probable  that  the  same  substances,  if  dielectrics,  may  possess  the  analogous 

electrical  property,  and  if  magnetic,  may  have  corresponding  properties  relating 

to  the  acquisition,  retention,  and  loss  of  magnetic  polarity. 

(15)  It  appears  therefore  that  certain  phenomena  in  electricity  and  mag- 
netism lead  to  the  same  conclusion  as  those  of  optics,  namely,  that  there  is 

an  Ebthereal  medium  pervading  all  bodies,  and  modified  only  in  degree  by  their 

presence ;  that  the  parts  of  this  medium  are  capable  of  being  set  in  motion 

by    electric   currents    and    magnets ;    that   this   motion    is    communicated   from  one 

*  Fai-aday,  Experwiental  Researches,  1233 — 1250. 
t  Reports  of  British  Association,  1859,  p.  248;  and  Report  of  Committee  of  Board  of  Trade  on 

Submarine  Cables,  pp.   136  &  464. 

J  As,  for  instance,  the  composition  of  glue,  treacle,  <fec.,  of  wliich  small  plastic  figures  are  made, 

which  after  being  distorted  gradually  recover  theii-  shape. 
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part  of  the  medium  to  another  by  forces  arising  from  the  connexions  of  those 

pai-ts ;  that  under  the  action  of  these  forces  there  is  a  certain  yielding  depending 
on  the  elasticity  of  these  connexions ;  and  that  therefore  energy  in  two  different 

forms  may  exist  in  the  medium,  the  one  form  being  the  actual  energy  of  motion 

of  its  parts,  and  the  other  being  the  potential  energy  stored  up  in  the  con- 
nexions, in  virtue  of  their  elasticity. 

(IG)  Thus,  then,  we  are  led  to  the  conception  of  a  complicated  mechanism 

capable  of  a  vast  variety  of  motion,  but  at  the  same  time  so  connected  that 

the  motion  of  one  part  depends,  according  to  definite  relations,  on  the  motion 
of  other  parts,  these  motions  being  communicated  by  forces  arising  from  the 

relative  displacement  of  the  connected  parts,  in  virtue  of  their  elasticity.  Such 
a  mechanism  must  be  subject  to  the  general  laws  of  Dynamics,  and  we  ought 

to  be  able  to  work  out  all  the  consequences  of  its  motion,  provided  we  know 

the  form  of  the  relation  between  the  motions  of  the  parts. 

(17)  We  know  that  when  an  electric  current  is  established  in  a  conducting 

circuit,  the  neighbouring  part  of  the  field  is  characterized  by  certain  magnetic 

properties,  and  that  if  two  circuits  are  in  the  field,  the  magnetic  properties  of 
the  field  due  to  the  two  currents  are  combined.  Thus  each  part  of  the  field 

is  in  connexion  with  both  currents,  and  the  two  currents  are  put  in  connexion 

with  each  other  in  virtue  of  their  connexion  with  the  magnetization  of  the  field. 

The  first  result  of  this  connexion  that  I  propose  to  examine,  is  the  induction  of 

one  current  by  another,  and  by  the  motion  of  conductors  in  the  field. 

The  second  result,  which  is  deduced  fi:om  this,  is  the  mechanical  action 

between  conductors  carrying  currents.  The  phenomenon  of  the  induction  of 

currents  has  been  deduced  from  their  mechanical  action  by  Helmholtz  *  and 
Thomson  t.  I  have  followed  the  reverse  order,  and  deduced  the  mechanical  action 

from  the  laws  of  induction.  I  have  then  described  experimental  methods  of 

determining  the  quantities  L,  M,  N,  on  which  these  phenomena  depend. 

(18)  I  then  apply  the  phenomena  of  induction  and  attraction  of  cuiTents 

to  the  exploration  of  the  electromagnetic  field,  and  the  laying  down  systems 

of  lines   of  magnetic   force   which  indicate  its  magnetic  properties.     By  exploring 

*  "Conservation  of  Force,"  Physical  Society  of  Berlin,  1847;  and  Taylor's  Scieniijic  Memoirs,  1853, 
p.   lU. 

t  Reports  of  live  British  Association,   1848;   Philosophical  Magazine,  Dec.    1851. 
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the    same    field    with    a    magnet,    I    shew    the    distribution    of   its    equipotential 

magnetic  surfaces,  cutting  the  hnes  of  force  at  right  angles. 

In  order  to  bring  these  results  within  the  power  of  symbolical  calculation, 

I  then  express  them  in  the  form  of  the  General  Equations  of  the  Electro- 

magnetic  Field.     These  equations  express — 

(A)  The  relation  between  electric  displacement,  true  conduction,  and  the 

total  current,  compounded  of  both. 

(B)  The  relation  between  the  lines  of  magnetic  force  and  the  inductive 

coefficients   of  a  circuit,  as  already  deduced  from  the  laws  of  induction. 

(C)  The  relation  between  the  strength  of  a  current  and  its  magnetic  effects, 

according  to  the  electromagnetic  system  of  measurement. 

(D)  The  value  of  the  electromotive  force  in  a  body,  as  arising  from  the 

motion  of  the  body  in  the  field,  the  alteration  of  the  field  itself,  and 

the  variation  of  electric  potential  from  one  part  of  the  field  to 
another. 

(E)  The  relation  between  electric  displacement,  and  the  electromotive  force 

which  produces  it. 

(F)  The  relation  between  an  electric  current,  and  the  electromotive  force 

which  produces  it. 

(G)  The  relation  between  the  amount  of  free  electricity  at  any  point,  and 

the  electric  displacements  in  the  neighbourhood. 

(H)     The  relation  between  the  increase  or  diminution  of  free  electricity  and 

the  electric  currents  in  the  neighbourhood. 

There    are    twenty    of    these    equations    in    all,   involving    twenty    variable 

quantities. 

(19)  I  then  express  in  terms  of  these  quantities  the  intrinsic  energy  of 

the  Electromagnetic  Field  as  depending  partly  on  its  magnetic  and  partly  on 

its  electric  polarization  at  every  point. 

From  this  I  determine  the  mechanical  force  acting,  1st,  on  a  moveable  con- 

ductor carrying  an  electric  current;  2ndly,  on  a  magnetic  pole;  3rdly,  on  an 

electrified  body. 

The  last  result,  namely,  the  mechanical  force  acting  on  an  electrified  body, 

gives   rise   to   an   independent   method   of  electrical   measurement   founded   on   its 
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electrostatic  effects.  The  relation  between  the  units  employed  in  the  two  methods 

is  shewn  to  depend  on  what  I  have  called  the  "electric  elasticity"  of  the  medium, 
and  to  be  a  velocity,  which  has  been  experimentally  determined  by  MM.  Weber 
and   Kohlrausch. 

I  then  shew  how  to  calculate  the  electrostatic  capacity  of  a  condenser,  and 

the  specific  inductive  capacity  of  a  dielectric. 

The  case  of  a  condenser  composed  of  parallel  layers  of  substances  of  different 

electric  resistances  and  inductive  capacities  is  next  examined,  and  it  is  shewn 

that  the  phenomenon  called  electric  absorption  will  generally  occur,  that  is,  the 

condenser,  when  suddenly  discharged,  will  after  a  short  time  shew  signs  of  a 

residual   charge. 

(20)  The  general  equations  are  next  applied  to  the  case  of  a  magnetic 

disturbance  propagated  through  a  non-conducting  field,  and  it  is  shewn  that 

the  only  disturbances  which  can  be  so  propagated  are  those  which  are  transverse 

to  the  direction  of  propagation,  and  that  the  velocity  of  propagation  is  the 

velocity  v,  found  from  experiments  such  as  those  of  Weber,  which  expresses 

the  number  of  electrostatic  units  of  electricity  which  are  contained  in  one  electro- 

magnetic unit. 

This  velocity  is  so  nearly  that  of  light,  that  it  seems  we  have  strong 

reason  to  conclude  that  light  itself  (including  radiant  heat,  and  other  radiations 

if  any)  is  an  electromagnetic  disturbance  in  the  form  of  waves  propagated  through 

the  electromagnetic  field  according  to  electromagnetic  laws.  If  so,  the  agree- 

ment between  the  elasticity  of  the  medium  as  calculated  from  the  rapid  alterna- 

tions of  luminous  vibrations,  and  as  found  by  the  slow  processes  of  electrical 

experiments,  shews  how  perfect  and  regular  the  elastic  properties  of  the  medium 

must  be  when  not  encumbered  with  any  matter  denser  than  air.  If  the  same 

character  of  the  elasticity  is  retained  in  dense  transparent  bodies,  it  appears 

that  the  square  of  the  index  of  refraction  is  equal  to  the  product  of  the  specific 

dielectric  capacity  and  the  specific  magnetic  capacity.  Conducting  media  are 

shewn  to  absorb  such  radiations  rapidly,  and  therefore  to  be  generally  opaque. 

The  conception  of  the  propagation  of  transverse  magnetic  disturbances  to 

the  exclusion  of  normal  ones  is  distinctly  set  forth  by  Professor  Faraday*  in 

liis    "  Thoughts    on    Ray    Vibrations."     The    electromagnetic    theory^    of    light,    as 

*  Philosophical  Magazine,  May   1846,  or  Expenmintal  Researches,   ill.   p.    447. 



536  A   DYNAMICAL   THEORY   OF  THE   ELECTROMAGNETIC   FIELD. 

proposed  by  him,  is  the  same  in  substance  as  that  which  I  have  begun  to 
develope  in  this  paper,  except  that  in  1846  there  were  no  data  to  calculate 
the  velocity  of  propagation. 

(21)  The  general  equations  are  then  applied  to  the  calculation  of  the  coef- 
ficients of  mutual  induction  of  two  circular  currents  and  the  coefficient  of  self- 

induction  in  a  coil.  The  want  of  uniformity  of  the  current  in  the  different 

parts  of  the  section  of  a  wire  at  the  commencement  of  the  current  is  investi- 

gated, I  believe  for  the  first  time,  and  the  consequent  correction  of  the  coefficient 
of  self-induction  is  found. 

These  results  are  applied  to  the  calculation  of  the  self-induction  of  the  coil 
used  in  the  experiments  of  the  Committee  of  the  British  Association  on  Standards 

of  Electric  Kesistance,  and  the  value  compared  with  that  deduced  from  the 

experiments. 

PART  11. 

ON    ELECTROMAGNETIC    INDUCTION. 

Electromagnetic  Momentum  of  a  Current. 

(22)  We  may  begin  by  considering  the  state  of  the  field  in  the  neigh- 
bourhood of  an  electric  current.  We  know  that  magnetic  forces  are  excited  in 

the  field,  their  direction  and  magnitude  depending  according  to  known  laws 

upon  the  form  of  the  conductor  carrying  the  current.  When  the  strength  of 

the  current  is  increased,  all  the  magnetic  effects  are  increased  in  the  same  pro- 
portion. Now,  if  the  magnetic  state  of  the  field  depends  on  motions  of  the 

medium,  a  certain  force  must  be  exerted  in  order  to  increase  or  diminish  these 

motions,  and  when  the  motions  are  excited  they  continue,  so  that  the  effect 
of  the  connexion  between  the  current  and  the  electromagnetic  field  surrounding 

it,  is  to  endow  the  current  with  a  kind  of  momentum,  just  as  the  connexion 

between  the  driving-point  of  a  machine  and  a  fly-wheel  endows  the  driving-point 
with  an  additional  momentum,  which  may  be  called  the  momentum  of  the  fly- 

wheel reduced  to  the  driving-point.  The  unbalanced  force  acting  on  the  driving- 
point  increases  this  momentum,  and  is  measured  by  the  rate  of  its  increase. 
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In  the  case  of  electric  currents,  the  resistance  to  sudden  increase  or  dimi- 

nution of  strength  produces  effects  exactly  like  those  of  momentum,  but  the 

amount  of  this  momentum  depends  on  the  shape  of  the  conductor  and  the 

relative  position  of  its  different  parts. 

Mutual  Action  of  two  Currents. 

(23)  If  there  are  two  electric  currents  in  the  field,  the  magnetic  force  at 

any  point  is  that  compounded  of  the  forces  due  to  each  current  separately, 

and  since  the  two  currents  are  in  connexion  with  every  point  of  the  field, 

they  will  be  in  connexion  with  each  other,  so  that  any  increase  or  diminution 

of  the  one  will  produce  a  force  acting  with  or  contrary  to  the  other. 

Dynamical  Illustration  of  Reduced  Momentum. 

(24)  As  a  dynamical  illustration,  let  us  suppose  a  body  C  so  connected 

with  two  independent  driving-points  A  and  B  that  its  velocity  is  p  times  that 

of  A  together  with  q  times  that  of  B.  Let  u  be  the  velocity  of  A,  v  that 

of  B,  and  w  that  of  C,  and  let  hx,  By,  Sz  be  their  simultaneous  displacements, 

then  by  the  general  equation  of  dynamics*; 

C~Sz  =  XZx+YBy, 

where  A'  and   Y  are  the  forces  acting  at  A  and  B. 
^   ,  dw        du        dv 

and  Zz=phx  +  qSy. 

Substituting,  and  remembering  that  Bx  and  By  are  independent, 

Y  =  j^{Cpq"+Cq'v) 

0)- 

We  may  call  Cphi+Cpqv  the  momentum  of  C  referred  to  A,  and  Cpqu  +  Cq'v 
its  momentum  referred  to  B ;  then  we  may  say  that  the  effect  of  the  force 

X  is  to  increase  the  momentum  of  C  referred  to  A,  and  that  of  Y  to  increase 
its  momentum  referred  to  B. 

*  Lagrange,  Mec.  Anal.  ii.   2,  §  5. 
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If  there  are  many  bodies  connected  with  A  and  i?  in  a  similar  way  but 
with  diffierent  values  of  p  and  q,  we  may  treat  the  question  in  the  same  way 
by  assuming 

L  =  %(Cp%     M=t{Cpq),     and  N=t{Cq'), 

where  the   summation   is   extended   to  all  the  bodies  with   their  proper  values  of 
C,  p,  and  q.     Then  the  momentum  of  the  system  referred  to  A  is 

Lu  +  Mv, 

and  referred  to  B,  Mu  +  Nv, 

and  we  shall  have  -^  =  X  (Lu  +  Mv) dt 

Y=^(Mu  +  Nv) 
(2), 

dt 

where  X  and   Y  are  the  external  forces  acting  on  A  and  B. 

(25)  To  make  the  illustration  more  complete  we  have  only  to  suppose 
that  the  motion  of  A  is  resisted  by  a  force  proportional  to  its  velocity,  which 

we  may  call  Ru,  and  that  of  ̂   by  a  similar  force,  which  we  may  call  Sv^  R  and 

S  being  coefficients  of  resistance.     Then  if  ̂   and  -q  are  the  forces  on  A  and  B, 

^=X  +  Ru  =  Ru  +  j^  (Lu  +  Mv) 

rj=  Y  +  Sv=  Sv  +j^{Mu  +  Nv) 

(3). 
If  the   velocity   of  A    be  increased  at  the  rate  -r- ,   then   in  order  to  prevent  B 

from  moving  a  force,  rj  =  -,-  (Mu)  must  be  applied  to  it. 

This  effect  on  B,  due  to  an  increase  of  the  velocity  of  A,  corresponds  to 

the  electromotive  force  on  one  circuit  arising  from  an  increase  in  the  strength 
of  a  neighbouring  circuit. 

This  dynamical  illustration  is  to  be  considered  merely  as  assisting  the 

reader  to  understand  what  is  meant  in  mechanics  by  Reduced  Momentum.  The 

facts  of  the  induction  of  currents  as  depending  on  the  variations  of  the  quantity 
called  Electromagnetic  Momentum^  or  Electrotonic  State,  rest  on  the  experiments 

<^f  Faraday",  Felicif,  &c. 

*  Experimental  Besearclics,  Series  i.,  ix.  t  Annates  de  Chimie,  ser.  3,  xxxiv.  (1852),  p.  64. 
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Coefficients  of  Induction  for  Two  Circuits. 

(26)  In  the  electromagnetic  field  the  values  of  Z,  M,  N  depend  on  the 

distribution  of  the  magnetic  effects  due  to  the  two  circuits,  and  this  distri- 
bution depends  only  on  the  form  and  relative  position  of  the  circuits.  Hence 

L,  M,  N  are  quantities  depending  on  the  form  and  relative  position  of  the 

circuits,  and  are  subject  to  variation  with  the  motion  of  the  conductors.  It  will 

be  presently  seen  that  L,  M,  N  are  geometrical  quantities  of  the  nature  of  lines, 

that  is,  of  one  dimension  in  space ;  L  depends  on  the  form  of  the  first  conductor, 

which  we  shall  call  A,  N  on  that  of  the  second,  which  we  shall  call  B,  and 

M  on  the  relative  position  of  A  and  B. 

(27)  Let  ̂   be  the  electromotive  force  acting  on  A,  x  the  strength  of  the 

current,  and  R  the  resistance,  then  Ex  will  be  the  resisting  force.  In  steady 

currents  the  electromotive  force  just  balances  the  resisting  force,  but  in  variable 

currents  the  resultant  force  ̂ -Rx  is  expended  in  increasing  the  "electro- 

magnetic momentum,"  using  the  word  momentum  merely  to  express  that  which 
is  generated  by  a  force  acting  during  a  time,  that  is,  a  velocity  existing  in  a 
body. 

In  the  case  of  electric  currents,  the  force  in  action  is  not  ordinary 

mechanical  force,  at  least  we  are  not  as  yet  able  to  measure  it  as  common  force, 

but  we  call  it  electromotive  force,  and  the  body  moved  is  not  merely  the 

electricity  in  the  conductor,  but  something  outside  the  conductor,  and  capable 

of  being  afiected  by  other  conductors  in  the  neighbourhood  carrying  currents. 

In  this  it  resembles  rather  the  reduced  momentum  of  a  driving-point  of  a 

machine  as  influenced  by  its  mechanical  connexions,  than  that  of  a  simple 

moving  body  like  a  cannon  ball,  or  water  in  a  tube. 

Electromagnetic  Relations  of  two  Conducting  Circuits. 

(28)  In  the  case  of  two  conducting  circuits,  A  and  B,  we  shall  assume 

that  the  electromagnetic  momentum  belonging  to  A  is 
Lx  +  My, 

and  that  belonging  to  B,  Mx  +  Ny, 

where  L,  M,  N  correspond  to  the  same  quantities  in  the  dynamical  illustration, 

except  that  they  are  supposed  to  be  capable  of  variation  when  the  conductors 
A  or  B  are  moved. 

G8— 2 



540  A   DYNAMICAL   THEORY   OF   THE   ELECTROMAGNETIC   FIELD. 

Then  the  equation  of  the  current  x  in  A  will  be 

^=R^  +  :jl{Lx-^My)   (4), 

and  that  of  y  in  ̂   r}  =  Sy+ -^-(Mx-j-Ny)   (5)^ 

where  ̂   and  tj  are  the  electromotive   forces,  x  and  y  the  currents,  and  R  and  S 

the  resistances  in  A  and  B  respectively. 

Induction  of  one  Current  by  another. 

(29)  Case  1st.  Let  there  be  no  electromotive  force  on  B,  except  that 

which  arises  from  the  action  of  A,  and  let  the  current  of  A  increase  from  0 

to  the  value  x,  then 

Sy  +  ̂̂ (Mx  +  Ny)  =  0, 

'hence  1 
ft               M 

-^\ydt=.-  —  x,      (6) 

that  is,  a  quantity  of  electricity  Y,  being  the  total  induced  current,  will  flow 

through  B  when  x  rises  from  0  to  x.  This  is  induction  by  variation  of  the 

current  in  the  primary  conductor.  When  M  is  positive,  the  induced  current 

due  to  increase  of  the  primary  current  is  negative. 

Induction  hy  Motion  of  Conductor. 

(30)     Case  2nd.     Let  x   remain   constant,    and  let  M  change  from  M  to  M', then M'-M 

(7) 

so  that  if  M  is  increased,  which  it  will  be  by  the  primary  and  secondary 

circuits  approaching  each  other,  there  will  be  a  negative  induced  current,  the 

total  quantity  of  electricity  passed  through  B  being  Y. 

This  is  induction    by  the    relative  motion  of   the  primary  and  secondary  con- 
ductors. 
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Equation  of  Work  and  Energy. 

(31)  To    form    the    equation    between    work    done    and     energy     produced, 

multiply  (1)  by  x  and  (2)  by  y,  and  add 

^x  +  -ny=^Rx^^Sy'  +  Xj^(Lx  +  My)  +  yj^(Mx  +  Ny)   (8). 

Here  ̂ x  is  the  work  done  in  unit  of  time  by  the  electromotive  force  ̂   actmg 

on  the  current  x  and  maintaining  it,  and  r^y  is  the  work  done  by  the  elec- 

tromotive force  7).  Hence  the  left-hand  side  of  the  equation  represents  the  work 

done  by  the  electromotive  forces  in  unit  of  time. 

Heai  produced  by  the  Current. 

(32)  On  the  other  side  of  the  equation  we  have,  first, 

Rx?  +  Sf  =  H   (9), 

which  represents  the  work  done  in  overcoming  the  resistance  of  the  circuits  in 

unit  of  time.  This  is  converted  into  heat.  The  remaining  terms  represent 

work  not  converted  into  heat.     They  may  be  written 

Intrinsic  Energy  of  the  Currents. 

(33)  U  L,  M,  N  are  constant,  the  whole  work  of  the  electromotive  forces 

which  is  not  spent  against  resistance  will  be  devoted  to  the  development  of 

the  currents.     The  whole  intrinsic  energy  of  the  currents  is  therefore 

^Laf  +  Mxy  +  iNy'  =  E   (10). 

This  energy  exists  in  a  form  imperceptible  to  our  senses,  probably  as  actual 

motion,  the  seat  of  this  motion  being  not  merely  the  conducting  circuits,  but 

the  space  surrounding  them. 

Mechanical  Action  between  Conductors. 

(34)     The    remaining  terms, 
dL  dM  dN       ̂ y  (11) 
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represent  the  work  done  in  unit  of  time  arising  from  the  variations  of  L,  M, 

and  N,  or,  what  is  the  same  thing,  alterations  in  the  form  and  position  of  the 

conducting   circuits   A  and  B. 

Now  if  work  is  done  when  a  body  is  moved,  it  must  arise  from  ordinary 

mechanical  force  acting  on  the  body  while  it  is  moved.  Hence  this  part  of 

the  expression  shews  that  there  is  a  mechanical  force  urging  every  part  of  the 
conductors  themselves  in  that  direction  in  which  L,  M,  and  N  will  be  most 
increased. 

The  existence  of  the  electromagnetic  force  between  conductors  carrying 

currents  is  therefore  a  direct  consequence  of  the  joint  and  independent  action 

of  each  current  on  the  electromagnetic  field.  If  A  and  B  are  allowed  to  approach 

a  distance  ds,  so  as  to  increase  M  from  M  to  M'  while  the  currents  are  x 
and  y,  then  the  work  done  will  be 

{]\r-3i)xij, 

and  the  force  in  the  direction  of  ds  will  be 

f^^   02). 
and  this  will  be  an  attraction  if  x  and  y  are  of  the  same  sign,  and  if  31  is 

increased  as  A   and  B  approach. 

It  appears,  therefore,  that  if  we  admit  that  the  unresisted  part  of  electro- 

motive force  goes  on  as  long  as  it  acts,  generating  a  self-persistent  state  of 

the  current,  which  we  may  call  (from  mechanical  analogy)  its  electromagnetic 

momentum,  and  that  this  momentum  depends  on  circumstances  external  to  the 

conductor,  then  both  induction  of  currents  and  electromagnetic  attractions  may 

be  proved  by  mechanical  reasoning. 

What  I  have  called  electromagnetic  momentum  is  the  same  quantity  which 

is  called  by  Faraday '"  the  electrotonic  state  of  the  circuit,  every  change  of  which 
involves  the  action  of  an  electromotive  force,  just  as  change  of  momentum 
involves  the  action  of  mechanical  force. 

If,  therefore,  the  phenomena  described  by  Faraday  in  the  Ninth  Series  of 

his  Experimental  Researches  were  the  only  known  facts  about  electric  currents, 

the   laws   of  Ampere   relating   to   the  attraction  of  conductors  carrying  currents, 

*  Experiinental  Researches,  Series  i.   60,  &c. 
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as  well  as  those  of  Faraday   about   the   mutual   induction  of  currents,  might  be 

deduced  by  mechanical  reasoning. 

In  order  to  bring  these  results  within  the  range  of  experimental  verifica- 

tion, I  shall  next  investigate  the  case  of  a  single  current,  of  two  currents,  and 

of  the  six  currents  in  the  electric  balance,  so  as  to  enable  the  experimenter 

to  determine  the  values  of  L,  M,  N. 

Case  of  a  single  Circuit. 

(35)     The   equation   of  the    current    a:    in    a    circuit    whose    resistance    is   7i*, 
and   whose   coefficient   of  self-induction   is   L,    acted    on    by    an    external    electro- 

motive force  ̂ ,  is 

f-^=ai^-   <")■ 

When  i  is  constant,  the  solution  is  of  the  form 

x  =  h  +  (a  —  h)e-L\ 
where  a  is   the   value   of  the   current   at  the   commencement,  and  h  is   its  tinal 
value. 

The  total  quantity  of  electricity  which  passes  in  time  t,  where  t  is  great,  is 

rxdt  =  ht  +  {a-h)~     (14). 

The  value  of  the  integral  of  of  with  respect  to  the  time  is 

jydt  =  lHHa-l)^{^)   (15). 

The   actual   current  changes  gradually  from  the  initial  value  a  to  the  final  vatue 

b,   but   the   values   of  the   integrals   of   x   and   af   are   the   same    as    if  a   steady 

current   of  intensity   ̂ (a  +  h)   were   to  flow   for  a  time  2-^,  and  were   then  suc- 

ceeded by  the  steady  current  h.     The  time  2  -^  is  generally  so  minute  a  fraction 

of  a   second,   that   the  effects    on    the    galvanometer   and   dynamometer    may    be 

calculated  as  if  the  impulse  were  instantaneous. 

If  the   circuit   consists   of  a   battery   and   a   coil,    then,    when   the   circuit   is 

first   completed,    the    eflfects   are   the   same   as    if   the    current    had    only   half   its 
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filial    strength    during    the    time    2-^.     This    diminution    of   the    current,    due    to 

induction,  is  sometimes  called  the  counter-current. 

(36)  If  an  additional  resistance  r  is  suddenly  thrown  into  the  circuit,  as 

by    breaking   contact,    so    as   to    force   the    current   to    pass    through   a   thin    wire 

of  resistance   r,    then    the    original    current    is    ct=pj    ̂ ^^    ̂ ^^    ̂ ^^^    current    is 

The   current   of   induction    is    then    i^p/p  ,   .\ '    ̂ ^^    continues    for   a   time 

2   .     This   current   is   greater   than   that  which  the   battery  can   maintain  in 

the   two   wires   R   and   r,    and  may  be  sufficient  to  ignite  the  thin  wire  r. 

When  contact  is  broken  by  separating  the  wires  in  air,  this  additional 

resistance  is  given  by  the  interposed  air,  and  since  the  electromotive  force  across 

the  new  resistance  is  very  great,  a  spark  will  be  forced  across. 

If  the  electromotive  force  is  of  the  form  Esinpt,  as  in  the  case  of  a  coil 

revolving  in  the  magnetic  field,  then 

X  =  —  sin  (pt  —  a), 
P 

where  p'  =  R  +  L^2^\  and  tan  <^  =  -&  - 

Case  of  two  Circuits. 

(37)  Let  R  be  the  prunary  circuit  and  S  the  secondary  circuit,  then  we 
have  a  case  similar  to  that  of  the  induction  coil. 

The  equations  of  currents  are  those  marked  A  and  B,  and  we  may  here 

assume  L,  M,  N  as  constant  because  there  is  no  motion  of  the  conductors. 

The  equations  then  become 

(13*). 
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To  find  the  total  quantity  of  electricity  which  passes,  we  have  only  to 

integrate  these  equations  with  respect  to  t',  then  if  x„  y,  be  the  strengths  of 

the  currents  at  time  0,  and  x„  y,  at  time  t,  and  if  A',  Y  be  the  quantities 
of  electricity  passed  through  each  circuit  during  time  t, 

  (in 

Y=\[M(x,-x,)  +  N{y,-y,)}  J 

When  the  circuit  R  is  completed,  then  the  total  currents  up  to  time  t, 

when  t  is  great,  are  found  by  making 

P 

then  X  =  x,{t--^'j,      Y=--^x,   (15*). 

The  value  of  the  total  counter-current  in  R  is  therefore  independent  of  the 

secondary  circuit,  and  the  induction  current  in  the  secondary  circuit  depends  only 
on  M,  the  coefficient  of  induction  between  the  coils,  S  the  resistance  of  the 

secondary  coil,  and  x^  the  final  strength  of  the  current  in  R. 

When  the  electromotive  force  ̂   ceases  to  act,  there  is  an  extra  current 

in  the  primary  circuit,  and  a  positive  induced  current  in  the  secondary  circuit, 
whose  values  are  equal  and  opposite  to  those  produced  on  making  contact. 

(38)  All  questions  relating  to  the  total  quantity  of  transient  currents,  as 

measured  by  the  impulse  given  to  the  magnet  of  the  galvanometer,  may  be 

solved  in  this  way  without  the  necessity  of  a  complete  solution  of  the  equa- 
tions. The  heating  effect  of  the  current,  and  the  impulse  it  gives  to  the 

suspended  coil  of  Weber's  dynamometer,  depend  on  the  square  of  the  current 
at  every  instant  during  the  short  time  it  lasts.  Hence  we  must  obtain  the 

solution  of  the  equations,  and  from  the  solution  we  may  find  the  effects  both 

on  the  galvanometer  and  dynamometer ;  and  we  may  then  make  use  of  the 
method  of  Weber  for  estimating  the  intensity  and  duration  of  a  current  uniform 
while  it  lasts  which  would  produce  the  same  effects. 
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(39)  Let  n„  lu  be  the  roots  of  the  equation 

(LN-M')n'-\r(RN+LS)n-\-RS=-0   (16), 

and  let  the  primary  coil  be  acted  on  by  a  constant  electromotive  force  Re,  so 
that  c  is  the  constant  current  it  could  maintain;  then  the  complete  solution  of 

the  equations  for  making  contact  is 

^-i^.£-^y-^.-^y-''^]   (^^)' 
y-'-^-^r-^^   <^^)- 

From  these  we  obtain  for  calculating  the  impulse  on  the  dynamometer, 

Ix-*  =  o'{<-|^-i^^}   (19), 

m  =  c'l^^^l^^   (20). 
The   effects   of  the   current   in   the   secondary   coil   on  the  galvanometer  and 

dynamometer  are  the  same  as  those  of  a  uniform  current 
MR ~^  RN+LS 

for  a  time  2  ("d  +  "^)  • 

(40)  The   equation  between   work  and   energy   may   be  easily  verified.     The 
work  done  by  the  electromotive  force  is 

^lxdt  =  c'{Rt-L). 
Work  done  in  overcoming  resistance  and  producing  heat, 

R]oedt  +  Sly'dt  =  &  {Rt  -  |Z). 

Energy  remaining  in  the  system,  =^-L. 

(41)  If  the   circuit  R  is  suddenly  and  completely  interrupted  while  carrying 
a  current  c,  then  the  equation  of  the  current  in  the  secondary  coil  would  be 

M 

M 

This  current  begins  with  a  value  c-^,  and  gradually  disappears. 
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M  M* 
Tlie  total  quantity  of  electricity  is  c  -^  ,  and  the  value  of  jy'dt  is  c'  -^ . 

The   effects   on   the   galvanometer   and  dynamometer   are  equal  to   those  of  a 
M  .  N 

uniform  current  ̂ c  ̂ r  for  a  time  2  -^  . 

The   heating  effect  is   therefore   greater  than  that  of  the  current  on  making 
contact. 

(42)     If  an   electromotive   force  of  the   form   $=E  cos pt   acts   on   the  circuit 
R,  then  if  the  circuit  S  is  removed,  the  value  of  x  will  be 

x  =  -j  sin  (pt  —  a), 

where 

and 

A'  =  R'  +  Ly, 

tan  a  = 

-^ 

R 

The    effect    of    the   presence   of    the   circuit    S    in   the   neighbourhood  is    to 
alt€r  the  value  of  A  and  a,  to  that  which  they  would  be  if  R  became 

R+p' 

MS 

and  L  became 

X-p' 

S'+p'N'' 
MN 

S'+p'N'' 
Hence   the   effect   of  the   presence   of  the   circuit  >S  is   to   increase   the   apparent 

resistance   and   diminish   the   apparent   self-induction  of  the  circuit  R. 

On  the  Determination  of  Coefficients  of  Induction  hy  the  Electric  Balance. 

(43)  The  electric  balance  consists  of  six  con- 
ductors joining  four  points,  A,  C,  D,  E,  two 

and  two.  One  pair,  AC,  of  these  points  is  con- 
nected through  the  battery  B.  The  opposite  pair, 

DE,  is  connected  through  the  galvanometer  G. 
Then  if  the  resistances  of  the  four  remaining 

conductors  are  represented  by  P,  Q,  R,  S,  and 

the  currents   in   them  by  x,   x  —  z,   y,    and  y  +  z, 

69—2 
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the  current  through  G  will  be  z.     Let  the  potentials  at  the  four  points  be  ̂ ,  C, 

D,  E.     Then  the  conditions  of  steady  currents  may  be  found  from  the  equations 

Px  =  A~D,         Q{x-z)  =  D-C  ^ 

Ry  =  A-E,         S(y  +  z)  =  E-C  i   (21). 

Gz=D-E,         B{x  +  y)=-A  +  C+F\ 

Solving  these  equations  for  z,  we  find 

{i 
1       1       1      j,[l       1 

^+i^+^ 

R'^  S 

BG     ,  j-j     ̂  

R^S^  =  Fi 
PS 

_1
 

QR. 

.(22). 

In  this  expression  F  is  the  electromotive  force  of  the  battery,  z  the  current 
through  the  galvanometer  when  it  has  become  steady.  P,  Q,  R,  S  the  resistances 
in  the  four  arms.  B  that  of  the  battery  and  electrodes,  and  G  that  of  the 
galvanometer. 

(44)  If  PS=QR,  then  2  =  0,  and  there  will  be  no  steady  current,  but  a 
transient  current  through  the  galvanometer  may  be  produced  on  making  or 
breaking  circuit  on  account  of  induction,  and  the  indications  of  the  galvano- 

meter may  be  used  to  determine  the  coeflScients  of  induction,  provided  we 
understand  the  actions  which  take  place. 

We  shall  suppose  PS=QR,  so  that  the  current  z  vanishes  when  sufiicient 
time  is  allowed,  and 

x{P  +  Q)  =  y(R  +  S) 
F{P+Q){R  +  S) 

(P  +  Q){R  +  S)  +  B{P+Q){R  +  S) 

Let  the  induction  coeflScients  between  P,  Q,  R,  S 

be  given  by  the  following  Table,  the  coefficient  of  in- 
duction of  P  on  itself  being  p,  between  P  and  Q,  h, 

and  so  on. 

Let  g  be  the  coefficient  of  induction  of  the  gal- 
vanometer on  itself,  and  let  it  be  out  of  the  reach  of 

the  inductive  influence  of  P,  Q,  R,  S  (as  it  must  be 

in  order  to  avoid  direct  action  'of  P,  Q,  R,  S  on  the 

needle)       Let    .Y,    Y,    Z   be .  the   integi-als    of    x,  ~y,    z 

(23). 

P Q R S 

1    p 

P h k I 

1     Q 

h ? m 
I 

n       i 

'     R 

k 
771 

r 

0        1 

S I n 0 

s       1 

with   respect   to   t.     At 
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making   contact   x,  y,  z  are  zero.     After  a  time  z  disappears,    and  x  and  y  reach 

constant  values.     The   equations   for   each  conductor   will   therefore  be 

PX  +{p  +  h)x  +  (k+l)y  =  jAJt-jDdt^ 

Q(X-Z)  +  (h'+q)x-{-{m  +  n)y  =  jDdt-jCdt 

RY  +{k+m)x  +  (r+o)y  =  jAdt-jEdt 

S{Y+Z)  -h(l  +n)x  +  (o  +s)y=SEdt-jCdt 

GZ=\Ddt-\Edt. 

Solving  these  equations  for  Z,  we  find 

(24). 

,(25). 

(45)     Now    let   the    deflection   of    the     galvanometer    by    the    instantaneous 
current  whose  intensity  is  Z  be  a. 

'"Let  the  permanent  deflection  produced  by  making  the  ratio  of  PS  to  QR, 
p  instead  of  unity,  be  6. 

Also   let   the  time  of  vibration  of  the  galvanometer  needle  from  rest  to  rest 
be  T. 

Then  calling  the  quantity 

p      q       T      s       ,  /I       1' 
r      5       J /I 

Q~R'^  S'^'^P'Q, S-fl-Ki-i)-&4) 
+"($-!)+'' (5-i)=^- 

...(26) 

Z     2  sin  ia  r        t 

2        tan  0    'n      I—  p   

...(27) we  find 

*  [In  those  circumstances  the  values  of  x  and  y  found  in  Art.  44  require  modification  before 

being  inserted  in  equation  (24).  This  has  been  pointed  out  by  Lord  Rayleigh,  who  employed  the 

method  described  in  the  text  in  his  second  determination  of  the  British  unit  of  resistance  in 

absolute  measure.     See  the  Philosophical  Transactions,  1882,  Part  ii.   pp.   677,  678.] 
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In  determining  t  by  experiment,  it  is  best  to  make  the  alteration  of  resist- 

ance in  one  of  the  arms  by  means  of  the  arrangement  described  by  Mr  Jenkin 

in  the  Report  of  the  British  Association  for  1863,  by  which  any  value  of  p 

from  1  to  rOl  can  be  accurately  measured. 

We  observe  (a)  the  greatest  deflection  due  to  the  impulse  of  induction 

when  the  galvanometer  is  in  circuit,  when  the  connexions  are  made,  and  when 

the   resistances   are  so  adjusted  as  to  give  no  permanent  current. 

We  then  observe  (/3)  the  greatest  deflection  produced  by  the  permanent 
current  when  the  resistance  of  one  of  the  arms  is  increased  in  the  ratio  of 

1  to  p,  the  galvanometer  not  being  in  circuit  till  a  little  while  after  the  con- 
nexion is  made  with  the  battery. 

In  order  to  eliminate  the  effects  of  resistance  of  the  air,  it  is  best  to  vary 

p  till  /3  =  2a  nearly;  then 

^=^^(-^)^''   (^«)- 
If  all  the  arms  of  the  balance  except  P  consist  of  resistance  coils  of  very 

line  wire  of  no  great  length  and  doubled  before  being  coiled,  the  induction 

coefticients  belonging    to   these    coils    will    be    insensible,   and  r   will    be    reduced 

to  'p.     The   electric   balance   therefore   afibrds   the   means  of  measuring   the   self- 

induction  of  any  circuit  whose  resistance  is  known. 

(46)  It  may  also  be  used  to  determine  the  coefficient  of  induction  between 

two  circuits,  as  for  instance,  that  between  P  and  S  which  we  have  called  m; 

but  it  would  be  more  convenient  to  measure  this  by  directly  measuring  the 

current,    as    in    (37),    without    using    the    balance.     We    may    also    ascertain    the 

equality  of  ̂   and  —    by   there   being   no   current  of   induction,    and   thus,  when P  V 

we  know  the  value  of  jp,  we  may  determine  that  of  g  by  a  more  perfect  method 

than  the  comparison  of  deflections. 

Exploration  of  the  Electromagnetic  Field. 

(47)  Let  us  now  suppose  the  primary  circuit  A  to  be  of  invariable  form, 

and  let  us  explore  the  electromagnetic  field  by  means  of  the  secondary  circuit 

B,  which  we  shall  suppose  to  be  variable  in  form  and  position. 
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We  may  begin  by  supposing  B  to  consist  of  a  short  straight  conductor 

with  its  extremities  sliding  on  two  parallel  conducting  rails,  which  are  put  in 

connexion  at  some  distance  from  the  sliding-piece. 

Then,  if  sliding  the  moveable  conductor  in  a  given  direction  increases  the 

value  of  3/,  a  negative  electromotive  force  will  act  in  the  circuit  B,  tending 

to  produce  a  negative  current  in  B  during  the  motion  of  the  sliding-piece. 

If  a  current  be  kept  up  in  the  circuit  B,  then  the  sliding-piece  will  itself 
tend  to  move  in  that  direction,  which  causes  M  to  increase.  At  every  point 

of  the  field  there  will  always  be  a  certain  direction  such  that  a  conductor  moved 

in  that  direction  does  not  experience  any  electromotive  force  in  whatever  direc- 
tion its  extremities  are  turned.  A  conductor  carrying  a  current  will  experience 

no   mechanical  force  urging  it  in  that  direction  or  the  opposite. 

This  direction  is  called  the  direction  of  the  line  of  magnetic  force  through 

that  point. 

Motion  of  a  conductor  across  such  a  line  produces  electromotive  force  in 

a  direction  perpendicular  to  the  line  and  to  the  direction  of  motion,  and  a  con- 

ductor carrying  a  current  is  urged  in  a  direction  perpendicular  to  the  line  and 

to  the  direction  of  the  current. 

(48)  We  may  next  suppose  B  to  consist  of  a  very  small  plane  circuit 

capable  of  being  placed  in  any  position  and  of  having  its  plane  turned  in  any 

direction.  The  value  of  M  will  be  greatest  when  the  plane  of  the  circuit  is 

perpendicular  to  the  line  of  magnetic  force.  Hence  if  a  current  is  maintained 

in  B  it  ̂ vill  tend  to  set  itself  in  this  position,  and  will  of  itself  indicate,  like 

a  magnet,  the  direction  of  the  magnetic  force. 

On  Lines  of  Magnetic  Force. 

(49)  Let  any  surface  be  drawn,  cutting  the  Hnes  of  magnetic  force,  and 

on  this  surface  let  any  system  of  lines  be  drawn  at  small  intervals,  so  as  to 

lie  side  by  side  without  cutting  each  other.  Next,  let  any  line  be  drawn  on 

the  surface  cutting  all  these  lines,  and  let  a  second  line  be  drawn  near  it,  its 

distance  from  the  first  being  such  that  the  value  of  M  for  each  of  the  small 

spaces  enclosed  between  these  two  lines  and  the  lines  of  the  first  system  is 

equal  to  unity. 

In   this    way   let   more   lines   be    drawn    so    as   to    form   a   second   system,  so 
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that   the  value   of   M  for   every  reticulation   formed  by   the   intersection    of  the 

two  systems  of  lines  is  unity. 

Finally,  from  every  point  of  intersection  of  these  reticulations  let  a  line  be 

drawn  through  the  field,  always  coinciding  in  direction  with  the  direction  of 

magnetic  force. 

(50)  In  this  way  the  whole  field  will  be  filled  with  lines  of  magnetic  force 

at  regular  intervals,  and  the  properties  of  the  electromagnetic  field  will  be  com- 
pletely expressed  by  them. 

For,  1st,  If  any  closed  curve  be  drawn  in  the  field,  the  value  of  M  for 

that  curve  will  be  expressed  by  the  number  of  lines  of  force  which  pass  through 
that  closed  curve. 

2ndly.  If  this  curve  be  a  conducting  circuit  and  be  moved  through  the 

field,  an  electromotive  force  will  act  in  it,  represented  by  the  rate  of  decrease 

of  the  number  of  lines  passing  through  the  curve. 

Srdly.  If  a  current  be  maintained  in  the  circuit,  the  conductor  will  be 

acted  on  by  forces  tending  to  move  it  so  as  to  increase  the  number  of  lines 

passing  through  it,  and  the  amount  of  work  done  by  these  forces  is  equal  to 

the   current   in   the   circuit   multiplied  by  the  number  of  additional  lines. 

4thly.  If  a  small  plane  circuit  be  placed  in  the  field,  and  be  free  to  turn, 

it  will  place  its  plane  perpendicular  to  the  lines  of  force.  A  small  magnet  will 

place  itself  with  its  axis  in  the  direction  of  the  lines  of  force. 

5thly.  If  a  long  uniformly  magnetized  bar  is  placed  in  the  field,  each  pole 

Avill  be  acted  on  by  a  force  in  the  direction  of  the  lines  of  force.  The  number 

of  lines  of  force  passing  through  unit  of  area  is  equal  to  the  force  acting  on 

a  unit  pole  multiplied  by  a  coefiicient  depending  on  the  magnetic  nature  of  the 

medium,  and  called  the  coefiicient  of  magnetic  induction. 

In  fluids  and  isotropoic  solids  the  value  of  this  coefficient  /ot  is  the  same 

in  whatever  direction  the  lines  of  force  pass  through  the  substance,  but  in 

crystallized,  strained,  and  organized  solids  the  value  of  /x  may  depend  on  the 

direction  of  the  lines  of  force  with  respect  to  the  axes  of  crystallization,  strain, 

or  growth. 

In  all  bodies  /x  is  affected  by  temperature,  and  in  iron  it  appears  to  diminish 

as  the  intensity  of  the  magnetization  increases. 
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On  Magnetic   Equipotential  Surfaces. 

(51)  If  we  explore  the  field  with  a  uniformly  magnetized  bar,  so  long  that 

one  of  its  poles  is  in  a  very  weak  part  of  the  magnetic  field,  then  the  mag- 

netic   forces    will   perform    work    on    the  other  pole  as  it  moves  about  the  field. 

If  we  start  from  a  given  point,  and  move  this  pole  from  it  to  any  other 

point,  the  work  performed  will  be  independent  of  the  path  of  the  pole  between 

the  two  points;  provided  that  no  electric  current  passes  between  the  diflferent 

paths  pursued  by  the  pole. 

Hence,  when  there  are  no  electric  currents  but  only  magnets  in  the  field, 

we  may  draw  a  series  of  surfaces  such  that  the  work  done  in  passing  from  one 

to  another  shall  be  constant  whatever  be  the  path  pursued  between  them.  Such 

surfaces  are  called  Equipotential  Surfaces,  and  in  ordinary  cases  are  perpendicular 

to  the  Lines  of  magnetic  force. 

If  these  surfaces  are  so  drawn  that,  when  a  unit  pole  passes  from  any  one 

to  the  next  in  order,  unity  of  work  is  done,  then  the  work  done  in  any  motion 

of  a  magnetic  pole  will  be  measured  by  the  strength  of  the  pole  multiplied  by 

the  number  of  surfaces  which  it  has  passed  through  in  the  positive  direction. 

(52)  If  there  are  circuits  carrying  electric  currents  in  the  field,  then  there 

will  still  be  equipotential  surfaces  in  the  parts  of  the  field  external  to  the  con- 

ductors carrying  the  currents,  but  the  work  done  on  a  unit  pole  in  passing 

from  one  to  another  will  depend  on  the  number  of  times  which  the  path  of 

the  pole  circulates  round  any  of  these  currents.  Hence  the  potential  in  each 

surfiice  will  have  a  series  of  values  in  arithmetical  progression,  differing  by  the 

work  done  in  passing  completely  round  one  of  the  currents  in  the  field. 

The  equipotential  surfaces  w^ill  not  be  continuous  closed  surfaces,  but  some 

of  them  will  be  limited  sheets,  terminating  in  the  electric  circuit  as  their  common 

edge  or  boundary.  The  number  of  these  will  be  equal  to  the  amount  of  work 

done  on  a  unit  pole  in  going  round  the  current,  and  this  by  the  ordinary 

measurement  =  A-ny,  where  y  is  the  value  of  the  current. 

These  surfaces,  therefore,  are  connected  with  the  electric  current  as  soap- 

bubbles  are  connected  with  a  ring  in  M.  Plateau's  experiments.  Every  current 

y  has  A-ny  surfaces  attached  to  it.  These  surfaces  have  the  current  for  their 

common  edge,  and  meet  it  at  equal  angles.  The  form  of  the  surfaces  in  other 

parts  depends  on  the  presence  of  other  currents  and  magnets,  as  well  as  on 

the  shape  of  the  circuit  to  which  they  belong. 
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PART     III. 

GENERAL    EQUATIONS    OF    THE    ELECTROMAGNETIC    FIELD. 

(53)  Let  US  assume  three  rectangular  directions  in  space  as  the  axes  of 

X,  ]),  and  z,  and  let  all  quantities  having  direction  be  expressed  by  their  com- 
ponents in  these  three  directions. 

Electrical  Cui^ents  (p,  q,  r). 

(54)  An  electrical  current  consists  in  the  transmission  of  electricity  from 

one  part  of  a  body  to  another.  Let  the  quantity  of  electricity  transmitted  in 
unit  of  time  across  unit  of  area  perpendicular  to  the  axis  of  x  be  called  p,  then 

j)   is   the   component  of  the  current  at  that  place  in  the  direction  of  x. 

We  shall  use  the  letters  p,  q,  r  to  denote  the  components  of  the  current 

per  unit  of  area  in  the  directions  of  x,  y,  z. 

Electrical  Displacements  (f,  g,  h). 

(55)  Electrical  displacement  consists  in  the  opposite  electrification  of  the 

sides  of  a  molecule  or  particle  of  a  body  which  may  or  may  not  be  accom- 
panied with  transmission  through  the  body.  Let  the  quantity  of  electricity  which 

would  appear  on  the  faces  dy .  dz  of  an  element  dx,  dy,  dz  cut  from  the  body 
be  f .  dy .  dz,  then  f  is  the  component  of  electric  displacement  parallel  to  x.  We 

shall  use  /,  g,  h  to  denote  the  electric  displacements  parallel  to  x,  y,  z  respectively. 

The  variations  of  the  electrical  displacement  must  be  added  to  the  currents 

p,  q,  r  to  get  the  total  motion  of  electricity,  which  we  may  call  p',  q,  r\  so  that 

P 

=  P  +  i 

dt 

dg 

dh 

=  '  +  dt 

(A). 
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Electromotive  Force  (P,  Q,  R). 

(56)  Let  P,  Q,  R  represent  the  components  of  tlie  electromotive  force  at 

any  point.  Then  P  represents  the  difference  of  potential  per  unit  of  length  in 

a  conductor  placed  in  the  direction  of  x  at  the  given  point.  We  may  suppose 
an  indefinitely  short  wire  placed  parallel  to  a:  at  a  given  point  and  touched, 

during  the  action  of  the  force  P,  by  two  small  conductors,  which  are  then 

insulated  and  removed  from  the  influence  of  the  electromotive  force.  The  value 

of  P   might  then  be  ascertained  by  measuring  the  charge  of  the  conductors. 

Thus  if  /  be  the  length  of  the  wire,  the  difference  of  potential  at  its  ends 

will  be  PI,  and  if  C  be  the  capacity  of  each  of  the  small  conductors  the  charge 
on  each  will  be  ̂ CPl.  Since  the  capacities  of  moderately  large  conductors, 
measured  on  the  electromagnetic  system,  are  exceedingly  small,  ordinary  electro- 

motive forces  arising  from  electromagnetic  actions  could  hardly  be  measured  in 
this  way.  In  practice  such  measurements  are  always  made  with  long  conductors, 
forming  closed  or  nearly  closed  circuits. 

Electromagnetic  Momentum  (F,  G,  H). 

(57)  Let  F,  G,  H  represent  the  components  of  electromagnetic  momentum 

at  any  point  of  the  field,  due  to  any  system  of  magnets  or  currents. 

Then  F  is  the  total  impulse  of  the  electromotive  force  in  the  direction  of 

X  that  would  be  generated  by  the  removal  of  these  magnets  or  currents  from 
the  field,  that  is,  if  P  be  the  electromotive  force  at  any  instant  during  the 
removal  of  the  system 

F  =  lPdt. 

Hence   the   part    of    the    electromotive    force    which    depends    on    the    motion    of 
magnets  or  currents  in  the  field,  or  their  alteration  of  intensity,  is 

--f.  ̂ =-f -  --f   (-)• 
Electromagnetic  Momentum  of  a  Circuit. 

(58)  Let  s  be  the  length  of  the  circuit,  then  if  we  integrate 

/(4>4^-^^^   (-) 
70—2 
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round  the  circuit,  we  shall  get  the  total  electromagnetic  momentum  of  th
e  circuit, 

vv  the  number  of  lines  of  magnetic  force  which  pass  through  it,  the  v
ariations 

of  which  measure  the  total  electromotive  force  in  the  circuit.  This 
 electromag- 

netic momentum  is  the  same  thing  to  which  Professor  Faraday  has  applied  th
e 

name  of  the  Electrotonic  State. 

If  the  circuit  be  the  boundary  of  the  elementary  area  di/  dz,  then  its  ele
ctro- 

mao-uetic  momentum  is 

\  dy       dz 

and  this   is    the    number    of    lines    of    magnetic    force    which    pa^ss    through   
 the 

area    dij  dz. 

Magnetic  Force  {a,  /3,  y). 

(59)  Let  a,  /S,  y  represent  the  force  acting  on  a  unit  
magnetic  pole  placed 

at  the  given  point  resolved  in  the  directions  of  x,  y,  and
  z. 

Coefficient  of  Magnetic  Induction  (/x). 

(60)  Let  /x  be  the  ratio  of  the  magnetic  induction  in
  a  given  medium  to 

that  in  air  under  an  equal  magnetizing  force,  then  the  nu
mber  of  lines  of  force 

in  unit  of  area  perpendicular  to  x  will  be  [xa  (/x  is  a  quanti
ty  dependmg  on 

the  nature  of  the  medium,  its  temperature,  the  amount  of 
 magnetization  already 

produced,  and  in  crystalline  bodies  varying  with  the  d
irection). 

(61)  Expressing  the  electric  momentum  of  small  circu
its  perpendicular  to 

the  three  axes  in  this  notation,  we  obtain  the  following 

Equations  of  Magnetic  Force, 

dH 

dG] 

^-dy- 

~  dl 

o      dP 

dH 

^^  =  Tz- 

~d^ 

dG dF i'y^  dx  - 

"d-y\ 

(B). 
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Equations  of  Currents. 

(62)  It  is  known  from  experiment  that  the  motion  of  a  magnetic  pole 

in  the  electromagnetic  field  in  a  closed  circuit  cannot  generate  work  unless  the 
circuit  which  the  pole  describes  passes  round  an  electric  current.  Hence,  except 

in  the  space  occupied  by  the  electric  currents, 

adx  +  fidi/  +  ydz  =  d(f>     (31) 

a  complete  differential  of  <f),  the  magnetic  potential. 

The  quantity  (f>  may  be  susceptible  of  an  indefinite  number  of  distinct  values, 
according  to  the  number  of  times  that  the  exploring  point  passes  round  electric 

currents  in  its  course,  the  difference  between  successive  values  of  (f)  corre- 
sponding  to   a   passage   completely  round  a  current  of  strength  c  being  inc. 

Hence   if  there   is   no  electric  current, 

dy      dz 
but   if  there   is  a  current  p, 

(C). 

o-     M     1  da      dy       ̂      ,    \ 

Similarly,  -i^~  -f  =  '^'^^    ̂ 

dx     dy~ 
We  may  call  these  the  Equations  of  Currents. 

Electromotive  Force  in  a  Circuit. 

(63)     Let   ̂   be  the  electromotive  force  acting  round  the  circuit  A,  then 

f=/(^S+«?l-^3'^   (-)■ 

where  c^  is  the  element  of  length,  and    the  integration    is   performed   round   the 
circuit. 
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Let   the   forces   in   the   field   be   those   due   to   the    circuits   A    and   B,   then 

the  electromagnetic  momentum  of  A  is 

^'^+G^  +  Hf)ds  =  Lu  +  Mv   (33), da  ds  ds 

It 
where  u  and  v  are  the  currents  in  A  and  B,  and 

^=-^ilAL  +  Mi^   (34). 

(35), 

dt 

Hence,  if  there  is  no  motion  of  the  circuit  A, 

p^_dF_
d^' 

dt       dx 

^~       dt       dy  . 

P_      d^_chp\ 
^-~  dt       dz] 

where  ̂   is  a  function  of  x,  y,  z,  and  t,  which  is  indeterminat
e  as  far  as  regards 

the  solution  of  the  above  equations,  because  the  terms
  depending  on  it  will 

disappear  on  integrating  round  the  circuit.  The  quant
ity  ̂   can  always  however 

be  determined  in  any  particular  case  when  we  know 
 the  actual  conditions  of 

the  question.  The  physical  interpretation  of  V'  is,  that 
 it  represents  the  electnc 

liotential  at  each  point  of  space. 

Electromotive  Force  on  a  Moving  Conductor. 

(64)     Let   a   short   straight   conductor   of  length  a,    parallel   to   the   ax
is    of 

X,   move   with   a   velocity  whose   components   are   ̂ ,    -^,    ̂ ,    and    let    its    ex- 
ds 

tremities   sHde   along   two   parallel   conductors   with   a   velocity   ̂ .     Let   us   find 

the   alteration   of   the   electromagnetic   momentum   of   the    circuit   
 of   which    this 

arrangement   forms   a   part. 
dx     dy     dz 

In    unit   of  time   the   moving   conductor  has  travelled  distances  ̂  »   ;^  >    ̂  

aloncr   the   directions   of    the   three   axes,    and   at   the   same  time   
the   lengths  of 

the  parallel  conductors  included  in  the  circuit  have  each  been   increas
ed  by   ̂  . 
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Hence    the   quantity 

lis         as 

/( 

F''-UG''l  +  Jlf^) 

will  be  Increased  by  the  following  increments, 

/dFdx     dF  dy  ,  dF  dz\      ,       ̂   ^-         c         ̂      ̂  
ai-i   r-  +  -i   r-  +  -7--rK  ciue  to  motion  of  conductor, 
\dx  dt      dy  dt       dz  dtj 

dsfdFdx     dGdiidHdz\     ,       .     i     ̂ i      •         c    ■      -, 
-a-ri-,-  -J-  +  -i-  -i   +  —1   r    >  due  to  lengthening  ot  circuit. 

dt  \dx  ds       dx  ds       dx  dsj  ^  ^ 

The  total  increment  will  therefore  be 

fdF_d^dy_    (dH_clF\dz 
''[dy      dx)  cit      ̂ \dx       dzjdt' 

or,   by   the  equations  of  Magnetic  Force   (8), 

If  P  is  the  electromotive  force  in  the  moving  conductor  parallel  to  x  referred 

to  unit  of  length,  then  the  actual  electromotive  force  is  Pa ;  and  since  this  is 

measured  by  the  decrement  of  the  electromagnetic  momentum  of  the  circuit,  the 
electromotive   force   due   to   motion  will  be 

^^-l-'^^s   (-)• 
(65)  The  complete  equations  of  electromotive  force  on  a  moving  conductor 

may  now  be  written  as  follows  :  — 

Equations  of  Electromotive  Force. 

-K4'- 
-4;)- dF 

'  dt  ~ 

dxjj 

'dx 

<?=.(4:- -r%- 
dG 

~  dt  ' 

dxfj 

'dy 

^-(^t- -4)- 
dll 

'  dt  ' 

d\\i 

"dz 

(D). 
The  fii-st  term  on  the  right-hand  side  of  each  equation  represents  the  electro- 

motive   force    arising  from  the  motion    of  the  conductor  itself     This  electromotive 
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force  is  perpendicular  to  the  direction  of  motion  and  to  the  lines  of  magnetic 
force ;  and  if  a  parallelogram  be  drawn  whose  sides  represent  in  direction 
and  magnitude  the  velocity  of  the  conductor  and  the  magnetic  induction  at  that 

point  of  the  field,  then  the  area  of  the  parallelogram  will  represent  the  electro- 
motive force  due  to  the  motion  of  the  conductor,  and  the  direction  of  the  force 

is    perpendicular    to   the   plane  of  the   parallelogram. 

The  second  term  in  each  equation  indicates  the  effect  of  changes  in  the 
position   or   strength   of  magnets   or   currents   in  the  field. 

The  third  term  shews  the  effect  of  the  electric  potential  \jj.  It  has  no  effect 
in  causing  a  circulating  current  in  a  closed  circuit.  It  indicates  the  existence 

of  a   force   urging   the   electricity   to   or  from  certain  definite  points  in  the  field. 

Electric  Elasticity. 

{QQ)  Wlien  an  electromotive  force  acts  on  a  dielectric,  It  puts  every  part 

of  the  dielectric  into  a  polarized  condition,  in  which  its  opposite  sides  are 

oppositely  electrified.  The  amount  of  this  electrification  depends  on  the  electro- 
motive force  and  on  the  nature  of  the  substance,  and,  in  solids  having  a  structure 

defined  by  axes,  on  the  direction  of  the  electromotive  force  with  respect  to  these 
axes.  In  isotropic  substances,  if  k  is  the  ratio  of  the  electromotive  force  to  the 

electric   displacement,  we  may  write  the 

Equations  of  Electmc  Elasticity, 

Q  =  kg\   (E). R  =  kh 

Electric  Resistance. 

(Q7)  When  an  electromotive  force  acts  on  a  conductor  it  produces  a  current 

of  electricity  through  it.  This  effect  is  additional  to  the  electric  displacement 
already  considered.  In  soHds  of  complex  structure,  the  relation  between  the 

electromotive  force   and  the   current  depends  on  their  direction  through  the  solid. 
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In   isotropic   substances,    which  alone    we   shall    here  consider,  if  p   is  the  specific 
resistance   referred   to   unit   of  volume,  we  may  write  the 

Equations  of  Electric  Resistance, 

Q=-pq\    (F)- 
R=-pr\ 

Electric  Quantity. 

(68)  Let  e  represent  the  quantity  of  free  positive  electricity  contained  in 
unit  of  volume  at  any  part  of  the  field,  then,  since  this  arises  from  the  electri- 

fication of  the  different  parts  of  the  field  not  neutralizing  each  other,  we  may 
write  the 

Equation  of  Free  Electncity, 

df     da     dh     ̂   ,^. 

«+i+i+ar=°   (G). 
(69)  If  the  medium  conducts  electricity,  then  we  shall  have  another  con- 

dition, which  may  be  called,  as  in  hydrodynamics,  the 

Equation  of  Continuity, 

dt^dx^Ty^di-^   W- 

(70)  In  these  equations  of  the  electromagnetic  field  we  have  assumed  twenty 
variable  quantities,    namely. 

For  Electromagnetic  Momentum   iF  G  H 

„  Magnetic  Intensity    a  /3  y 
„  Electromotive  Force   P  Q  R 

„  Current  due  to  true  Conduction    p  q  r 

„  Electric  Displacement   /  (j  h 

„  Total  Current  (including  variation  of  displacement)  p'  q  r 
„  Quantity  of  Free  Electricity    c 

„  Electric  Potential    ■^I' 
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Between  these  twenty  quantities  we  have  found  twenty  equations,  viz. 

Three  equations  of  Magnetic  Force    (B) 
Electric    Currents    (C) 

Electromotive  Force    (D) 

Electric  Elasticity    (E) 
Electric   Resistance   (F) 

Total  Currents    (A) 

One  equation  of  Free  Electricity   (G) 
„  Continuity   (H) 

These  equations  are  therefore  sufficient  to  determine  all  the  quantities  which 

occur  in  them,  provided  we  know  the  conditions  of  the  problem.  In  many 

questions,  however,  only  a  few  of  the  equations  are  required. 

Intrinsic  Energy  of  the  Electromagnetic  Field. 

(71)  We  have  seen  (33)  that  the  intrinsic  energy  of  any  system  of  currents 

is  found  by  multiplying  half  the  current  in  each  circuit  into  its  electromagnetic 

momentum.     This   is   equivalent   to   finding  the   integral 

E  =  it{Fp+Gq+Hr')dV   (37) 

over  all   the   space   occupied   by   currents,    where  p,  q,  r   are   the   components  of 

currents,  and  F,   G,  H  the  components  of  electromagnetic  momentum. 

Substituting  the  values  of  p',  q,  r  from  the  equations  of  Currents  (C), 
this   becomes 

Integrating  by  parts,  and  remembering  that  a,  /8,  y  vanish  at  an  infinite 

distance,  the  expression   becomes 

l^r    [dH     dG\     ̂ (dF     dH\  ̂     IdG     dF\\,^ 

where  the  integration   is  to   be  extended  over  aU  space.     Referring  to  the  equa- 
tions  of  Magnetic   Force    (B),  p.  556,  this  becomes 

E=~t{a.,Ma  +  l3.ti^  +  y.lJiy}dV   (38), 
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where  a,  ̂ ,  y  are  the  components  of  magnetic  intensity  or  the  force  on  a  unit 

magnetic  pole,  and  /la,  /x^,  /xy  are  the  components  of  the  quantity  of  magnetic 
induction,  or  the  number  of  lines  of  force  in  unit  of  area. 

In  isotropic  media  the  value  of  /x  is  the  same  in  all  directions,  and  we 

may  express  the  result  more  simply  by  saying  that  the  intrinsic  energy  of  any 
part  of  the  magnetic   field  arising  from  its  magnetization   is 

Stt 

per  unit   of  volume,  where  /  is  the  magnetic  intensity. 

(72)  Energy  may  be  stored  up  in  the  field  in  a  different  way,  namely, 
by  the  action  of  electromotive  force  in  producing  electric  displacement.  The 

work  done  by  a  variable  electromotive  force,  P,  in  producing  a  variable  dis- 
placement, f,  is  got  by  integrating 

\pdf 
from  P  =  0  to  the  given  value  of  P. 

Since  P  =  ̂ f,  equation  (E),  this  quantity  becomes 

mf=ikr=^pf. 
Hence  the  intrinsic  energy  of  any  part  of  the  field,  as  existing  in  the 

form  of  electric  displacement,  is 

^t(Pf+Qg  +  Rh)dV. 

The  total  energy  existing  in  the  field   is  therefore 

E  =  ̂ {^{a^.a  +  ̂y.^  +  yiiy)  +  \{Pf  +Qg  +  Rh)^^   (I)- 

The  first  term  of  this  expression  depends  on  the  magnetization  of  the  field, 

and  is  explained  on  our  theory  by  actual  motion  of  some  kind.  The  second 

term  depends  on  the  electric  polarization  of  the  field,  and  is  explained  on  our 

theory  by   strain  of  some   kind  in  an  elastic  medium. 

(73)  I  have  on  a  former  occasion"  attempted  to  describe  n  particular  kind 

of  motion  and  a  particular  kind  of  strain,  so  arranged  as  to  account  for  the 

phenomena.     In   the   present   paper   I   avoid  any  hypothesis  of  this  kind ;   and 

♦  "On  Physical  Lines  of  Force,"  Philosophical  Magazine,  1861—62.     (In  this  voL  p.  451.) 

71—2 

in 
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using  such  words  as  electric  momentum  and  electric  elasticity  in  reference  to 

the  known  phenomena  of  the  induction  of  currents  and  the  polarization  of 

dielectrics,  I  wish  merely  to  direct  the  mind  of  the  reader  to  mechanical  pheno- 
mena which  will  assist  him  in  understanding  the  electrical  ones.  All  such  phrases 

in  the  present  paper  are  to  be  considered  as  illustrative,  not  as  explanatory. 

(74)  In  speaking  of  the  Energy  of  the  field,  however,  I  wish  to  be  under- 
stood literally.  All  energy  is  the  same  as  mechanical  energy,  whether  it  exists 

in  the  form  of  motion  or  in  that  of  elasticity,  or  in  any  other  form.  The 

energy  in  electromagnetic  phenomena  is  mechanical  energy.  The  only  question 
is,  Where  does  it  reside  ?  On  the  old  theories  it  resides  in  the  electrified  bodies, 

conducting  circuits,  and  magnets,  in  the  form  of  an  unknown  quality  called 

potential  energy,  or  the  power  of  producing  certain  efiects  at  a  distance.  On 
our  theory  it  resides  in  the  electromagnetic  field,  in  the  space  surrounding  the 
electrified  and  magnetic  bodies,  as  well  as  in  those  bodies  themselves,  and  is 
in  two  different  forms,  which  may  be  described  without  hypothesis  as  magnetic 

polarization  and  electric  polarization,  or,  according  to  a  very  probable  hypothesis, 
as   the   motion   and   the   strain   of  one   and   the   same   medium. 

(75)  The  conclusions  arrived  at  in  the  present  paper  are  independent  of 
this  hypothesis,  being  deduced  from  experimental  facts  of  three  kinds : 

1.  The  induction  of  electric  currents  by  the  increase  or  diminution  of 

neighbouring  currents  according  to  the  changes  in  the  lines  of  force  passing 

through  the  circuit. 

2.  The  distribution  of  magnetic  intensity  according  to  the  variations  of  a 

magnetic  potential. 

3.  The  induction   (or  influence)   of  statical  electricity  through  dielectrics. 

We  may  now  proceed  to  demonstrate  fi:om  these  principles  the  existence 

and  laws  of  the  mechanical  forces  which  act  upon  electric  currents,  magnets,  and 
electrified  bodies  placed  in  the  electromagnetic  field. 
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PART   IV. 

MECHANICAL   ACTIONS   IN   THE   FIELD. 

Mechanical  Force  on  a  Moveable  Conductor. 

(76)  We  have  shewn  (§§  34  &  35)  that  the  work  done  by  the  electro- 

magnetic forces  in  aiding  the  motion  of  a  conductor  is  equal  to  the  product 

of  the  current  in  the  conductor  multiplied  by  the  increment  of  the  electro- 

magnetic  momentum  due  to  the  motion. 

Let  a  short  straight  conductor  of  length  a  move  parallel  to  itself  in  the 

direction  of  x,  with  its  extremities  on  two  parallel  conductors.  Then  the  incre- 

ment  of  the   electromagnetic  momentum  due  to  the  motion  of  a  will  be 

(dFdx     dGdy     dH  dz\^ 
\dx  ds      dx  ds      dx  ds) 

That   due   to   the  lengthening   of  the   circuit  by    increasing    the    length    of   the 

parallel  conductors  will  be 

(dFdx     dFdy  dFdz\^ 
\dx  ds      dy  ds  dz  ds) 

The   total  increment   is 

\ds  \dx      dyj 
ds\dz       dx  Jj  ' 

which  is  by  the  equations  of  Magnetic  Force  (B),  p.  556, 

Let  X  be  the  force  acting  along  the  direction  of  x  per  unit  of  length  of 
the  conductor,  then  the  work  done  is  XaSx. 

Let  C  be  the  current  in  the  conductor,  and  let  p,  q\  r  be  its  com- 

ponents, then 

XaZx  =  Cahx  (^  ̂y  "  "^  /^^j  . 
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or  X  =  iiyq  -^l^r^ 

Similarly,  Y=fiar  —  y.yp  \   (J). 

These  are  the  equations  which  determine  the  mechanical  force  acting  on  a 
conductor  carrying  a  current.  The  force  is  perpendicular  to  the  current  and 

to  the  lines  of  force,  and  is  measured  by  the  area  of  the  parallelogram  formed 

by  lines  parallel  to  the  current  and  lines  of  force,  and  proportional  to  their 
intensities. 

Mechanical  Force  on  a  Magnet. 

(J  7)  In  any  part  of  the  field  not  traversed  by  electric  currents  the  dis- 
tribution of  magnetic  intensity  may  be  represented  by  the  difterential  coefficients 

of  a  function  which  may  be  called  the  magnetic  potential.  When  there  are  no 

currents  in  the  field,  this  quantity  has  a  single  value  for  each  point.  When 

there  are  currents,  the  potential  has  a  series  of  values  at  each  point,  but  its 
differential  coefficients  have  only  one  value,  namely, 

d(f)  d4>      n       ̂ ^ 

Substituting  these  values  of  a,  y8,  y  in  the  expression  (equation  38)  for  the 
intrinsic  energy  of  the  field,  and  integrating  by  parts,  it  becomes 

^h(-B-'f,-'t)V^- 
The  expression  S  (^ +  ̂  +  ̂)  cZF=S/7icZF   (39) 

indicates  the  number  of  lines  of  magnetic  force  which  have  their  origin  within 

the  space  F.  Now  a  magnetic  pole  is  known  to  us  only  as  the  origin  or 
termination  of  lines  of  magnetic  force,  and  a  unit  pole  is  one  which  has  47r 

lines  belonging  to  it,  since  it  produces  unit  of  magnetic  intensity  at  unit  of 
distance  over  a  sphere  whose  surface  is  47r. 

Hence  if  m  is  the  amount  of  free  positive  magnetism  in  unit  of  volume, 

the  above  expression  may  be  written  47r>/i,  and  the  expression  for  the  energy 
of  the  field  becomes 

E=-X{\^ni)dV   (40). 
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If  there  are  two  magnetic  poles  7>i,  and  vi^  producing  potentials  ̂ ,  and  <^, 

in  the  field,  then  if  m,  is  moved  a  distance  dx,  and  is  urged  in  that  direction 

by  a  force  A',  then  the  work  done  is  Xdx,  and  the  decrease  of  energy  in  the 
field  is 

and  these  must  be  equal  by  the  principle  of  Conservation  of  Energy. 

Since  the  distribution  <^i  is  determined  by  m^,  and  (f),  by  vi„  the  quantities 

^,7?ii  and  (fi.pn^  will  remain  constant. 

It  can   be  shewn  also,  as  Green  has  proved  (Essay,  p.   10),  that 

m,</>,  =  mj<^„ 

so  that  we  get  Xdx  =  d{7n^<f>^), 
„         d(f>, 

or  X  =  m^-T-  =  rryx^, 

where  c^  represents  the  magnetic  intensity  due  to  m^.  \     (K). 

Similarly,  Y=  m^,, 
Z  =  m^yi. 

So  that  a  magnetic  pole  is  urged  in  the  direction  of  the  lines  of  magnetic 

force  with  a  force  equal  to  the  product  of  the  strength  of  the  pole  and  the 

magnetic  intensity. 

(78)  If  a  single  magnetic  pole,  that  is,  one  pole  of  a  very  long  magnet, 

be  placed  in  the  field,  the  only  solution  of  (f>  is 

t>—fl   ("). 
where   m,  is  the  strength  of  the  pole,  and  r  the  distance  from  it. 

The  repulsion  between  two  poles  of  strength  m,  and  w,  is 

d<f>i     m/ni^  f  ̂  _. 

"^^  =  7^5-   (^2)- 

In   air   or   any   medium   in   which   /x  =  1    this   is   simply      \  * ,    but   in   other 

media  the  force  acting  between  two  given  magnetic  poles  is  inversely  propor- 
tional to  the  coefficient  of  magnetic  induction  for  the  medium.  This  may  be 

explained  by  the  magnetization  of  the  medium  induced  by  the  action  of  the 

poles. 
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Mechanical  Force  on  an  Electrified  Body. 

(79)  If  there  is  no  motion  or  change  of  strength  of  currents  or  magnets 
in  the  field,  the  electromotive  force  is  entirely  due  to  variation  of  electric 
potential,  and  we  shall  have  (§65) 

dx*  dy*  dz  ' 
Integrating  by  parts  the  expression  (I)  for  the  energy  due  to  electric 

displacement,  and  remembering  that  P,  Q,  R  vanish  at  an  infinite  distance,  it  becomes 

i^{-(l+|43<^^- 
or  by  the  equation  of  Free  Electricity  (G),  p.  561, 

-^t(^e)dV. 
By    the    same    demonstration    as    was   used  in  the   case   of  the   mechanical 

action    on    a    magnet,   it  may  be  shewn  that  the  mechanical   force   on   a  small 

body    containing    a    quantity    e^    of    free    electricity    placed    in    a    field    whose 

potential  arising  from  other  electrified  bodies  is  '^\,  has  for  components 

(D). 

So  that  an  electrified  body  is  urged  in  the  direction  of  the  electromotive 

force  with  a  force  equal  to  the  product  of  the  quantity  of  free  electricity  and 
the  electromotive  force. 

If   the    electrification    of    the    field    arises    from    the    presence   of  a  small 

electrified  body  containing  e^  of  free  electricity,  the  only  solution  of  ̂ i  is 

-.=r.^-   (^^)' 
where  r  is  the  distance  from  the  electrified  body. 

The  repulsion  between  two  electrified  bodies  e^,  e^  is  therefore 

"'Hf-^T^V   (">• 
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Measurement  of  Electrostatic  Effects. 

(80)  The  quantities  with  which  we  have  had  to  do  have  been  hitherto 

expressed  in  terms  of  the  Electromagnetic  System  of  measurement,  which  is 

founded  on  the  mechanical  action  between  currents.  The  electrostatic  system  of 

measurement  is  founded  on  the  mechanical  action  between  electrified  bodies, 

and  is  independent  of,  and  incompatible  with,  the  electromagnetic  system ;  so 

that  the  units  of  the  different  kinds  of  quantity  have  different  values  according 

to  the  system  we  adopt,  and  to  pass  from  the  one  system  to  the  other,  a 

reduction  of  all  the  quantities  is  required. 

According  to  the  electrostatic  system,  the  repulsion  between  two  small 

bodies  charged  with  quantities  7)^,  t],  of  electricity  is 

where  r  is  the  distance  between  them. 

Let  the  relation  of  the  tw^o  systems  be  such  that  one  electromagnetic  unit 

of  electricity  contains  v  electrostatic  units;  then  r),  =  ve,  and  ri.,  =  ve„  and  this 

repulsion  becomes 

v'^^'  =  A  ̂J^  by  equation  (44)     (45), 

whence  h,  the  coefficient  of  "electric  elasticity"  in  the  medium  in  which  the 

experiments  are  made,  i.  e.  common  air,  is  related  to  v,  the  number  of  electro- 
static units  in  one  electromagnetic  unit,  by  the  equation 

A;  =  47ri''   (46). 

The    quantity   v  may   be   determined   by   experiment    in   several    ways.      Ac- 
cording to  the  experiments  of  MM.  Weber  and  Kohlrausch, 

v  =  310,740,000  metres  per  second. 

(81)  It  appears  from  this  investigation,  that  if  we  assume  that  the  medium 

which  constitutes  the  electromagnetic  field  is,  when  dielectric,  capable  of  receiving 

in  every  part  of  it  an  electric  polarization,  in  which  the  opposite  sides  of  every 

element  into  which  we  may  conceive  the  medium  divided  are  oppositely  elec- 
trified, and  if  we  also  assume  that  this  polarization  or  electric  displacement  is 

proportional  to   the   electromotive   force  which  produces  or  maintains  it,  then  we 
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can   shew   that   electrified   bodies  in  a  dielectric  medium  will  act  on  one  anotKer 

with  forces  obeying  the  same  laws  as  are  established  by  experiment. 

The  energy,  by  the  expenditure  of  which  electrical  attractions  and  repul- 
sions are  produced,  we  suppose  to  be  stored  up  in  the  dielectric  medium  which 

surrounds  the  electrified  bodies,  and  not  on  the  surface  of  those  bodies  them- 

selves, which  on  our  theory  are  merely  the  bounding  surfaces  of  the  air  or  other 

dielectric  in  which  the  true  springs  of  action  are  to  be  sought. 

Note  on  the  Attraction  of  Gravitation. 

(82)  After  tracing  to  the  action  of  the  surrounding  medium  both  the 

magnetic  and  the  electric  attractions  and  repulsions,  and  finding  them  to  depend 

on  the  inverse  square  of  the  distance,  we  are  naturally  led  to  inquire  whether 

the  attraction  of  gravitation,  which  follows  the  same  law  of  the  distance,  is 

not  also  traceable  to  the  action  of  a  surrounding  medium. 

Gravitation  differs  from  magnetism  and  electricity  in  this  ;  that  the  bodies 

concerned  are  all  of  the  same  kind,  inatead  of  being  of  opposite  signs,  like 

magnetic  poles  and  electrified  bodies,  and  that  the  force  between  these  bodies 

is  an  attraction  and  not  a  repulsion,  as  is  the  case  between  like  electric  and 

magnetic  bodies. 

The  lines  of  gravitating  force  near  two  dense  bodies  are  exactly  of  the 

same  form  as  the  lines  of  magnetic  force  near  two  poles  of  the  same  name ; 

but  whereas  the  poles  are  repelled,  the  bodies  are  attracted.  Let  I^  be  the 

intrinsic  energy  of  the  field  surrounding  two  gravitating  bodies  M^,  M^,  and 

let  E'  be  the  intrinsic  energy  of  the  field  surrounding  two  magnetic  poles, 
ra^,  n\  equal  in  numerical  value  to  iltfj,  M^,  and  let  X  be  the  gravitating 

force   acting   during  the  displacement  hx,  and  X'  the  magnetic  force, 

Xhx  =  hE,  X^x  =  hE'; 

now  X  and  X  are  equal  in  numerical  value,  but  of  opposite  signs ;  so  that 
hE=-hK, 

or  E=C-E' 

where  a,  ̂ ,  y  are  the  components  of  magnetic  intensity.     If  R  be  the  resultant 
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gravitating    force,    and    li^   the    resultant    magnetic    force    at   a   corresponding  part 
of  the  field, 

R=-R:,  and  a'  +  fi'  +  '/  =  Ii'  =  R'\ 
Hence 

E=C-tj-  ir-dV   (47). 

The   intrinsic   energy   of   the   field   of  gravitation    must   therefore    be    less   where- 

ever  there  is  a  resultant  gravitating  force. 

As  energy  is  essentially  positive,  it  is  impossible  for  any  part  of  space  to 

have  negative  intrinsic  energy.  Hence  those  parts  of  space  in  which  there  is 

no  resultant  force,  such  as  the  points  of  equiUbrium  in  the  space  between  the 

different  bodies  of  a  system,  and  within  the  substance  of  each  body,  must  have 

an  intrinsic  energy  per  unit  of  volume  greater  than 

where  R   is   the   greatest   possible   value   of  the    intensity   of  gravitating   force  in 

any  part  of  the  universe. 

The  assumption,  therefore,  that  gravitation  arises  from  the  action  of  the 

surrounding  medium  in  the  way  pointed  out,  leads  to  the  conclusion  that  every 

part  of  this  medium  possesses,  when  undisturbed,  an  enormous  intrinsic  energy, 

and  that  the  presence  of  dense  bodies  influences  the  medium  so  as  to  diminish 

this  energy  wherever  there  is  a  resultant  attraction. 

As  I  am  unable  to  understand  in  what  way  a  medium  can  possess  such 

properties,  I  cannot  go  any  further  in  this  direction  in  searching  for  the  cause 

of  gravitation. 
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PART    V. 

THEORY    OF    CONDENSERS. 

Capacity  of  a  Condenser. 

(83)  The  simplest  form  of  condenser  consists  of  a  uniform  layer  of  insulating 

matter  bounded  by  two  conducting  surfaces,  and  its  capacity  is  measured  by  tbe 
quantity  of  electricity  on  either  surface  when  the  difference  of  potentials  is  unity. 

Let  S  be  the  area  of  either  surface,  a  the  thickness  of  the  dielectric,  and 
h  its  coefficient  of  electric  elasticity;  then  on  one  side  of  the  condenser  the 

potential   is   ̂ j,  and  on  the  other  side  "^'i  +  l,  and  within  its  substance 

di=a  =  ̂f   W. 

Since  ̂   and  therefore  /  is  zero  outside  the  condenser,  the  quantity  of  electricity 

on   its   first   surface    =  -  Sf,   and   on  the   second   +  Sf.     The  capacity  of  the  con- S 

denser  is  therefore  >§/'=  -^  in  electromagnetic  measure. 

Specific  Capacity  of  Electric  Induction  (D). 

(84)     If  the   dielectric  of  the  condenser  be  air,  then  its  capacity  in  electro- 

ns' 

static   measure   is  — -   (neglecting   coiTections   arising   from    the  conditions   to   be 

fulfilled   at  the  edges).     If  the  dielectric   have  a  capacity  whose  ratio  to  that  of 

air  is  D,  then  the  capacity  of  the  condenser  will  be     ~- . Arra 

Hence  i)  =  |   (49)^ 

where  k^  is  the  value  of  k  in  air,  which  is  taken  for  unity. 
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Electric   Absorption. 

(85)  When  the  dielectric  of  which  the  condenser  is  formed  is  not  a  perfect 

insulator,  the  phenomena  of  conduction  are  combined  with  those  of  electric  dis- 
placement. The  condenser,  when  left  charged,  gradually  loses  its  charge,  and  in 

some  cases,  after  being  discharged  completely,  it  gradually  acquires  a  new  charge 
of  the  same  sign  as  the  original  charge,  and  this  finally  disappears.  These 

phenomena  have  been  described  by  Professor  Faraday  {Expenmental  Researches, 
Series  XL)  and  by  Mr  F.  Jenkin  {Report  of  Committee  of  Board  of  Trade  on 

Submarine  Cables),  and  may  be  classed  under  the  name  of  "Electric  Absorption." 

(86)  We  shall  take  the  case  of  a  condenser  composed  of  any  number  of 

parallel  layers  of  different  materials.  If  a  constant  difference  of  potentials  between 

its  extreme  surfaces  is  kept  up  for  a  suflBcient  time  till  a  condition  of  perma- 
nent steady  flow  of  electricity  is  established,  then  each  bounding  surface  will 

have  a  charge  of  electricity  depending  on  the  nature  of  the  substances  on  each 

side  of  it.  If  the  extreme  surfaces  be  now  discharged,  these  internal  charges 

will  gradually  be  dissipated,  and  a  certain  charge  may  reappear  on  the  extreme 
surfaces  if  they  are  insulated,  or,  if  they  are  connected  by  a  conductor,  a  certain 

quantity  of  electricity  may  be  urged  through  the  conductor  during  the  re- 
establishment   of  equilibrium. 

Let   the   thickness   of  the   several   layers    of  the    condenser   be   a^,  a„,  &c. 

Let   the   values   of  k   for   these   layers   be  respectively  /:„  k.^,  k^,  and  let 

aJc^-\-  aJc^-{-  kc.  =ak   (50), 

where  k  is   the  "electric  elasticity"  of  air,  and  a  is  the  thickness  of  an  equiva- 
lent  condenser  of  air. 

Let  the  resistances  of  the  layers  be  respectively  r^,  r,,  &c.,  and  let 

r, -I- r, -I- &c.  =  r  be  the  resistance  of  the  whole  condenser,  to  a  steady  current 

through  it  per  unit  of  surface. 

Let   the   electric   displacement   in   each   layer   be  /,  fj,  &c. 

Let   the   electric   current   in   each   layer   be  J9„  p^  &c. 

Let  the  potential  on  the  first  surface  be  ̂ i,  and  the  electricity  per  unit 
of  surface    e,. 
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Let   the   corresponding   quantities   at   the   boundary   of  the   first   and   second 
surface  be  %  and  e„  and  so  on.     Then  by  equations  (G)  and  (H), 

de 

&c.  &c. 

But   by   equations    (E)   and   (F), 

&c.         &c.  &c. 

.(51), 

(52). 

After  the   electromotive   force   has   been   kept    up    for   a   sufficient    time    the 
current  becomes  the  same  in  each  layer,  and 

where  ̂   is   the   total   difference   of  potentials   between  the  extreme  layers.     We 
have  then 

and 
t=   j-  ,    &c. 

r  \ajc^     akj' 
These   are  the   quantities   of  electricity   on   the   different   surfaces. 

(53). 

(87)  Now  let  the  condenser  be  discharged  by  connecting  the  extreme  surfaces 

through  a  perfect  conductor  so  that  their  potentials  are  instantly  rendered  equal, 
then  the  electricity  on  the  extreme  surfaces  will  be  altered,  but  that  on  the 

internal  surfaces  will  not  have  time  to  escape.  The  total  difference  of  potentials 
is   now 

^'  =  ajc/,  +  ajc,{e\  +  e,)  +  ajcle\  +  e,-\-e^,  &c.  =  0   (54), 

whence  if  e\  is   what   e^   becomes   at  the  instant   of  discharge, 

^     r  ajc^     ak~  *     ak' (55). 
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The   instantaneous   discharge   is   therefore   —r,    or   the  quantity  which  would 

be   discharged    by   a   condenser   of  air   of   the   equivalent   thickness   a,    and   it    is 

unaffected   by  the   want  of  perfect  insulation. 

(88)  Now  let  us  suppose  the  connexion  between  the  extreme  surfaces 

broken,  and  the  condenser  left  to  itself,  and  let  us  consider  the  gradual  dissi- 

pation of  the  internal  charges.  Let  ̂   be  the  difference  of  potential  of  the 

extreme    surfaces   at   any  time    t ;    then 

^'  =  «A/i  +  «M  +  &c   (56); 

but  «i^V/i= -^i^^> 

Ml  Mi 

Hence  f^  =  Afi'^'  ,  f^^Af'  n\    &c.  ;   and    by   referring   to   the    values   of  e\,    e^, 
&c.,  we  find 

■vir    ,'  -vlr    'I 
^  =_  li   JL ^      r  ajc^     ak 

A=t3..^\   
^"*' '      r  ajc.,      ak  \ 

I 
&c.  J 

so   that    we    find   for   the    difference   of  extreme   potentials  at  any  time, 

---{(^S"■■'-(^t>"""-^   <^^'- 

(89)  It  appears  from  this  result  that  if  all  the  layers  are  made  of  the 

same  substance,  "^^  will  be  zero  always.  If  they  are  of  different  substances, 

the  order  in  which  they  are  placed  is  indifferent,  and  the  effect  will  be  the 

same  whether  each  substance  consists  of  one  layer,  or  is  divided  into  any  number 

of  thin  layers  and  arranged  in  any  order  among  thin  layers  of  the  other  sub- 

stances. Any  substance,  therefore,  the  parts  of  which  are  not  mathematically 

homogeneous,  though  they  may  be  apparently  so,  may  exhibit  phenomena  of 

absorption.  Also,  since  the  order  of  magnitude  of  the  coeflicients  is  the  same 

as  that  of  the  indices,  the  value  of  ̂ '  can  never  change  sign,  but  must  start 
from  zero,  become  positive,  and  finally  disappear. 
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(90)  Let  us  next  consider  the  total  amount  of  electricity  which  would 

pass  from  the  first  surface  to  the  second,  if  the  condenser,  after  being  thoroughly- 

saturated  by  the  current  and  then  discharged,  has  its  extreme  surfaces  connected 

by  a  conductor  of  resistance  R.  Let  p  be  the  current  in  this  conductor;  then, 

during  the   discharge, 

^'=p^r^-\-jp^r^-\-kc.=pR   (59). 

Integrating  with  respect  to  the  time,  and  calling  q„  q^,  q  the  quantities  of 

electricity  which  traverse  the  different  conductors, 

q^r^  + q^r^-\- kc.  =  qR     (60). 

The  quantities  of  electricity   on  the   several   surfaces   will   be 

e.  +  qi-qt. &c. ; 

and   since   at  last  all  these   quantities   vanish,  we   find 

qi  =  e\-q, 

q,  =  e\  +  e,-q', 

a  quantity  essentially  positive;  so  that,  when  the  primary  electrification  is  in 

one  direction,  the  secondary  discharge  is  always  in  the  same  direction  as  the 

primary  discharge  *. 

♦  Since  this  paper  was  communicated  to  the  Royal  Society,  I  have  seen  a  paper  by  M.  Gaugain 
in  the  Annates  de  Chimie  for  1864,  in  which  he  has  deduced  the  phenomena  of  electric  absorption  and 

secondary  discharge  from  the  theory  of  compound  condensers. 
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PART  VI. 

ELECTROMAUNETIC   THEORY   OF    LIGHT. 

(91)  At  the  commencement  of  this  paper  we  made  uae  of  the  optical 

hypothesis  of  an  elastic  medium  through  which  the  vibrations  of  light  are 

propagated,  in  order  to  shew  that  we  have  warrantable  grounds  for  seeking, 

in  the  same  medium,  the  cause  of  other  phenomena  as  well  as  those  of  light. 

We  then  examined  electromagnetic  phenomena,  seeking  for  their  explanation  in 

the  properties  of  the  field  which  surrounds  the  electrified  or  magnetic  bodies. 

In  this  way  we  arrived  at  certain  equations  expressing  certain  properties  of 

the  electromagnetic  field.  We  now  proceed  to  investigate  whether  these  pro- 

perties of  that  which  constitutes  the  electromagnetic  field,  deduced  from  electro- 

magnetic phenomena  alone,  are  sufficient  to  explain  the  propagation  of  light 

through  the  same  substance. 

(92)  Let  us  suppose  that  a  plane  wave  whose  direction  cosines  are  Z,  m,  n 

is  propagated  through  the  field  with  a  velocity  V.  Then  all  the  electro- 
ma^etic  functions  will  be  functions  of 

w  =  Ix  +  my-{-7iz—  Vt. 

The  equations   of  Magnetic   Force   (B),  p.  556,   will  become 

dH       dG 
iia  =  m  — i   n  -j —  , 
'^  dw        dw 

'^  dw        dw  ' 

^^  ~     dw         dw  ' 

If  we   multiply   these  equations    respectively   by    /.  m,  n,  and  add,  we  find 

lfj.a-\-7nixj3  +  nny  =  0    (62), 

which   shews    that   the    direction   of  the   magnetization    must   be    in    the  plane  of 
the  wave. 
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(93)     If  we  combine  the   equations    of   Magnetic    Force   (B)   with    those    of 
Electric   Currents  (C),  and  put  for  brevity 

dF     dG     dH     J   _ , 
+  —-jf.-r-=J,  and 

dx      dy       dz 

daf'^df^dz^''^ 

,.,p'  =  ̂^V^F 

4irfiq' 

^-VG 

dJ -V'H 

(63). 

(64). 

If  the  medium  in  the  field  is  a  perfect  dielectric  there  is  no  true  conduction, 

and  the  currents  p,  q,  r  are  only  variations  in  the  electric  displacement,  or, 

by  the  equations  of  Total  Currents  (A), 

i'-f'   «-4-   ̂ -=§   <«^)- 
But  these   electric   displacements   are   caused  by  electromotive  forces,  and  by  the 

equations  of  Electric  Elasticity  (E), 

P  =  hf,        Q  =  kg,        R  =  Tck   (66). 

These  electromotive  forces  are  due  to  the  variations  either  of  the  electro- 

magnetic or  the  electrostatic  functions,  as  there  is  no  motion  of  conductors  in 

the  field;   so   that  the   equations   of  electromotive   force  (D)  are 

dF^_d^' 

dt      dx 

P  = 
^  ~      dt      dy 

R=- 

dH    d^ (67). 
dt       dz 

(94)     Combining  these  equations,  we  obtain  the  following:- 

.(^_,..)..„(«.«).. \dy 

dm 
df 

"*■  dzdt) 

(68). 
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If    we    differentiate    the    third    of    these    equations   with  respect   to  y,   and 

the   second   with   respect   to   z,  and   subtract,  J  and  "^  disappear,  and  by  remem- 
bering the  equations  (B)  of  magnetic  force,  the  results  may  be  written 

de 

(69). 

(95)  If  we  assume  that  a,  fi,  y  are  functions  of  Ix  +  my  +  7iz  —  Vt  =  ic,  the 
first  equation  becomes 

*''S=^VF'S   (70). 

^=±^/5   (")■ 

The  other  equations  give  the  same  value  for  V,  so  that  the  wave  is  propa- 
gated in  either  direction  with  a  velocity   V. 

This  wave  consists  entirely  of  magnetic  disturbances,  the  direction  of  mag- 

netization being  in  the  plane  of  the  wave.  No  magnetic  disturbance  whose 

direction  of  magnetization  is  not  in  the  plane  of  the  wave  can  be  propagated 

as  a  plane  wave  at  all. 

Hence  magnetic  disturbances  propagated  through  the  electromagnetic  field 

agree  with  light  in  this,  that  the  disturbance  at  any  point  is  transverse  to 

the  direction  of  propagation,  and  such  waves  may  have  all  the  properties  of 

polarized  light. 

(96)  The  only  medium  in  which  experiments  have  been  made  to  determine 

the  value  of  ̂   is  air,  in  which  /u,=  l,  and  therefore,  by  equation  (46), 

V=v   (72). 

By  the  electromagnetic  experiments  of  MM.  Weber  and  Kohlrausch  *, 
t>  =  310,740,000  metres  per  second 

•  Leipzig  Transactions,  Vol.  v.   (1857),  p.   260,  or  PoggendorflTs  AnnaUn,  Aug.   1856,  p.  10. 

73—2 



580  A    DYNAMICAL    THEORY    OF    THE    ELECTROMAGNETIC    FIELD. 

is  the  number  of  electrostatic  units  in  one  electromagnetic  unit  of  electricity, 

and  this,  according  to  our  result,  should  be  equal  to  the  velocity  of  light  in 
air  or  vacuum. 

The  velocity  of  light  in  air,  by  M.  Fizeau's  *  experiments,  is 
F=  314,858,000; 

according  to  the  more  accurate  experiments  of  M.  Foucatilt  t, 

F=  298,000,000. 

The  velocity  of  light  in  the  space  surrounding  the  earth,  deduced  from 

the  coefficient  of  aberration  and  the  received  value  of  the  radius  of  the  earth's 
orbit,  is 

F=  308,000,000. 

(97)  Hence  the  velocity  of  light  deduced  from  experiment  agrees  sufficiently 
well  with  the  value  of  v  deduced  from  the  only  set  of  experiments  we  as  yet 

possess.  The  value  of  v  was  determined  by  measuring  the  electromotive  force 
with  which  a  condenser  of  known  capacity  was  charged,  and  then  discharging 

the  condenser  through  a  galvanometer,  so  as  to  measure  the  quantity  of  electricity 

in  it  in  electromagnetic  measure.  The  only  use  made  of  light  in  the  experiment 
was  to  see  the  instruments.  The  value  of  V  found  by  M.  Foucault  was 

obtained  by  determining  the  angle  through  which  a  revolving  mirror  turned, 
while  the  light  reflected  from  it  went  and  returned  along  a  measured  course. 
No  use  whatever  was  made  of  electricity  or  magnetism. 

The  agreement  of  the  results  seems  to  shew  that  light  and  magnetism 

are  affections  of  the  same  substance,  and  that  light  is  an  electromagnetic  dis- 

turbance propagated  through  the   field  according  to  electromagnetic  laws. 

(98)  Let  us  now  go  back  upon  the  equations  in  (94),  in  which  the 

quantities  J  and  ̂   occur,  to  see  whether  any  other  kind  of  disturbance  can 

be  propagated  through  the  medium  depending  on  these  quantities  which  disappeared 
from  the  final  equations. 

*  Comptes  Re-ndus,  Vol.  xxix.   (1849),  p.   90. 
t  Ibid.  Vol.  LV.  (1862),  pp.  501,  792. 
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If  we  determine  x  ̂^om  the  equation 

Vx=g-|-§=-^   (")• 
and  F',  G',  //'  from  the  equations 

581 

r=F- 

dx 

G'  =  G- 

dx 

then 

dx'  dy 

dF'     dG'  ̂   dlT^^ 
dx       dy       dz 

ir=H- 

dx 

dz' 

•(74), 

(75), 

and  the  equations  in  (94)  become  of  the  form 

.V.^  =  4..{^f'.^(..|)}   (76). 
Differentiating   the   three   equations   with   respect   to  x,  y,  and  z,  and  adding,  we 
find  that 

^=-:^+^(^'  y^  ̂)- 

■{77), 

and  that 

(78). 

dt 

Hence  the  disturbances  indicated  by  F',  G',  H'  are  propagated  with  the  velocity 

V=    /  — —  through  the  field  ;  and  since 

djT   dG^    dir=o 

dx       dy        '^-        ' dz 
the  resultant  of  these  disturbances  is  in  the  plane  of  the  wave. 

(99)     The   remaining  part  of  the  total  disturbances  F,  G,  H  being  the  part 

depending  on  x.  is  subject  to  no  condition  except  that  expressed  in  the  equation 

dt  ̂   df 
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If  we  perform  the  operation  V"  on  this  equation,  it  becomes 

ke  =  ̂̂ -hV^4>(x,  y,  z)   (79). 

Since  the  medium  is  a  perfect  insulator,  e,  the  free  electricity,  is  immove- 

able,  and   therefore    --7-    is   a   function   of  x,  y,   z,   and   the  value  of  J  is   either 

constant   or   zero,  or   uniformly  increasing  or   diminishing  with  the  time ;   so  that 

no  disturbance  depending  on  J  can  be  propagated  as  a  wave. 

(100)  The  equations  of  the  electromagnetic  field,  deduced  from  purely 
experimental  evidence,  shew  that  transversal  vibrations  only  can  be  propagated. 
If  we  were  to  go  beyond  our  experimental  knowledge  and  to  assign  a  definite 

density  to  a  substance  which  we  should  call  the  electric  fluid,  and  select  either 
vitreous  or  resinous  electricity  as  the  representative  of  that  fluid,  then  we  might 

have  normal  vibrations  propagated  with  a  velocity  depending  on  this  density. 
We  have,  however,  no  evidence  as  to  the  density  of  electricity,  as  we  do  not 

even  know  whether  to  consider  vitreous  electricity  as  a  substance  or  as  the 
absence  of  a  substance. 

Hence  electromagnetic  science  leads  to  exactly  the  same  conclusions  as 

optical  science  with  respect  to  the  direction  of  the  disturbances  which  can  be 

propagated  through  the  field ;  both  affirm  the  propagation  of  transverse  vibra- 
tions, and  both  give  the  same  velocity  of  propagation.  On  the  other  hand,  both 

sciences  are  at  a  loss  when  called  on  to  affirm  or  deny  the  existence  of  normal 
vibrations. 

Relation  between  the  Index  of  Refraction  and  the  Electromagnetic  Character 

of  the  substance. 

(101)  The  velocity  of  light  in  a  medium,  according  to  the  Undulatory 
Theory,  is 

If 

where   i   is   the    index    of   refraction    and    V^  is    the    velocity    in    va<;uum.      The 

velocity,  according  to  the  Electromagnetic  Theory,  is 

where,  by  equations  (49)  and  (71),  h  =  jjk^,  and  k„  =  AnV^\ 
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Hence  i)  =  -   (80), 

or   the    Specific   Inductive  Capacity  is  equal  to  the  square  of  the  index  of  refrac- 
tion divided  by  the  coefficient  of  magnetic  induction. 

Propagation  of  Electromagnetic  Disturbances  in  a  Crystallized  Medium. 

(102)  Let  -us  now  calculate  the  conditions  of  propagation  of  a  plane  wave 
in  a  medium  for  which  the  values  of  k  and  /x  are  different  in  different  direc- 

tions. As  we  do  not  propose  to  give  a  complete  investigation  of  the  question 

in  the  present  imperfect  state  of  the  theory  as  extended  to  disturbances  of 

short  period,  we  shall  assume  that  the  axes  of  magnetic  induction  coincide  in 
direction  with  those  of  electric  elasticity. 

(103)  Let  the  values  of  the  magnetic  coefficient  for  the  three  axes  be 

X,  fi,  V,  then  the  equations  of  magnetic  force  (B)  become 

dH     dG 

dy       dz 
^    dF     dH 

f'^^'d^-  d^ 

^dG_dF 
^     dx       dy 

(81). 

The  equations  of  electric  currents  (C)  remain  as  before. 

The  equations  of  electric  elasticity  (E)  will  be 

^=47r6V       (82), 
R  =  A'nc'h\ 

where  47ra',  47r6',   and  Attc^  are  the  values  of  k  for  the  axes  of  x,  y,  z. 

Combining   these  equations  with  (A)  and  (D),  we  get  equations  of  the  form 

\  [,d'F       d'F       d'F\       I   d  (JF       dG       dH\      I  fd'F  ,   d'^\    ,^,- 
jr.[^d^-^f'df-^''^)-]ruMd^-^f'dJ^''  dz)  =  a^[-de^~d^tH^-^^- 

(104)     If  /,  m,  n   are   the    direction-cosines   of  the  wave,  and  V  its  velocity, 
and  if 

lx  +  my  +  7iz-  Vt=w   (84), 
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then  F,  G,  H,  and  ̂   will  be  functions  of  w\  and  if  we  put  F\  G\  H\  '^' 
for  the  second  differentials  of  these  quantities  with  respect  to  w,  the  equations 
will  be 

X  V 

{..-.gV?)}.- 

If  we  now  put 

(85). 

(86), 

we  shall  find 
F'V'U-WVU=0   

with  two  similar  equations  for  G'  and  H',     Hence  either 
F  =  0   

U=Q   

  (87), 

  (88), 

  (89), 

or 

VF'  =  W,     F(?'  =  m^  and  VH' =  n']!'   (90). 

The  third  supposition  indicates  that  the  resultant  of  F\  G',  H'  is  in  the 
direction  normal  to  the  plane  of  the  wave ;  but  the  equations  do  not  indicate 

that  such  a  disturbance,  if  possible,  could  be  propagated,  as  we  have  no  other 

relation  between  ^'  and  F',   G\  H'. 
The  solution   F=0  refers  to  a  case  in  which  there  is  no  propagation. 

''•  The  solution  Z7=  0  gives  two  values  for  F^  corresponding  to  values  of  F\ 

G\  H',  which  are  given  by  the  equations 

-2^'  +  ri^'  +  -2^'  =  0    a'  0'  c* 

-p  (6>  -  cV)  +  -^  (c-v  -  a'\)  +  -j^,  (a'k  -  b'fi)  =  0 

(91). 

(92). 
*  [Although  it  is  not  expressly  stated  in  the  text  it  should  be  noticed  that  in  finding  equations 

(91)  and  (92)  the  quantity  ̂   is  put  equal  to  zero.  See  §  98  and  also  the  corresponding  treat- 
ment   of    this    subject    in    the   Electricity   and   Magnetism  il   §  796.     It   may  be   observed   that   the 
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(105)     The  velocitiea  along  the  axes  are  as  follows: — 

Direction  of  propagation   

Direction  of  the  electric  displacements  • 

Now  we  know  that  in  each  principal  plane  of  a  crystal  the  ray  polarized 

in  that  plane  obeys  the  ordinary  law  of  refraction,  and  therefore  its  velocity 
is  the  same  in  whatever  direction   in  that  plane  it  is  propagated. 

If  polarized  light  consists  of  electromagnetic  disturbances  in  which  the 
electric  displacement  is  in  the  plane  of  polarization,  then 

a'  =  h'  =  c'   (93). 

If,  on  the  contrary,  the  electric  displacements  are  perpendicular  to  the  plane 
of  polarization, 

\  =  fi  =  u   (94). 

We    know,   from    the    magnetic    experiments    of  Faraday,    Pliicker,   &c.,    that    in 
many  crystals  X,  /x,  v  are  unequal. 

equatious  referred   to   and   the   table   given   in   §    105   may   perhaps   be   more   readily   understood  from 
a   different   mode   of   elimination.     If  we  write 

X^"  +  fim'  +  vn*  =  PX/Av  and   XIF'  +  fimG'  +  vnll '  =  <2X/xv, 

it  is  readily  seen  that F'  =  l 
F*'  -  a'XQ 

V  -  a'KP  ' 
with  similar  expressions  for  G',  H'.     From  these   we   readily  obtain   by    reasoning   similar   to   that   in 
§  104,  the  equation  corresponding  to  (86),  viz. : 

V\ 
VI  \i. 

-0. 

r-a»XP      V'-b'tiP      V'-c'vP 

This   form   of   the   equation    agrees   with    that   given    in    the    Electricity    and    Magnetism  ii.  §  797. 

By    means    of    this    equation    the    equations    (91)    and   (92)   readily    follow    when    ♦' =  0.      The 
ratios   oi  F'  -.  G'  :  H'  for  any  direction  of  propagation  may  also  be  determined.] 
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The  experiments  of  Knoblauch*  on  electric  induction  through  crystals  seem 
to   shew  that  a,   b  and  c  may  be  different. 

The  inequality,  however,  of  X,  /x,  v  is  so  small  that  great  magnetic  forces 

are  required  to  indicate  their  difference,  and  the  differences  do  not  seem  of 

sufficient  magnitude  to  account  for  th§  double  refraction  of  the  crystals. 

On  the  other  hand,  experiments  on  electric  induction  are  liable  to  error 

on  account  of  minute  flaws,  or  portions  of  conducting  matter  in  the  crystal. 

Further  experiments  on  the  magnetic  and  dielectric  properties  of  crystals 

are  required  before  we  can  decide  whether  the  relation  of  these  bodies  to  mag- 
netic and  electric  forces  is  the  same,  when  these  forces  are  permanent  as  when 

they  are  alternating  with  the  rapidity  of  the  vibrations  of  light. 

Relation  between  Electric  Reshtance  and  Trayisparency. 

(106)  If  the  medium,  instead  of  being  a  perfect  insulator,  is  a  conductor 

whose  resistance  per  unit  of  volume  is  p,  then  there  will  be  not  only  electric 

displacements,  but  true  currents  of  conduction  in  which  electrical  energy  is 
transformed  into  heat,  and  the  undulation  is  thereby  weakened.  To  determine 

the  coefficient  of  absorption,  let  us  investigate  the  propagation  along  the  axis 
of  X  of  the  transverse  disturbance   G. 

By  the  former  equations 

4^/^(1+?)  by  (A), 
d'G      ,  ,      fld'G     ldG\  ,      ,^.        ,    ,„.  ,^,. d'G         .      nd'G     ldG\ 

P 

If  G  is  of  the  form 

G  =  e-'^  cos  (qx  +  nt)   (96), 
we  find  that 

2^n^2^F   
^        p    q        p     I 

where    V  is   the   velocity   of  light   in  air,  ̂ nd  i  is  the  index  of  refraction.     J' he 
proportion  of  incident  light  transmitted  through  the  thickness  x  is 

e-*'   (98). 

*  PhUpnophicaX  Magazine,   1852. 
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Let  R  be  the  resistance  in  electromagnetic  measure  of  a  plate  of  the 
substance  whose  thickness  is  x,  breadth  h,  and  length  I,  then 

OX, 

2px  =  4.^Zjl-^   (99). 

(107)  Most  transparent  solid  bodies  are  good  insulators,  whereas  all  good 

conductors  are  very  opaque. 

Electrolytes  allow  a  current  to  pass  easily  and  yet  are  often  very  trans- 

parent. "We  may  suppose,  howaver,  that  in  the  rapidly  alternating  vibrations 
of  light,  the  electromotive  forces  act  for  so  short  a  time  that  they  are  unable  to 

effect  a  complete  separation  between  the  particles  in  combination,  so  that  when 

the  force  is  reversed  the  particles  oscillate  into  their  former  position  without 

loss  of  energy. 

Gold,  silver,  and  platinum  are  good  conductors,  and  yet  when  reduced  to 

suflSciently  thin  plates  they  allow  light  to  pass  through  them.  If  the  resistance 

of  gold  is  the  same  for  electromotive  forces  of  short  period  as  for  those  witli 
which  we  make  experiments,  the  amount  of  light  which  passes  through  a  piece 
of  o-old-leaf,  of  which  the  resistance  was  determined  by  Mr  C.  Hockin,  would 

be  only  lO""*"  of  the  incident  light,  a  totally  imperceptible  quantity.  I  find  that 
between  -=-Jjo  and  xoVo"  ̂ ^  green  hght  gets  through  such  gold-leaf.  Much  of  thiis 
is  transmitted  through  holes  and  cracks ;  there  is  enough,  however,  transmitter! 

through  the  gold  itself  to  give  a  strong  green  hue  to  the  transmitted  light. 
This  result  cannot  be  reconciled  with  the  electromagnetic  theory  of  light,  unless 

we  suppose  that  there  is  less  loss  of  energy  when  the  electromotive  forces  are 
reversed  with  the  rapidity  of  the  vibrations  of  light  than  when  they  act  for 
sensible  times,  as  in  our  experiments. 

Absolute   Valves   of  the   Electromotive  and  Magnetic  Forces  called  into  play  in  tin 
Propagation  of  Light. 

(108)     If  the  equation  of  propagation  of  light  is 

i^=^cos^(2-F0. 

74—2 
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the  electromotive  force  will  be 

F=-A^Vsm^{z-Vt); 

and  the  energy  per  unit  of  volume  will  be 

Stt/xP' 
where   P  represents  the   greatest  value  of  the  electromotive  force.     Half  of  this 
consists  of  magnetic  and  half  of  electric  energy. 

The  energy  passing  through  a  unit  of  area  is 

so  that 
P  =  s/S7riJiVW, 

where    V  is  the  velocity  of  light,  and    W  is   the   energy   communicated  to  unit 

of  area  by  the  Ught  in  a  second. 

According  to  Pouillet's  data,  as  calculated  by  Professor  W.  Thomson*,  the 
mechanical   value   of  direct  sunlight   at  the   Earth  is 

83'4  foot-pounds  per  second  per  square  foot. 

This  gives   the   maximum  value   of  P  in  direct  sunlight  at  the  Earth's  distance 
from  the  Sun, 

P  =  60,000,000, 

or  about  600  Darnell's  cells  per  metre. 

At  the  Sun's  surface  the  value  of  P  would  be  about 

13,000  Daniell's  cells  per  metre. 
At  the  Earth  the  maximum  magnetic  force  would  be    193  f. 

At  the  Sun  it  would  be  4*13. 

These  electromotive  and  magnetic  forces  must  be  conceived  to  be  reversed 

twice  in  every  vibration  of  Hght ;  that  is,  more  than  a  thousand  miUion  million 
times  in  a   second. 

*  Transactions   of  Uie   Royal   Society  of  Edirthurgh,    1854   ("Mechanical   Energies   of   the   Solar 

System"). 

t  The  horizontal  magnetic  force  at  Kew  is  about  1'76  in  metrical  units. 
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PART    VII. 

CALCULATION   OF   THE   COEFFICIENTS   OF   ELECTROMAGNETIC  INDUCTION. 

General  Methods. 

(109)  The  electromagnetic  relations  between  two  conducting  circuits,  A  and 

B,  depend  upon  a  function  M  of  their  form  and  relative  position,  as  has  been 

already   shewn. 

M  may  be  calculated  in  several  different  ways,  which  must  of  course  all 
lead  to  the  same  result. 

First  Method.  M  is  the  electromagnetic  momentum  of  the  circuit  B  when 
A  carries  a  unit  current,  or 

^=/(^l-4-^S-)*'' 
where  F,  G,  H  are  the  components  of  electromagnetic  momentum  due  to  a  unit 
current  in  A,  and  ds  is  an  element  of  length  of  B,  and  the  integration  is 

performed  round  the  circuit  of  B. 

To  find  F,  (t,  H,  we  observe  that  by  (B)  and  (C) 

d?F     d'F     d'F 

with  corresponding  equations  for  G  and  Hy  p\  q,  and  /  being  the  components 
of  the  current  in  A. 

Now  if  we  consider  only  a  single  element  ds  of  A,  we  shall  have 

p=s*'     'i=±'^'     ̂ =s;*' 
and  the  solution  of  the  equation  gives 

F^t^ds,        G=f^i^ds.       H=t<i^ds, p  ds  p  as  pels 
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where  p  is  the  distance  of  any  point  from  ds.     Hence 

]]  p  \ds  da'      ds  ds'      ds  ds' 

=      -  cos  Odsds', Jj  P 

where  6  is  the  angle  between  the  directions  of  the  two  elements  ds,  ds',  and 
p  is  the  distance  between  them,  and  the  integration  is  performed  round  both 
circuits. 

In  this  method  we  confine  our  attention  during  integration  to  the  two  linear 
circuits  alone, 

(110)  Second  Method.  M  is  the  number  of  lines  of  magnetic  force  which 

pass  through  the  circuit  B  when  A  carries  a  unit  current,  or 

M=  t  (fial  +  p.fim  +  ixyn)  dS', 

where  fia,  p.^,  py  are  the  components  of  magnetic  induction  due  to  unit  current 

in  A,  S'  is  a  surface  bounded  by  the  current  B,  and  I,  m,  n  are  the  direction- 
cosines  of  the  normal  to  the  surface,  the  integration  being  extended  over  the 
surface. 

We  may   express   this   in   the  form 

M=  11%  —  sin  6  sin  6'  sin  (bdS'ds, 

r    p. 

where  dS'  is  an  element  of  the  surface  bounded  by  B,  ds  is  an  element 

of  the  circuit  ̂ ,  ̂   is  the  distance  between  them,  0  and  9'  are  the  angles 
between  p  and  ds  and  between  p  and  the  normal  to  dS  respectively,  and  (f)  is 

the  angle  between  the  planes  in  which  0  and  0'  are  measured.  The  integration 
is   performed   round  the  circuit  A  and  over  the  surface  bounded  by  B. 

This  method  is  most  convenient  in  the  case  of  circuits  lying  in  one  plane, 

in  which  case  sin^  =  l,  and  sin<^=l. 

(111)  Third  Method.  M  is  that  part  of  the  intrinsic  magnetic  energy  of 

the  whole  field  which  depends  on  the  product  of  the  currents  in  the  two 

circuits,  each  current  being  unity. 
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Let  a,  yS,  y  be  the  components  of  magnetic  intensity  at  any  point  due  to 

the  first  circuit,  a',  yS',  y  the  same  for  the  second  circuit ;  then  the  intrinsic- 
energy  of  the    element  of  volume  dV  of  the    field  is 

''■  {(a  +  aT  +  (^  +  yS-r  +  iy +  /)'}</ r. OTT 

The  -part   which  depends   on   the   product   of  the   currents   is 

^^-[o.o:^m'ryy')dV. 
477 

Hence  if  we  know  the  magnetic  intensities  /  and  /'  due  to  the  unit  current 
in   each   circuit,  we  may  obtain  M  by  integrating 

f-S/i/rcos^c^F 

over  all  space,  where  6  is  the  angle  between  the  directions  of  /  and  /'. 

Application  to  a  Coil. 

(112)  To  find  the  coefiicient  (M)  of  mutual  induction  between  two  circular 

linear  conductors  in  parallel  planes,  the  distance  between  the  cur\  es  being  every- 
where the  same,  and  small  compared  with  the  radius  of  either. 

If  r  be  the  distance  between  the  curves,  and  a  the  radius  of  either,  then 

when  r  is  very  small  compared  with  a,  we  find  by  the  second  method,  as  a 

first  approximation, 

M=A7ra(\og~-2 

To  approximate  more  closely  to  the  value  of  M,  let  a  and  a,  be  the  radii  of 

the  circles,   and  h  the  distance  between  their  planes ;  then 

T^  =  {a-a,y  +  b\ 

We  obtain  M  by  considering  the  following  conditions: — 

1st.     M  must  fulfil  the  difierential  equation 

d'M     d'M     IdM^^ 
da^       dJ/      a  da 

This  equation  being  true  for  any  magnetic  field  symmetrical  with  respect  to  the 
common  axis  of  the  circles,  cannot  of  itself  lead  to  the  determination  of  3/  ;vy 

a  function   of  a,  a^,  and  h.     We  therefore  make  use  of  other  conditions. 
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2ndly.     The  value  of  M  must  remain  the  same  when  a  and  a,  are  exchanged. 

3rdlj.     The  first  two  terms  of  M  must  be  the  same  as  those  given  above. 

M  may  thus  be  expanded  in  the  following  series : — 

(113)  We  may  apply  this  result  to  find  the  coeflScient  of  self-induction 

(//)  of  a  circular  coil  of  wire  whose  section  is  small  compared  with  the  radius 
of  the  circle. 

Let  the  section  of  the  coil  be  a  rectangle,  the  breadth  in  the  plane  of 
the  circle  being  c,  and  the  depth  perpendicular  to  the  plane  of  the  circle  being  h. 

Let  the  mean  radius  of  the  coil  be  a,  and  the  number  of  windings  n; 
then  we  find,  by  integrating, 

^-6 

|-2 j  J  J  J  M{xy  xy)  dx  dy  dx'  d
y\ 

where  M(xy  x'y')  means  the  value  of  M  for  the  two  windings  whose  coordinates 
are  xy  and  xy  respectively;  and  the  integration  is  performed  first  with  respect 
to  X  and  y  over  the  rectangular  section,  and  then  with  respect  to  x  and  y' 
over  the   same   space. 

L  =  47rn^a|log.^  + 1^  -  |  (^-f)cot2^-|cos2^-icot^^logcos^-itan'^logsin^| 

Here   a=  mean  radius  of  the  coil. 

„       r=   diagonal  of  the  rectangular  section  =  Jb"  +  c". 

,,       6=   angle  between  r  and  the  plane  of  the  circle. 

„      n=   numbei  of  windings. 

The  logarithms  are  Napierian,  and  the  angles  are  in  circular  measure. 
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In  the  experiments  made  by  the  Committee  of  the  British  Association  for 

determining  a  standard  of  Electrical  Resistance,  a  double  coil  was  used,  con- 

sisting of  two  nearly  equal  coils  of  rectangular  section,  placed  parallel  to  each 

other,  with  a  small  interval  between  them. 

The  value  of  L  for  this  coil  was  found  in  the  following  way. 

The  value  of  L  was  calculated  by  the  preceding  formula  for  six  different 

cases,  in  which  the  rectangular  section  considered  has  always  the  same  breadth, 

while  the  depth  was 

A,  B,  C,    A  +  B,     B+C,    A+B+C, 

and  n  =  1  in  each  case. 

Calling  the  results  L{A),     L(B),     L{C),  &c., 

we  calculate  the  coefficient  of  mutual  induction  M(AC)  of  the  two  coils  thus, 

2ACM{AC)  =  {A+B+CYL{A+B  +  C)-(A+BYL(A-\-B) 

-{B+CyL{B-^C)  +  RL(B). 

Then   if  n^   is    the   number  of  windings  in  the  coil  A  and  w,  in  the   coil   C,  the 

coefficient  of  self-induction  of  the  two  coils  together  is 

L  =  n,'L{A)  +  2n,n,M{ACr)-\-n.^L{C). 

(114)  These  values  of  L  are  calculated  on  the  supposition  that  the  windings 

of  the  wire  are  evenly  distributed  so  as  to  fill  up  exactly  the  whole  section. 

This,  however,  is  not  the  case,  as  the  wire  is  generally  circular  and  covered  with 

insulating  material.  Hence  the  current  in  the  wire  is  more  concentrated  than  it 

would  have  been  if  it  had  been  distributed  uniformly  over  the  section,  and  the 

currents  in  the  neighbouring  wires  do  not  act  on  it  exactly  as  such  a  uniform 
current  would  do. 

The  corrections  arising  from  these  considerations  may  be  expressed  as  nu- 

merical quantities,  by  which  we  must  multiply  the  length  of  the  wire,  and  they 
are  the  same  whatever  be  the  form  of  the  coil. 

Let  the  distance  between  each  w^ire  and  the  next,  on  the  supposition  that 
they  are  arranged  in  square  order,  be  D,  and  let  the  diameter  of  the  wire 

be   d,   then   the  correction  for  diameter  of  wire  is 

VOL.  I.  75 
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The  correction  for  the  eight  nearest  wires  is 

+  0-0236. 

For  the  sixteen  in  the  next  row  +0-00083. 

These  corrections  being  multiplied  by  the  length  of  wire  and  added  to  the 

former  result,  give  the  true  value  of  L,  considered  as  the  measure  of  the 

potential  of  the  coil  on  itself  for  unit  current  in  the  wire  when  that  current 

has  been  established  for  some  time,  and  is  uniformly  distributed  through  the 

section  of  the  wire. 

(115)  But  at  the  commencement  of  a  current  and  during  its  variation  the 

current  is  not  uniform  throughout  the  section  of  the  wire,  because  the  induc- 

tive action  between  different  portions  of  the  current  tends  to  make  the  current 

stronger  at  one  part  of  the  section  than  at  another.  When  a  uniform  electro- 

motive force  P  arising  from  any  cause  acts  on  a  cylindrical  wire  of  specific 

resistance  p,  we  have 

where  F  is  got  from  the  equation 
d'F     1  dF 

r  being  the  distance  from  the  axis  of  the  cylinder. 

Let  one  term  of  the  value  of  F  be  of  the  form  T/'",  where  T  is  a 

function  of  the  time,  then  the  term  of  p  which  produced  it  is  of  the  form 

1 

Hence  if  we  write 

dT\      fiTT  d-T        fin pp=\'^-dtrv^ 

\     d'T  ̂      , r*  —  &c. 

V .  2*  df 

The  total  counter  current  of  self-induction  at  any  point  is 

from  <  =  0  to  « =  Qo  . 

k: 
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When  .  =  0.^  =  0,        ■••(§)   =i',O.=  0,&c. 

When  t: 

=  00  ,  p 

_P 

P'
 

■^■m."- (f ). 

=  0, 

&c. 

J  0  Jo 

(?
■ 

-,) 

rdrdt  = 
=  1  T.r 
P 

■*t?S- 
-?'f 1 

.2\ 

d'T 

3   dt' 

/  +  &C. 

from t  =  0  to =  00  . 

When  ̂   =  0,  ̂   =  0  throughout  the  section,  •'•  (-7-)    =P,  (7777)    =0»  <^c. 

When«  =  <.,^  =  0  „  „  „        .•.(f)^  =  0,  ('g)_  =  0.&c. 
Also  if  Z  be  the  length  of  the  wire,  and  R  its  resistance, 

PI 
and  if  C  be  the  current  when  established  in  the  wire,  C=~^. K 

The  total  counter  current  may  be  written 
7  7  T  C 

Now  if  the  current  instead  of  being  variable  from  the  centre  to  the  cir- 
cumference of  the  section  of  the  wire  had  been  the  same  throughout,  the  value 

of  F  would  have  been 

where    y    is    the    current    in   the   wire   at   any    instant,    and    the    total    counter 
current  would  have  been 

Hence  L=^  L  —  ̂/x/. 
0: 

or  the  value  of  L  which  must  be  used  in  calculating  the  self-induction  of  a 

wire  for  variable  currents  is  less  than  that  which  is  deduced  from  the  suppo- 
sition  of  the   current   being   constant   throughout  the  section  of  the  wire  by  ̂/x/, 
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where  I   is   the   length   of  the   wire,    and  /n  is  the  coefficient  of  magnetic  induc- 
tion for  the  substance  of  the  wire. 

(116)  The  dimensions  of  the  coil  used  by  the  Committee  of  the  British 

Association  in  their  experiments  at  King's  College  in  1864  were  as  follows:— metre. 

Mean  radius   =a= -158194 

Depth  of  each  coil    =6  =  -01608 

Breadth  of  each  coil   =c  = '01841 

Distance  between  the  coils          ='02010 

Number  of  windings       n=  313 

Diameter  of  wire          ="00126 

The  value  of  L  derived  from  the  first  term  of  the  expression  is  437440 

metres. 

The  correction  depending  on  the  radius  not  being  infinitely  great  compared 

with  the  section  of  the  coil  as  found  from  the  second  term  is  -7345  metres. 

The   correction  depending   on   the  diameter  of  the  wire  is  1   ,  ...qq^ 
per  unit  of  length     J 

Correction  of  eight  neighbouring  wires    +  '0236 

For  sixteen  wires  next  to  these    +  '0008 

Correction  for  variation  of  current  in  difierent  parts  of  section  -  "2500 

Total  correction  per  unit  of  length     '22437 

Length     311-236  metres. 

Sum  of  corrections  of  this  kind    70 

Final  value  of  i  by  calculation    430165 

This  value  of  L  was  employed  in  reducing  the  observations,  according  to 

the  method  explained  in  the  Report  of  the  Committee*.  The  correction  de- 

pending on  L  varies  as  the  square  of  the  velocity.  The  results  of  sixteen 

experiments  to  which  this  correction  had  been  applied,  and  in  which  the  velocity 

varied  from  100   revolutions  in  seventeen  seconds  to  100  in  seventy-seven  seconds, 

*  British  Association  Reports,   1863,  p.    169. 
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were  compared  by  the  method  of  least  squares  to  determine  what  further  cor- 
rection depending  on  the  square  of  the  velocity  should  be  applied  to  make  the 

outstanding  errors  a  minimum. 

The  result  of  this  examination  shewed  that  the  calculated  value  of  L  should 

be  multiplied  by  1*0618  to  obtain  the  value  of  L,  which  would  give  the  most 
consistent  results. 

We  have  therefore  L  by  calculation       430165  metres. 

Probable  value  of  L  by  method  of  least  squares       456748      „ 

Result  of  rough  experiment  with  the  Electric  Balance  (see  §  46)    41 0000      „ 

The  value  of  L  calculated  from  the  dimensions  of  the  coil  is  probably  much 
more  accurate  than  either  of  the  other  determinations. 



[From  the  Philosophical  Magazine,  Vol.  xxvii] 

■"'  XXVI.     On  the  Calculation  of  the  Equilibrium  and  Stiffness  of  Frames. 

The  theory  of  the  equilibrium  and  deflections  of  frameworks  subjected  to 

the  action  of  forces  is  sometimes  considered  as  more  complicated  than  it  really 

is,  especially  in  cases  in  which  the  framework  is  not  simply  stiff,  but  is 

strengthened    (or  weakened   as   it   may   be)   by   additional   connecting   pieces. 

I  have  therefore  stated  a  general  method  of  solving  all  such  questions  in 

the  least  complicated  manner.  The  method  is  derived  from  the  principle  of 

Conservation  of  Energy,  and  is  referred  to  in  Lame's  Legons  sur  VElasticite, 

Lefon  7"'^  as  Clapeyron's  Theorem ;  but  I  have  not  yet  seen  any  detailed 
application  of  it. 

K  such  questions  were  attempted,  especially  in  cases  of  three  dimensions, 

by  the  regular  method  of  equations  of  forces,  every  point  would  have  three 

equations  to  determine  its  equilibrium,  so  as  to  give  3s  equations  between 

e  unknown  quantities,  if  s  be  the  number  of  points  and  e  the  number  of 

connexions.  There  are,  however,  six  equations  of  equilibrium  of  the  system 

which  must  be  fulfilled  necessarily  by  the  forces,  on  account  of  the  equality 

of  action  and  reaction  in  each  piece.     Hence  if 

e  =  3s-6, 

the  effect  of  any  external  force  will  be  definite  in  producing  tensions  or  pressures 

in  the  different  pieces;  but  if  e>35  — 6,  these  forces  will  be  indeterminate. 

This  indeterminateness  is  got  rid  of  by  the  introduction  of  a  system  of  e  equa- 

tions of  elasticity  connecting  the  force  in  each  piece  with  the  change  in  its 

length.  In  order,  however,  to  know  the  changes  of  length,  we  require  to  assume 

3s  displacements  of  the  s  points ;  6  of  these  displacements,  however,  are  equiva- 

lent to  the  motion  of  a  rigid  body  so  that  we  have  3s  —  6  displacements  of 

points,   e  extensions   and  e  forces  to  determine  from   3s  — 6  equations  of  forces,  e 

*  [Owing   to  an  oversight  this  paper  is  out  of  its  proper  place ;    it  should  have  been  immediately 

before  the  memoir  on  "The  Electro-magnetic  Field."     (No.  XXV.)] 



ON    THE    CALCULATION     OF    THE    EQUILIBRIUM    AND     STIFFNESS    OF    FRAMES.       599 

equations    of  extensions,    and  e   equations    of  elasticity ;    so   that    the    solution    is 

always  determinate. 

The  following  method  enables  us  to  avoid  unnecessary  complexity  by  treating 

separately  all  pieces  which  are  additional  to  those  required  for  making  the  frame 

stiff,  and  by  proving  the  identity  in  form  between  the  equations  of  forces  and 

those  of  extensions  by  means  of  the  principle  of  work. 

On  the  Stiffness  of  Frames. 

Geometrical  dejinition  of  a  Fram^i.  A  frame  is  a  system  of  lines  connecting 

a  number  of  points. 

A  stiff  frame  is  one  in  which  the  distance  between  any  two  points  cannot 

be  altered  without  altering  the  length  of  one  or  more  of  the  connecting  lines 
of  the  frame. 

A  frame  of  s  points  in  space  requires  in  general  35  —  6  connecting  lines  to 
render  it  stiff.  In  those  cases  in  which  stiffness  can  be  produced  with  a  smaller 

number  of  lines,  certain  conditions  must  be  fulfilled,  rendering  the  case  one  of 
a  maximum  or  minimum  value  of  one  or  more  of  its  lines.  The  stiffness  of 

such  frames  is  of  an  inferior  order,,  as  a  small  disturbing  force  may  produce 

a  displacement  infinite  in  comparison   with  itself. 

A  frame  of  s  points  in  a  plane  requires  in  general  26-  — 3  connecting  lines  to 
render  it  stiff. 

A  frame  of  s  points  in  a  line  requires  s  —  1  connecting  lines. 

A  frame  may  be  either  simply  stiff,  or  it  may  be  self-strained  by  the  intro- 
duction of  additional  connecting  lines  having  tensions  or  pressures  along  them. 

In  a  frame  which  is  simply  stiff,  the  forces  in  each  connecting  line  arising 

from  the  application  of  a  force  of  pressure  or  tension  between  any  two  points 

of  the  frame  may  be  calculated  either  by  equations  of  forces,  or  by  drawing 

diagrams  of  forces  according  to  known  methods. 

In  general,  the  lines  of  connexion  in  one  part  of  the  frame  may  be  affected 

by  the  action  of  this  force,  while  those  in  other  parts  of  the  frame  may  not 
be  so  affected. 

Elasticity  and  Extensibility  of  a  connecting  piece. 

Let  e  be  the  extension  produced  in  a  piece  by  tension-unity  acting  in  it, 

i-hen  e  may  be  called  its  extensibility.     Its  elasticity,  that  is,  the  force  required 
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to    produce    extension-unity,    will    be    - .      We   shall   suppose   that  the   efiect   of 

pressure  in  producing  compression  of  the  piece  is  equal  to  that  of  tension  in 

producing  extension,  and  we  shall  use  e  indifferently  for  extensibility  and  com- 

pressibility. 

Wcyrk  done  against  Elasticity. 

Since  the  extension  is  proportional   to  the   force,  the   whole   work   done  will 

be   the  product  of  the  extension   and   the   mean  value   of  the   force ;   or   if  x  is 
the  extension  and  F  the  force, x  =  eF, 

work  =  iFx  =  ̂ eF'  =  ̂ -af. 

When  the  piece  is  inextensible,  or  e  =  0,  then  all  the  work  applied  at  one  end 

is  transmitted  to  the  other,  and  the  frame  may  be  regarded  as  a  machine  whose 

efficiency  is  perfect.     Hence  the  following 

Theorem.  If  p  be  the  tension  of  the  piece  A  due  to  a  tension-unity 

between  the  points  B  and  C,  then  an  extension-unity  taking  place  in  A  will 

bring  B  and  C  nearer  by  a  distance  p. 

For  let  X  be  the  tension  and  x  the  extension  of  ̂ 4,  F  the  tension  and 

//  the  extension  of  the  line  BC;  then  supposing  all  the  other  pieces  inextensible, 

no  work  will  be  done  except  in  stretching  A,  or 

iXx  +  iYy  =  0. 
But  X=pY,  therefore  y=  —px,  which  was  to  be  proved. 

Problem  I.  A  tension  F  is  applied  between  the  points  B  and  C  of  a 

frame  which  is  simply  stiff;  to  find  the  extension  of  the  line  joining  D  ai  d  F, 

all  the  pieces  except  A  being  inextensible,  the  extensibility  of  A  being  e. 

Determine  the  tension  in  each  piece  due  to  unit  tension  between  B  and  C, 
and  let  p  be  the  tension  in  A  due  to  this  cause. 

Determine  also  the  tension  in  each  piece  due  to  unit  tension  between  D 

and  F,   and   let  y  be  the  tension  in  the  piece  A  due  to  this  cause. 

Then  the  actual  tension  of  ̂   is  Fp,  and  its  extension  is  eFp,  and  the 

extension   of  the  line  DE  due  to  this  cause  is   -Fepq  by  the  last  theorem. 
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Cor.  If  the  other  pieces  of  the  frame  are  extensible,  the  complete  value 
of  the  extension  in  DE  due  to  a  tension  F  in  BC  m -F%{epq), 

where   'Z{epq)    means   the   sura    of   the   products   of  epq,    which   are   to   be    found 
for  each  piece  in  the  same  way  as  they  were  found  for  A. 

The  extension  of  the  line  BC  due  to  a  tension  F  in  BC  itself  will  be 
-Ft{ep% 

t{ep')  may  therefore  
be  called  the  resultant  

extensibility  
along  BC. 

Problem  IL  A  tension  F  is  applied  between  B  and  C;  to  find  the 

extension  between  D  and  E  when  the  frame  is  not  simply  stiff,  but  has 

additional  pieces  R,  S,  T,  &c.  whose  elasticities  are  known. 

Let  p  and  q,  as  before,  be  the  tensions  in  the  piece  A  due  to  unit 

tensions  in  BC  and  DE,  and  let  r,  s,  t,  &c.  be  the  tensions  in  A  due  to 

unit  tension  in  R,  S,  T,  &c. ;  also  let  R,  S,  T  be  the  tensions  of  R,  S,  T, 

and  p,  (T,  T  their  extensibilities.     Then  the  tension  A 

=  Fp  +  Rr  +  Ss+Tt  +  &c.; 
the  extension  of  A 

=  e{Fp  +  Rr  +  Ss  +  Tt  +  &c.); 
the  extension  of  R 

=  -Ft  (epr)  -  RXer"  -  Sters  -  TXert  +  &c.  =  Rp  ; 
extension  of  S 

=  -  Ft{eps)  -  Rt{ers)  -  Stes'  -  Tt{est)  =  Sa ; 
extension  of  T 

=  -  FX(ept)  -  Rt{ert)  -  SX{est)  -  Tt(ef)  =  TV ; 
also  extension  of  DE 

=  -  FX{epq)  -  Rt(eqr)  -  S%(eqs)  -  Tt(eqt)  =  x, 

the   extension  required.     Here  we  have  as  many  equations  to  determine  R,  S,   T, 

&c.  as   there    are    of    these    unknown    quantities,    and   by   the   last   equation     we 
determine  x  the  extension  of  DE  from  F  the  tension  in  BC. 

Thus,  if  there  is  only  one  additional  connexion  R,  we  find 

R=-F 
t(epr) 

X(er^)  +  p' and 

t(^^)-'-%^S?} 
VOL.  I.  76 



602     ON    THE    CALCULATION    OF    THE    EQUILIBRIUM    AND    STIFFNESS    OF    FRAMES. 

If  there  are  two  additional  connexions  R  and  S,  with  elasticities  p  and  <r, 

  x=-F   

r     %  (epr)  t  (ers)  t  (eqs)  +  %  (eps)  t  (eqr)  %  (ers)  + 1  {epq)  %e  (r=  +  p)  le  {s'  +  a)^ 

\-t (epr) t {eqr) %e {5^  +  a-)-t {eps) S {eqs) te{r'  +  p)-t {epq) (2 {ers)Y       J  * 
The  expressions  for  the  extensibility,    when  there  are   many  additional  pieces, 

are  of  course  very  complicated. 

It  will  be  observed,  however,  that  p  and  q  always  enter  into  the  equations 

in  the  same  way,  so  that  we  may  estabhsh  the  following  general 

Theorem.  The  extension  in  BC,  due  to  unity  of  tension  along  DE,  is 

always  equal  to  the  tension  in  DE  due  to  unity  of  tension  in  BC.  Hence  we 

have  the  following  method  of  determining  the  displacement  produced  at  any 

joint  of  a  frame  due  to  forces  applied  at  other  joints. 

1st.  Select  as  many  pieces  of  the  frame  as  are  sufficient  to  render  all  its 

points  stiff.     Call  the  remaining  pieces  R>  S,   T,  &c. 

2nd.  Find  the  tension  on  each  piece  due  to  unit  of  tension  in  the 

direction  of  the  force  proposed  to  be  applied.  Call  this  the  value  of  _p  for  each 

piece. 
3rd.  Find  the  tension  on  each  piece  due  to  unit  of  tension  in  the 

direction  of  the  displacement  to  be  determined.  Call  this  the  value  of  q  for 

each  piece. 

4th.  Find  the  tension  on  each  piece  due  to  unit  of  tension  along  R,  S,  T, 

&c.,  the  additional  pieces  of  the  frame.  Call  these  the  values  of  r,  s,  t,  &c. 

for  each  piece. 

5th.  Find  the  extensibility  of  each  piece  and  call  it  e,  those  of  the 

additional  pieces  being  p,  <t,  t,  &c. 

6th.     R,  S,  T,  &c.  are  to  be  determined  from  the  equations 

Rp  +  Rt  (er")  +  S{ers)  +  Tt  {ert)  +  Ft  {epr)  =  0, 

So-  +  Rt{ers)  +  S{es')  +  T%  {est)  +  Ft  {eps)  =  0, 

Tt  +  Rt{ert)  +  S{est)  +  Tt{ef)  +  Ft{ept)  =  0, 

as  many  equations  as  there  are  quantities  to  be  found. 

7th.     X,  the  extension  required,  is  then  found  from  the  equation 

x=  -Ft{epq)-Rt{erq)-St{eqs)-Tt{eqt). 
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In  structures  acted  on  by  weights  in  which  we  wish  to  determine  the 

deflection  at  any  point,  we  may  regard  the  points  of  support  as  the  extremities 

of  pieces  connecting  the  structure  with  the  centre  of  the  earth ;  and  if  the 

supports  are  capable  of  resisting  a  horizontal  thrust,  we  must  suppose  them 

connected  by  a  piece  of  equivalent  elasticity.  The  deflection  is  then  the 

shortening  of  a  piece  extending  from  the  given  point  to  the  centre  of  the 
earth. 

Example.  Thus  in  a  triangular  or  Warren  girder  of  length  l,  depth  d, 

with  a  load  W  placed  at  a  distance  a  from  one  end,  0  ;  to  find  the  deflection 

at  a  point  distant  h  from  the  same  end,  due  to  the  yielding  of  a  piece  of 

the  boom  whose  extensibility  is  e,  distant  x  from  the  same  end. 

The   pressure   of   the   support   at    0=W  -j~  ;   and  if  x   is   less   than  a,  the 

W 
force  at  x  will  be  -jr  x{l-a),  or 

If  X  is  greater  than  a, 

Similarly,  if  a:  is  less  than  6, 

but  if  ic  is  greater  than  b, 

x(l-a) 
P~       dl 

a{l-x) 
^~       dl 

^"       dl 

^"       dl 

The  deflection  due  to  x  is  therefore  Wepq,  where  the  proper  values  of  p 

and  q  must  be  taken  according  to  the  relative  position  of  «,   h,  and  x. 

If  a,  b,  I,  X  represent  the  number  of  the  respective  pieces,  reckoning  from 

the  beginning  and  calling  the  first  joint  0,  the  second  joint  and  the  piece 

opposite  1,  &c.,  and  if  L  be  the  length  of  each  piece,  and  the  extensibility  of 

each  piece  =e,  then  the  deflection  of  b  due  to  W  at  a  will  be,  by  summation 
of  series, 

=  \  WeD . ^^^^ {2b{l -a)- (b<- af  +  1}. 

76—2 
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This    is    the    deflection   due    to    the    yielding    of    all   the   horizontal   pieces. 

The  greater  the  number  of  pieces,  the  less  is  the  importance  of  the  last  term. 

Let    the    inclination   of  the   pieces    of  the   web  be   a,   then  the   force   on   a 

.     „^    I  — a 
piece  between  0  and  a  v&  W  j-^'^,   or 

/      l  —  <^      1- r/  =  :r—. —  when  x<a, ^      t  sm  a 

and 

p'  =  i— —  when  x>a. ^      f  sin  a 

Also 

when  x<o, 
I  sin  a 

b 

I  sin  a 
when  a;  >  6. 

If  e    be  the  extensibility  of  a  piece  of  the  web,   we  have  to  sum   Wte'pq 
to  get  the  deflection  due  to  the  yielding  of  the  web, 
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Absorption,  Electric,  573 

Ampere,  193 

Beam  :  bent  into  a  circular  ring,  55 — 57,  65 
Bending,  Lines  of,  87,  97,  105,  106,  107,  108 
Brewster,  Sir  David,  43,  63,  68,  263,  413 

Cauchy,  32,  40,  71 
Challis,  453,  503,  505 

Clapeyron,  30,  32,  70,  72 
Clausius,  377,  386,  387,  405 

Coil,  Coefficient  of  induction  of,  592—597 
Colour-blindness,  119,  137,  441 
Colour  box,  420 ;  Method  of  observation,  426 

Coloured  beams  of  light,  Mixtures  of,  143 — 147 
Coloured  discs,  128,  264,  265 

Coloured  powders,  142 

Colour  equations,  128, 129, 138—141, 148,  268—270, 
427,  428,  442 

Colour:  Experiments  on,  126,  263;  Law  of  Per- 
ception of,  130;  Theory  of  the  Perception  of, 

135 

Colours  :  History  of,  411  ;  Mathematical  theory  of 

Newton's  diagram  of,  416  ;  Method  of  repre- 
senting them  by  straight  lines,  418 ;  Theory  of 

Compound,  149,  243,  410;  Three  primary. 
Theory  of,  445 

Colour  sensations,  Relations  of  to  the  pure  rays  of 
the  spectrum,  150 

Colour  top,  127,  147 

Colour  triangle,  121,  131— 135,  268,  416 
Compression,  Equations  of,  36 

Condenser,  Capacity  of,  572 ;  Theory  of,  572 — 576 
Contact,  Conic  of,  93,  94,  102 
Cotes,  271 

Coulomb,  33,  71 

Current  Electricity,  Conduction  of,  180 
Currents:  Action  of  closed,  183;  Intrinsic  energy 

of,  541 ;  Mutual  action  between,  537;  Produced 

by  induction,  185;  Quantity  and  Intensity  as 

properties  of,  189 
Curvature,  entire  and  specific,  89,  92 

Cylinder  :  acted  on  by  centrifugal  force,  60 ;  hollow, 

exposed  to  pressure,  45 — 50 ;  hollow,  dilated 
by  heat,  62;  of  parallel  wires  twisted,  59; 
twisted,  42,  43,  44,  66 

D'Alembert,  248 

Diagrams,  Conditions  of  indeterminateness  in  draw- 
ing reciprocal  diagrams,  516;  of  Force,  514 

Dielectrics,  Theory  of,  177 

Dynamometer,  Weber's,  546 

Earth's  motion,  259 
Elastic  bodies.  Collisions  of,  405 

Elasticity :  Ajcioms,  31  ;  Equations  of,  38 ;  Co- 
efficients of,  41 

Elastic  solids  :  Equilibrium  of,  30 ;  Pressures  in  the 

interior  of,  determined  by  the  action  on  polar- 
ized light,  68 

Electric  absorption,  573 
Electrical  images,  209 

Electromagnet,  Effect  of  the  core,  222 
Electromagnetic  disturbances.  Propagation  of,  578, 

583 

Electromagnetic  Field  :  Dynamical  theory  of,  526  ; 

General  equations  of,  534,  551—552,  554—564; 
Mechanical  actions  in,  565 — 570 

Electromagnetic  Induction,  536  ;  Calculation  of 
coefficients,  589 
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Electromagnetic  momentum,  538  ;  Dynamical  illus- 
tration of,  537 

Electromagnetism  :  Ampere's  laws,  193 
Electrotonic  state,  188,  205,  538 

Equipotential  surfaces,  Magnetic,  553 
Euler,  29,  32,  248,  271 

Faraday,   155,  188,  205,  241,  504,  529,  531,  535, 
542,  573,  585 

Pelici,  538 

Figures :    General  relation  between  the  numbers  of 

points  lines  and  polygons  in,  515;    Reciprocal, 
514 

Fizeau,  500,  580 

Fluid  :  Application  to  Lines  of  Force,  175;  Theory 
of  motion,  160;  through  a  resisting  medium,  163 

Foramen  Centrale,  Sensibility  to  light,  242 

Forbes,  Professor,  1,  124,  142,  145,  146,243 

Force  :    Diagrams  of,  514  ;  Lines  of,  155,  158,  241  ; 

Magnetic  Lines  of,  551 ;  Physical  lines  of,  451 
Forces :  Absolute  values  of,  concerned  in  propagation 

of  light,  588;  Electromotive,  181 
Foucault,  229,  248,  580 
Fourier,  361 

Frames,  Equilibrium  and  stiffness  of,  598 

Gases:  Conductivity  of,  403—405;  Diffusion  of, 

392,  403;  Dynamical  Theory  of,  377;  Fric- 
tion, 390 ;  Ratio  of  specific  heats  of,  409 

Gauss,  81,  88—90,  271 
Graham,  403 

Grassman,  125,  414,  419 

Gravitation,  arising  from  the  action  of  surrounding 
medium,  571 

Green,  196 

Gregory,  Dr,  126 
Gutta  percha,  optical  properties  of,  43 

Heavy  body,  descent  of,  in  a  resisting  medium,  115 
Helmholtz,  125,  141,  144,  145,  146,  152,  204,  243, 

271,  414,  415,  488,  533 

Herapath,  377 
Herschel,  Sir  J.  F.  W.,  142 

Image,  perfect  defined,  273 
Images,  Electrical,  Theory  of,  209 

Induction:  by  motion  of  conductor,  540;  Coefficients 
of,  for  two  circuits,  539 ;  Determination  of 
coefficients  of,  547  ;  Electromagnetic,  536 ; 

Magnecrystallic,  Theory  of,  180;  of  one  cur- 
rent by  another,  540 ;  Paramagnetic  and  dia- 

magnetic.  Theory  of,  178 
Instrument,  perfect  optical,  274 

Isinglass,  optical  properties  of,  43,  67 

Jenkin,  F,  532,  573 
Joule,  377 

Kohlrausch,  492,  499,  535,  569,  579 

Lame,  30,  32,  70,  72 

Laplace,  292,  293,  294,  369 
Leslie,  Sir  John,  16 

Light :  distinction  between  optical  and  chromatic 

properties  of,  411 ;  Electromagnetic  theory  of, 

502,  577 ;  propagation  of,  forces  called  into 

play,  587 ;  propagation  of,  in  a  crystallized 
medium,  583 

Liquids,  Compressibility  of,  50 
Listing,  271 

Magnetic  field  of  variable  intensity,  214 

Magnetic  lines  of  force,  552 

Magnetism,  Quantity  and  Intensity  as  indicated  by 
lines  of  force,  192 

Magnets,  Permanent,  Theory  of,  178 
Momentum,  Electromagnetic,  538 

Nasmyth,  J.,  57 
Navier,  30,  31,  32,  72 

Neumann,  208,  512,  527 

Newton,  3,  124,  135,  142,  143,  144,  145,  146,  149, 

151,  249,  267,  410,  411,  412 

CErsted,  30,  33,  50 

Optical  Instruments,  General  laws  of,  27 1  ;  Mathe- 
matical treatment  of,  281 — 285 

Oval  Curves,  1 

Plate,  bent  by  pressures,  57 
Plateau,  243,  295 

Platometer,  New  form  of,  230 
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Plucker,  585 

Poinsot,  248,  250 

Poinsot's  Theory  of  Rotation,  Instrument  to  illus- 
trate, 246 

Poisson,  30,  32,  72 

Polyhedron,  inscribed  in  a  surface,  94,  98,  99 

Pressures,  Equations  of,  37 
Problems,  Solutions  of,  74 

Ray.  Reduced  path  of,  280 

Reciprocal  Figures,  514;  Application  to  Statics, 

522;  Possibility  of  drawing,  516;  Relation 
between  the  number  of  points  lines  and  polygons 
in,  515 

Refraction,  index  of,  how  related  to  specific  in- 
ductive capacity,  583 

Regnault,  33,  71 
Resistance,  Electric,  how  related  to  transparency, 

586 

Resisting  medium,  descent  of  a  heavy  body  in,  115 

Rigid  body,  Stability  of  the  steady  motion  about  a 
fixed  centre  of  force,  374 ;  motion  of  about  a 

sphere,  296 

Ring :  motion  of,  when  rigid,  about  a  sphere,  296 — 
310  ;  motion  of,  when  the  parts  are  not  rigidly 

connected,  310;  of  equal  satellites,  360 

Rings,  Effect  of  long  continued  disturbances  on  a 

system  of,  352;  mutual  perturbations  of  two, 
345  ;  Fluid,  Loss  of  energy  due  to  friction,  354 

Rolling  Curves,  4 ;  Examples  of,  22—29 
Rolling  of  Curves  on  themselves,  19 

Rotation,  Theory  of,  249 

Saturn's  Rings,  Stability  of,  286,  288—376 
Sources  and  sinks  defined,  163 

Spectrum,  Relation  of  the  Colours  of,  to  Compound 
Colours,  410 

Sphere,    hollow,   dilated  by  heat,   64 ;    exposed   to 

pressures,  51 — 55 
Sphere  :  magnecrystallic,  217  ;  magnetic  in  uniform 

field  of  magnetic  force,  212 

Spherical  shell:  Electromagnetic,  220,  222;  Per- 
manent magnetism  in,  220  ;  Revolving  in 

magnetic  field,  226 

Spherical  electromagnetic  coil  machine,  224 

Spheres  perfectly  elastic  :  Motions  and  Collisions  of, 

378  ;  Boyle's  law,  389;  Mean  distance  between 
collisions,  386  ;  Mean  Velocity,  381 ;  Mean  Velo- 

city-square, 381 ;  Two  systems  in  same  vessel, 
383 

Spheres:  Two,  between  poles  of  a  magnet,  216; 
Two,  in  uniform  magnetic  field,  215 

Stokes,  32,  33,  71,  72,  143,  209,  391,  410 
Struve,  292 

Surfaces:  Applicability  of,  95;  Conjugate  systems 

of  curves  on,  95,  96  ;  Transformation  of-,  by 
bending,  80 

Telescopes,  perfect,  275 — 279 
Thomson,  Sir  W.,  157,  196,  199,  209,  212,  374, 

453,  503,  505,  528,  529,  533,  588 

Top,  Dynamical,  248 ;  Instantaneous  axis,  255 ; 

Invariable  axis,  252—255 ;  Method  of  observ- 
ing the  motion,  257 

Tractory  of  a  curve,  13 

Tractory  of  circle,  15,  17 

Tubes,  unit,  161 

Unit,  Electrostatic  and  Electromagnetic,  569 

Verdet,  504,  506,  507,  513,  529 

Vortices,  molecular  :  Applied  to  Electric  Currents, 

467  ;    Applied  to  Magnetic  phenomena,   451 ; 

Applied  to  Statical  Electricity,  489 

Wave  length,  Method  of  determining,  423 
Weber,   208,   492,   499,  507,   527,   535,   545,  569, 

579 

Wheatstone,  434 

Wilson,  Dr  George,  137,  415 

Young,  32,  60,  124,  136,  137,  412,  419,  447 


